Linear Algebra II, Homework 3

Due Date: Thursday, February 25, in class.

Problems marked (\star) are bonus ones.
3.1. Consider a function $g: \operatorname{Mat}_{2}(\mathbb{C}) \times \operatorname{Mat}_{2}(\mathbb{C}) \rightarrow \mathbb{C}$ defined as

$$
g(A, B)=2 \operatorname{tr}(A B)-\operatorname{tr}(A) \operatorname{tr}(B)
$$

Show that
(a) g is an orthogonal inner product;
(b) g is degenerate, but its restriction on the subspace of matrices with zero trace is nondegenerate;
(c) restriction of g on the subspace of skew-Hermitian matrices is real and negative definite;
(d) find $\operatorname{dim} \operatorname{ker}(g)$;
(\star) do the same for $\operatorname{Mat}_{n}(\mathbb{C}), g(A, B)=n \operatorname{tr}(A B)-\operatorname{tr}(A) \operatorname{tr}(B)$.
3.2. Let L be non-degenerate orthogonal space. Show that for any two isotropic vectors $u, v \in L$ there exists an isometry of L taking u to v.
3.3. Show that any two maximal isotropic subspaces of a non-degenerate orthogonal space are isometric.
3.4. Let L be a complex linear space of dimension n with inner product g. Denote by r_{0} dimension of ker g. Show that dimension of any maximal isotropic subspace of L is equal to the integer part of $\left(n+r_{0}\right) / 2$.
3.5. (\star) Find maximal dimension of a subspace of $\operatorname{Mat}_{2}(\mathbb{R})$ consisting of degenerate matrices only.

