Riemannian Geometry IV, Homework 1 (Week 11)

Due date for starred problems: Thursday, February 4.

1.1. (*) Let $H_3(\mathbb{R})$ be the set of 3×3 unit upper-triangular matrices (i.e. the matrices of the form

$$\begin{pmatrix} 1 & x_1 & x_2 \\ 0 & 1 & x_3 \\ 0 & 0 & 1 \end{pmatrix},$$

where $x_1, x_2, x_3 \in \mathbb{R}$).

- (a) Show that $H_3(\mathbb{R})$ is a group with respect to matrix multiplication. This group is called the *Heisenberg group*.
- (b) Show that the Heisenberg group is a Lie group. What is its dimension?
- (c) Prove that the matrices

$$X_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad X_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad X_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

form a basis of the tangent space $T_eH_3(\mathbb{R})$ of the group $H_3(\mathbb{R})$ at the neutral element e.

- (d) For each k = 1, 2, 3, find an explicit formula for the curve $c_k : \mathbb{R} \to H_3(\mathbb{R})$ given by $c_k(t) = \text{Exp}(tX_k)$.
- **1.2.** Let G, H be Lie groups. A map $\varphi : G \to H$ is called a *homomorphism (of Lie groups)* if it is smooth and it is a homomorphism of abstract groups.

Denote by $\mathfrak{g}, \mathfrak{h}$ Lie algebras of G and H, and let $\varphi: G \to H$ be a homomorphism.

- (a) Show that the differential $D\varphi(e): T_eG \to T_eH$ induces a linear map $D\varphi: \mathfrak{g} \to \mathfrak{h}$, where $D\varphi(X)$ for $X \in \mathfrak{g}$ is the unique left-invariant vector field on H such that $D\varphi(X)(e) = D\varphi(X(e))$.
- (b) Show that for any $g \in G$

$$L_{\varphi(q)} \circ \varphi = \varphi \circ L_g$$

(c) Show that for any $X \in \mathfrak{g}$ and $g \in G$

$$D\varphi(X)(\varphi(g)) = D\varphi(X(g))$$

(d) Show that $D\varphi : \mathfrak{g} \to \mathfrak{h}$ is a homomorphism of Lie algebras, i.e. a linear map satisfying $D\varphi([X,Y]) = [D\varphi(X), D\varphi(Y)]$ for any $X, Y \in \mathfrak{g}$.

1.3. Let $S^2 = \{x \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 = 1\}$ be the unit sphere in \mathbb{R}^3 .

Show that there exists no group operation on S^2 such that S^2 with this group operation and some smooth structure becomes a Lie group.