Linear Algebra II, Homework 7

Due Date: Thursday, April 8, in class.

Problems marked (\star) are bonus ones.

7.1. Let A be a real square matrix. Show that A is symmetric if and only if there exist real invertible matrix C and real diagonal matrix D with

$$A = C^{-1}DC$$

- **7.2.** Let f be a normal operator in a unitary space L. Show that
 - (a) kernels of f and f^* coincide;
 - (b) im $f = \ker f^*;$
 - (c) images of f and f^* coincide;
 - (d) L is a direct orthogonal sum of the kernel and image of f.
- **7.3.** Show that an operator f in a unitary space is normal if and only if every eigenvector of f is an eigenvector of f^* .
- **7.4.** Let L be an orthogonal space with form

$$(x,y) = -x_0y_0 + \sum_{i=1}^n x_iy_i$$

Let (x, x) < 0 and (y, y) < 0. Show that (x, y) < 0 if and only if $x_0y_0 > 0$.

7.5. (\star) (Polar decomposition)

Let f be an invertible operator in a unitary space. Define r_1, r_2 to be positive self-adjoint operators, such that $r_1^2 = ff^*$, $r_2^2 = f^*f$ (see Problem 6.4b).

(a) Show that there exist unitary operators u_1 , u_2 , such that

$$f = r_1 u_1 = u_2 r_2$$

The representations above are called *polar decompositions* of f.

(b) Show that polar decompositions $f = r_1 u_1 = u_2 r_2$ are unique.