Durham University Pavel Tumarkin

Epiphany 2016

Riemannian Geometry IV, Solutions 1 (Week 11)

1.1. (*) Let $H_3(\mathbb{R})$ be the set of 3×3 unit upper-triangular matrices (i.e. the matrices of the form

$$\begin{pmatrix} 1 & x_1 & x_2 \\ 0 & 1 & x_3 \\ 0 & 0 & 1 \end{pmatrix}$$

where $x_1, x_2, x_3 \in \mathbb{R}$).

- (a) Show that $H_3(\mathbb{R})$ is a group with respect to matrix multiplication. This group is called the *Heisenberg group*.
- (b) Show that the Heisenberg group is a Lie group. What is its dimension?
- (c) Prove that the matrices

$$X_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad X_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad X_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

form a basis of the tangent space $T_eH_3(\mathbb{R})$ of the group $H_3(\mathbb{R})$ at the neutral element e.

(d) For each k = 1, 2, 3, find an explicit formula for the curve $c_k : \mathbb{R} \to H_3(\mathbb{R})$ given by $c_k(t) = \exp(tX_k)$.

Solution:

- (a) It is an easy computation to check the axioms of a group (i.e H_3 is closed under multiplication, there exists an obvious neutral element (3 × 3 identity matrix), there is an inverse element for each $h \in H_3$, associativity works as always in matrix groups).
- (b) The matrix elements (x_1, x_2, x_3) give a global chart on H_3 , so H_3 is a smooth 3-manifold. The multiplication g_1g_2 can be written as $(x_1, x_2, x_3)(y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2 + x_1y_3, x_3 + y_3)$, and the inverse element g_1^{-1} can be written as $(x_1, x_2, x_3)^{-1} = (-x_1, x_1x_3 x_2, -x_3)$, which are smooth maps $H_3 \times H_3 \to H_3$ and $H_3 \to H_3$ respectively. Hence, H_3 is a Lie group.
- (c) To see that the matrices X_i belong to T_eH_3 consider the paths $c_i(t) = I + X_i t \in H_3$. By definition, $\frac{\partial}{\partial x_i} = c'_i(t) = X_i$. So, $\{X_1, X_2, X_3\}$ is the basis of T_eH_3 since $\{\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3}\}$ is a basis.
- (d) Since $X_i^2 = 0$ for i = 1, 2, 3 we see that $\text{Exp}(tX_i) = I + X_i t$.
- **1.2.** Let G, H be Lie groups. A map $\varphi : G \to H$ is called a *homomorphism (of Lie groups)* if it is smooth and it is a homomorphism of abstract groups.

Denote by $\mathfrak{g}, \mathfrak{h}$ Lie algebras of G and H, and let $\varphi: G \to H$ be a homomorphism.

- (a) Show that the differential $D\varphi(e): T_eG \to T_eH$ induces a linear map $D\varphi: \mathfrak{g} \to \mathfrak{h}$, where $D\varphi(X)$ for $X \in \mathfrak{g}$ is the unique left-invariant vector field on H such that $D\varphi(X)(e) = D\varphi(X(e))$.
- (b) Show that for any $g \in G$

$$L_{\varphi(g)} \circ \varphi = \varphi \circ L_g$$

(c) Show that for any $X \in \mathfrak{g}$ and $g \in G$

$$D\varphi(X)(\varphi(g)) = D\varphi(X(g))$$

(d) Show that $D\varphi : \mathfrak{g} \to \mathfrak{h}$ is a homomorphism of Lie algebras, i.e. a linear map satisfying $D\varphi([X,Y]) = [D\varphi(X), D\varphi(Y)]$ for any $X, Y \in \mathfrak{g}$.

Solution:

- (a) The map $D\varphi: \mathfrak{g} \to \mathfrak{h}$ defined by $D\varphi(X)(e) = D\varphi(X(e))$ is clearly linear.
- (b) Since φ is a homomorphism, we have for $h \in G$

$$(L_{\varphi(g)} \circ \varphi)(h) = \varphi(g)\varphi(h) = \varphi(gh) = \varphi(L_g(h)) = \varphi \circ L_g(h)$$

(c) Since $D\varphi(X) \in \mathfrak{h}$, we have

$$D\varphi(X)(\varphi(g)) = DL_{\varphi(g)}(e)D\varphi(X)(e) = DL_{\varphi(g)}(e)D\varphi(X(e)) = D(L_{\varphi(g)} \circ \varphi)(e)X(e) = D(\varphi \circ L_g)X(e) = D\varphi(DL_gX(e)) = D\varphi(X(g))$$

(d) Reproducing the proof of Prop. 6.8 (substituting L_g by φ and making use of (c) and Lemma 6.7), we have for every $f \in C^{\infty}(H)$ and $g \in G$

$$\begin{aligned} (D\varphi \circ [X,Y](g))(f) &= [X,Y](g)(f \circ \varphi) &= X(g)Y(f \circ \varphi) - Y(g)X(f \circ \varphi) = \\ &= X(g)((D\varphi \circ Y)(f)) - Y(g)((D\varphi \circ X)(f)) = \\ &= X(g)(D\varphi(Y)(f) \circ \varphi) - Y(g)(D\varphi(X)(f) \circ \varphi) = \\ &= D\varphi(X(g))(D\varphi(Y)(f)) - D\varphi(Y(g))(D\varphi(X)(f)) = \\ &= D\varphi(X)(\varphi(g))(D\varphi(Y)(f)) - D\varphi(Y)(\varphi(g))(D\varphi(X)(f)) = \\ &= [D\varphi(X), D\varphi(Y)](\varphi(g))(f) \end{aligned}$$

In particular, taking g = e, we have $(D\varphi \circ [X,Y])(e) = [D\varphi(X), D\varphi(Y)](e)$. According to (c), we have $D\varphi([X,Y]) \circ \varphi = D\varphi \circ [X,Y]$, so $(D\varphi \circ [X,Y])(e) = D\varphi([X,Y])(e)$. Therefore, we have two left-invariant vector fields $D\varphi([X,Y])$ and $[D\varphi(X), D\varphi(Y)]$ coinciding at e, which implies they are equal.

1.3. Let $S^2 = \{x \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 = 1\}$ be the unit sphere in \mathbb{R}^3 .

Show that there exists no group operation on S^2 such that S^2 with this group operation and some smooth structure becomes a Lie group.

Solution:

Assume that S^2 has a group operation resulting in a Lie group G. Take any nonzero $v \in T_e G$, and define a left-invariant vector field $X(g) = DL_g(e)v$ on G. Then X is a smooth nowhere vanishing field since for every $g \in G$ we have $DL_{g^{-1}}(g)X(g) = v \neq 0$. The existence of such a field contradicts the Hairy Ball Theorem.