Riemannian Geometry IV, Solutions 2 (Week 12)

2.1. Let $G \subset G L_{n}(\mathbb{R}), v, w \in T_{I} G$. Use the definition

$$
\operatorname{ad}_{w} v=\left.\left.\frac{d}{d t}\right|_{t=0} \frac{d}{d s}\right|_{s=0} \operatorname{Exp}(t w) \operatorname{Exp}(s v) \operatorname{Exp}(-t w)
$$

of the adjoint representation and the expansion of the power series for exponents of $t w$ and $s v$ to show that $\operatorname{ad}_{w} v=[w, v]$.
Solution: This can be done by a straightforward computation. Namely, by expanding all the exponents as power series and collecting the coefficients of $t^{1} s^{1}$ in the product one can immediately see that the coefficient is $w v-v w$. Now observe that after taking derivatives with respect to s and t at $(0,0)$ one obtains exactly the coefficient of $t^{1} s^{1}$.
2.2. (a) Let $A, B \in M_{n}(\mathbb{R}),[A, B]=0$. Take $t \in \mathbb{R}$ and show that $\operatorname{Exp}(t(A+B))=\operatorname{Exp}(t A) \operatorname{Exp}(t B)$ (in particular, you obtain that $\operatorname{Exp}(A+B)=\operatorname{Exp}(A) \operatorname{Exp}(B)$).
(b) Show that

$$
\operatorname{Exp}\left(t\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)\right)=\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} / 6 \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Guess what would be the exponential of an $n \times n$-matrix of the same form (i.e., a Jordan block with zero eigenvalue).
(c) Show that

$$
\operatorname{Exp}\left(t\left(\begin{array}{cccc}
c & 1 & 0 & 0 \\
0 & c & 1 & 0 \\
0 & 0 & c & 1 \\
0 & 0 & 0 & c
\end{array}\right)\right)=e^{t c}\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} / 6 \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Solution:
(a) As in the previous exercise, expand both exponents $\operatorname{Exp}(t A)$ and $\operatorname{Exp}(t B)$ as power series and collect the coefficient of t^{n} in the product. The monomials involved will be of type $\frac{(t A)^{k}(t B)^{n-k}}{k!(n-k)!}$, so the monomial containing t^{n} in the product will be

$$
\sum_{k=0}^{n} \frac{(t A)^{k}(t B)^{n-k}}{k!(n-k)!}=\sum_{k=0}^{n} t^{n} \frac{A^{k} B^{n-k}}{k!(n-k)!}=\frac{t^{n}}{n!} \sum_{k=0}^{n} A^{k} B^{n-k} \frac{n!}{k!(n-k)!}=\frac{t^{n}}{n!}(A+B)^{n}
$$

(b) Let $A=\left(\begin{array}{llll}0 & t & 0 & 0 \\ 0 & 0 & t & 0 \\ 0 & 0 & 0 & t \\ 0 & 0 & 0 & 0\end{array}\right)$. We have

$$
A^{2}=\left(\begin{array}{cccc}
0 & 0 & t^{2} & 0 \\
0 & 0 & 0 & t^{2} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad A^{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & t^{3} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad A^{k}=0 \quad \text { for all } k \geq 4
$$

So the power series $\operatorname{Exp}(A)$ terminates after 4 terms and we conclude that

$$
\operatorname{Exp}(A)=I+A+\frac{1}{2} A^{2}+\frac{1}{3!} A^{3}=\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} /(3!) \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(c) Let $B=t c I$, where I denotes the 4×4 identity matrix, and let A be as in (a). Then we have $\operatorname{Exp}(B)=e^{t c} I$ and A and B commute. This implies that

$$
\operatorname{Exp}\left(t\left(\begin{array}{cccc}
c & 1 & 0 & 0 \\
0 & c & 1 & 0 \\
0 & 0 & c & 1 \\
0 & 0 & 0 & c
\end{array}\right)\right)=\operatorname{Exp}(A+B)=\operatorname{Exp}(B) \operatorname{Exp}(A)=e^{t c}\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} /(3!) \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

2.3. (\star) Let $(G,\langle\cdot, \cdot\rangle)$ be a Lie group with a bi-invariant Riemannian metric (i.e., both L_{g} and R_{g} are isometries for every $g \in G)$. Let \mathfrak{g} denote the Lie algebra of G, and let $X, Y, Z \in \mathfrak{g}$.
(a) Show that $\langle X, Y\rangle$ is a constant function on G.
(b) Use the relation

$$
\left\langle Z, \nabla_{X} Y\right\rangle=\frac{1}{2}(X\langle Z, Y\rangle+Y\langle Z, X\rangle-Z\langle Y, X\rangle+\langle X,[Z, Y]\rangle+\langle Y,[Z, X]\rangle-\langle Z,[Y, X]\rangle)
$$

and the fact that the metric is left-invariant to prove that $\left\langle Z, \nabla_{Y} Y\right\rangle=\langle Y,[Z, Y]\rangle$.
(c) By Corollary 6.18, the bi-invariance of the metric implies that

$$
\langle[U, X], V\rangle=-\langle U,[V, X]\rangle
$$

for $X, U, V \in \mathfrak{g}$. Use this fact to conclude that $\nabla_{Y} Y=0$ for all $Y \in \mathfrak{g}$.
(d) Show that $\nabla_{X} Y=\frac{1}{2}[X, Y]$.

