Riemannian Geometry IV, Solutions 1 (Week 11)

1.1. (\star) Let $H_{3}(\mathbb{R})$ be the set of 3×3 unit upper-triangular matrices (i.e. the matrices of the form

$$
\left(\begin{array}{ccc}
1 & x_{1} & x_{2} \\
0 & 1 & x_{3} \\
0 & 0 & 1
\end{array}\right)
$$

where $\left.x_{1}, x_{2}, x_{3} \in \mathbb{R}\right)$.
(a) Show that $H_{3}(\mathbb{R})$ is a group with respect to matrix multiplication. This group is called the Heisenberg group.
(b) Show that the Heisenberg group is a Lie group. What is its dimension?
(c) Prove that the matrices

$$
X_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad X_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad X_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

form a basis of the tangent space $T_{e} H_{3}(\mathbb{R})$ of the group $H_{3}(\mathbb{R})$ at the neutral element e.
(d) For each $k=1,2,3$, find an explicit formula for the curve $c_{k}: \mathbb{R} \rightarrow H_{3}(\mathbb{R})$ given by $c_{k}(t)=$ $\operatorname{Exp}\left(t X_{k}\right)$.

Solution:

(a) It is an easy computation to check the axioms of a group (i.e H_{3} is closed under multiplication, there exists an obvious neutral element (3×3 identity matrix), there is an inverse element for each $h \in H_{3}$, associativity works as always in matrix groups).
(b) The matrix elements $\left(x_{1}, x_{2}, x_{3}\right)$ give a global chart on H_{3}, so H_{3} is a smooth 3 -manifold. The multiplication $g_{1} g_{2}$ can be written as $\left(x_{1}, x_{2}, x_{3}\right)\left(y_{1}, y_{2}, y_{3}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}+x_{1} y_{3}, x_{3}+y_{3}\right)$, and the inverse element g_{1}^{-1} can be written as $\left(x_{1}, x_{2}, x_{3}\right)^{-1}=\left(-x_{1}, x_{1} x_{3}-x_{2},-x_{3}\right)$, which are smooth maps $H_{3} \times H_{3} \rightarrow H_{3}$ and $H_{3} \rightarrow H_{3}$ respectively. Hence, H_{3} is a Lie group.
(c) To see that the matrices X_{i} belong to $T_{e} H_{3}$ consider the paths $c_{i}(t)=I+X_{i} t \in H_{3}$. By definition, $\frac{\partial}{\partial x_{i}}=c_{i}^{\prime}(t)=X_{i}$. So, $\left\{X_{1}, X_{2}, X_{3}\right\}$ is the basis of $T_{e} H_{3}$ since $\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right\}$ is a basis.
(d) Since $X_{i}^{2}=0$ for $i=1,2,3$ we see that $\operatorname{Exp}\left(t X_{i}\right)=I+X_{i} t$.
1.2. Let G, H be Lie groups. A map $\varphi: G \rightarrow H$ is called a homomorphism (of Lie groups) if it is smooth and it is a homomorphism of abstract groups.
Denote by $\mathfrak{g}, \mathfrak{h}$ Lie algebras of G and H, and let $\varphi: G \rightarrow H$ be a homomorphism.
(a) Show that the differential $D \varphi(e): T_{e} G \rightarrow T_{e} H$ induces a linear map $D \varphi: \mathfrak{g} \rightarrow \mathfrak{h}$, where $D \varphi(X)$ for $X \in \mathfrak{g}$ is the unique left-invariant vector field on H such that $D \varphi(X)(e)=D \varphi(X(e))$.
(b) Show that for any $g \in G$

$$
L_{\varphi(g)} \circ \varphi=\varphi \circ L_{g}
$$

(c) Show that for any $X \in \mathfrak{g}$ and $g \in G$

$$
D \varphi(X)(\varphi(g))=D \varphi(X(g))
$$

(d) Show that $D \varphi: \mathfrak{g} \rightarrow \mathfrak{h}$ is a homomorphism of Lie algebras, i.e. a linear map satisfying $D \varphi([X, Y])=[D \varphi(X), D \varphi(Y)]$ for any $X, Y \in \mathfrak{g}$.

Solution:

(a) The map $D \varphi: \mathfrak{g} \rightarrow \mathfrak{h}$ defined by $D \varphi(X)(e)=D \varphi(X(e))$ is clearly linear.
(b) Since φ is a homomorphism, we have for $h \in G$

$$
\left(L_{\varphi(g)} \circ \varphi\right)(h)=\varphi(g) \varphi(h)=\varphi(g h)=\varphi\left(L_{g}(h)\right)=\varphi \circ L_{g}(h)
$$

(c) Since $D \varphi(X) \in \mathfrak{h}$, we have

$$
\begin{aligned}
D \varphi(X)(\varphi(g))=D L_{\varphi(g)}(e) D \varphi(X)(e)=D L_{\varphi(g)}(e) & D \varphi(X(e))=D\left(L_{\varphi(g)} \circ \varphi\right)(e) X(e)= \\
& =D\left(\varphi \circ L_{g}\right) X(e)=D \varphi\left(D L_{g} X(e)\right)=D \varphi(X(g))
\end{aligned}
$$

(d) Reproducing the proof of Prop. 6.8 (substituting L_{g} by φ and making use of (c) and Lemma 6.7), we have for every $f \in C^{\infty}(H)$ and $g \in G$

$$
\begin{aligned}
(D \varphi \circ[X, Y](g))(f)=[X, Y](g)(f \circ \varphi) & =X(g) Y(f \circ \varphi)-Y(g) X(f \circ \varphi)= \\
& =X(g)((D \varphi \circ Y)(f))-Y(g)((D \varphi \circ X)(f))= \\
& =X(g)(D \varphi(Y)(f) \circ \varphi)-Y(g)(D \varphi(X)(f) \circ \varphi)= \\
& =D \varphi(X(g))(D \varphi(Y)(f))-D \varphi(Y(g))(D \varphi(X)(f))= \\
& =D \varphi(X)(\varphi(g))(D \varphi(Y)(f))-D \varphi(Y)(\varphi(g))(D \varphi(X)(f))= \\
& =[D \varphi(X), D \varphi(Y)](\varphi(g))(f)
\end{aligned}
$$

In particular, taking $g=e$, we have $(D \varphi \circ[X, Y])(e)=[D \varphi(X), D \varphi(Y)](e)$. According to (c), we have $D \varphi([X, Y]) \circ \varphi=D \varphi \circ[X, Y]$, so $(D \varphi \circ[X, Y])(e)=D \varphi([X, Y])(e)$. Therefore, we have two left-invariant vector fields $D \varphi([X, Y])$ and $[D \varphi(X), D \varphi(Y)]$ coinciding at e, which implies they are equal.
1.3. Let $S^{2}=\left\{x \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$ be the unit sphere in \mathbb{R}^{3}.

Show that there exists no group operation on S^{2} such that S^{2} with this group operation and some smooth structure becomes a Lie group.
Solution:
Assume that S^{2} has a group operation resulting in a Lie group G. Take any nonzero $v \in T_{e} G$, and define a left-invariant vector field $X(g)=D L_{g}(e) v$ on G. Then X is a smooth nowhere vanishing field since for every $g \in G$ we have $D L_{g^{-1}}(g) X(g)=v \neq 0$. The existence of such a field contradicts the Hairy Ball Theorem.

