Linear Algebra II, Homework 4

Due Date: Thursday, March 4, in class.

Problems marked (\star) are bonus ones.

- **4.1.** Use Gram-Schmidt procedure to construct an orthonormal basis of the space of real polynomials of degree at most 4 with inner product $g(p_1, p_2) = \int_0^1 p_1 p_2$ starting with basis $\{1, x, x^2, x^3, x^4\}$.
- **4.2.** Let *L* be non-degenerate finite-dimensional orthogonal space, $L_0 \subset L$ is non-degenerate subspace. Show that for any orthogonal basis $\{e_1, \ldots, e_k\}$ of L_0 there exists an orthogonal basis $\{e_1, \ldots, e_k, e_{k+1}, \ldots, e_n\}$ of *L* containing $\{e_1, \ldots, e_k\}$.
- **4.3.** Find a basis of \mathbb{R}^3 in which the quadratic form q(x, y, z) = xy + yz + zx is diagonal with coefficients ± 1 or 0.
- 4.4. Find the signature of the quadratic form defined by the matrix

$$\begin{pmatrix} 2 & 0 & 3 & -1 \\ 0 & 1 & 2 & 2 \\ 3 & 2 & -1 & 0 \\ -1 & 2 & 0 & 1 \end{pmatrix}$$

4.5. (*) Find the signature of the quadratic form on \mathbb{R}^n defined by

$$q(x) = \sum_{i < j} (x_i - x_j)^2$$