Solution:

(a)

$$
\langle X(g), Y(g)\rangle_{g}=\left\langle D L_{g}(e) X(e), D L_{g}(e) Y(e)\right\rangle_{g}=\langle X(e), Y(e)\rangle_{e},
$$

so $\langle X(g), Y(g)\rangle_{g}$ does not depend on g.
(b) The relation with 6 terms in the RHS implies that

$$
\begin{aligned}
&\left\langle Z, \nabla_{Y} Y\right\rangle=\frac{1}{2}(Y\langle Z, Y\rangle+Y\langle Z, Y\rangle-Z\langle Y, Y\rangle+\langle Y,[Z, Y]\rangle+\langle Y,[Z, Y]\rangle-\langle Z,[Y, Y]\rangle)= \\
& \frac{1}{2}(\langle Y,[Z, Y]\rangle+\langle Y,[Z, Y]\rangle),
\end{aligned}
$$

since the first three derivatives of the right hand side of the relation vanish by (a). Moreover, we have $[Y, Y]=0$. Thus, we conclude that

$$
\left\langle Z, \nabla_{Y} Y\right\rangle=\langle Y,[Z, Y]\rangle
$$

(c) The bi-invariance implies that

$$
\langle[Y, X], Y\rangle=-\langle Y,[Y, X]\rangle=-\langle[Y, X], Y\rangle
$$

so $\langle[Y, X], Y\rangle=0$. This gives us $\left\langle X, \nabla_{Y} Y\right\rangle=0$ for all left-invariant X, so we have $\nabla_{Y} Y=0$ for all left-invariant Y.
(d) We calculate

$$
0=\nabla_{X+Y}(X+Y)=\nabla_{X} Y+\nabla_{Y} X+\nabla_{X} X+\nabla_{Y} Y=\nabla_{X} Y+\nabla_{Y} X=2 \nabla_{X} Y-[X, Y]
$$

Division by two finally yields

$$
\nabla_{X} Y=\frac{1}{2}[X, Y]
$$

2.4. The special unitary group $S U_{n} \subset M_{n}(\mathbb{C})$ consists of $n \times n$ matrices A with complex entries and unit determinant satisfying the equation $\bar{A}^{t} A=I=A \bar{A}^{t}$.
(a) Show that $S U_{n}$ forms a group under matrix multiplication.
(b) Show that $S U_{2}$ consists of all matrices of the form

$$
\left(\begin{array}{cc}
z & w \\
-\bar{w} & \bar{z}
\end{array}\right), \quad z, w \in \mathbb{C}, \quad|z|^{2}+|w|^{2}=1 .
$$

(c) Show that $S U_{2}$ is a smooth (real) manifold. Find its dimension.
(d) Show that $S U_{2}$ is a Lie group.
(e) Find the Lie algebra $\mathfrak{s u}_{2}$ of $S U_{2}$ as a subspace of $M_{2}(\mathbb{C})$. Find any basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ of $\mathfrak{s u}_{2}$. Compute explicitly the left-invariant vector fields X_{1}, X_{2}, X_{3} on $S U_{2}$ such that $X_{i}(I)=v_{i}$.

Solution:
(a) Let $A, B \in S U_{n}$. Then

$$
(\overline{A B})^{t}(A B)=\bar{B}^{t} \bar{A}^{t} A B=\bar{B}^{t}\left(\bar{A}^{t} A\right) B=\bar{B}^{t} B=I
$$

so $A B \in S U_{n}$. Also, $\operatorname{det} \bar{A}^{t} \operatorname{det} A=\operatorname{det} I=1$ and $\operatorname{det} \bar{A}^{t}=\overline{\operatorname{det} A}$, which implies $|\operatorname{det} A|=1 \neq 0$. Thus, A^{-1} exists. Now observe that $\left(\bar{A}^{t}\right)^{-1} A^{-1}=\left(A \bar{A}^{t}\right)^{-1}=I$, so $A^{-1} \in S U_{n}$.
(b) Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), a, b, c, d \in \mathbb{C}$. