School of Engineering and Science

Linear Algebra II, Homework 8

Due Date: Thursday, April 22, in class.

Problems marked (\star) are bonus ones.
8.1. Show that for skew-symmetric 4×4 matrix $A=\left(a_{i j}\right)$ its Pffafian can be written as

$$
\operatorname{Pf} A=-a_{12} a_{34}+a_{13} a_{24}-a_{14} a_{23}
$$

8.2. Let $A \in S p_{2 r}$.
(a) Show that $\chi_{A}(\lambda)=\lambda^{2 r} \chi_{A}(1 / \lambda)$.

Hint: Use the fact $A=J^{-1}\left(A^{t}\right)^{-1} J$, where J is the Gram matrix of a symplectic form in a symplectic basis.
(b) Show that for every eigenvalue λ of A, the numbers $\bar{\lambda}, \frac{1}{\lambda}$, and $\frac{1}{\lambda}$ are also eigenvalues of A.
8.3. Let L be a linear space, $M_{1}, M_{2} \subset L$ are linear subspaces. For any linear space M denote by $P(M)$ the projectivization of M. Show that
(a) $P\left(M_{1}\right) \cap P\left(M_{2}\right)=P\left(M_{1} \cap M_{2}\right)$;
(b) $P\left(M_{1}+M_{2}\right)$ coincides with the projective span $\overline{P\left(M_{1}\right) \cup P\left(M_{2}\right)}$ of $P\left(M_{1}\right) \cup P\left(M_{2}\right)$.
8.4. Let P_{1} be a projective line, and $P_{2} \notin P_{1}$ be a point in projective space $\mathbb{F P}^{4}$. Find $\overline{P_{1} \cup P_{2}}$.
8.5. (a) Show that the system of linear equations

$$
\sum_{j=0}^{n} a_{i j} x_{j}=0, \quad 1 \leq i \leq m
$$

defines a projective subspace in $\mathbb{F P}^{n}$.
$(b)(\star)$ Show that any projective subspace in $\mathbb{F P}^{n}$ can be defined by a system of linear homogeneous equations.

