School of Engineering and Science

Linear Algebra II, Homework 7

Due Date: Thursday, April 8, in class.

Problems marked (\star) are bonus ones.
7.1. Let A be a real square matrix. Show that A is symmetric if and only if there exist real invertible matrix C and real diagonal matrix D with

$$
A=C^{-1} D C
$$

7.2. Let f be a normal operator in a unitary space L. Show that
(a) kernels of f and f^{*} coincide;
(b) $\operatorname{im} f=\operatorname{ker} f^{*}$;
(c) images of f and f^{*} coincide;
(d) L is a direct orthogonal sum of the kernel and image of f.
7.3. Show that an operator f in a unitary space is normal if and only if every eigenvector of f is an eigenvector of f^{*}.
7.4. Let L be an orthogonal space with form

$$
(x, y)=-x_{0} y_{0}+\sum_{i=1}^{n} x_{i} y_{i}
$$

Let $(x, x)<0$ and $(y, y)<0$. Show that $(x, y)<0$ if and only if $x_{0} y_{0}>0$.

7.5. (\star) (Polar decomposition)

Let f be an invertible operator in a unitary space. Define r_{1}, r_{2} to be positive self-adjoint operators, such that $r_{1}^{2}=f f^{*}, r_{2}^{2}=f^{*} f$ (see Problem 6.4b).
(a) Show that there exist unitary operators u_{1}, u_{2}, such that

$$
f=r_{1} u_{1}=u_{2} r_{2}
$$

The representations above are called polar decompositions of f.
(b) Show that polar decompositions $f=r_{1} u_{1}=u_{2} r_{2}$ are unique.

