Linear Algebra II, Homework 8

Due Date: Thursday, April 22, in class.

Problems marked (\star) are bonus ones.

8.1. Show that for skew-symmetric 4×4 matrix $A = (a_{ij})$ its Pffafian can be written as

Pf
$$A = -a_{12}a_{34} + a_{13}a_{24} - a_{14}a_{23}$$

8.2. Let $A \in Sp_{2r}$.

(a) Show that $\chi_A(\lambda) = \lambda^{2r} \chi_A(1/\lambda)$.

Hint: Use the fact $A = J^{-1}(A^t)^{-1}J$, where J is the Gram matrix of a symplectic form in a symplectic basis.

(b) Show that for every eigenvalue λ of A, the numbers $\overline{\lambda}$, $\frac{1}{\lambda}$, and $\frac{1}{\lambda}$ are also eigenvalues of A.

8.3. Let L be a linear space, $M_1, M_2 \subset L$ are linear subspaces. For any linear space M denote by P(M) the projectivization of M. Show that

(a) $P(M_1) \cap P(M_2) = P(M_1 \cap M_2);$

- (b) $P(M_1 + M_2)$ coincides with the projective span $\overline{P(M_1) \cup P(M_2)}$ of $P(M_1) \cup P(M_2)$.
- **8.4.** Let P_1 be a projective line, and $P_2 \notin P_1$ be a point in projective space $\mathbb{F}P^4$. Find $\overline{P_1 \cup P_2}$.
- 8.5. (a) Show that the system of linear equations

$$\sum_{j=0}^{n} a_{ij} x_j = 0, \qquad 1 \le i \le m$$

defines a projective subspace in $\mathbb{F}P^n$.

(b)(*) Show that any projective subspace in $\mathbb{F}\mathrm{P}^n$ can be defined by a system of linear homogeneous equations.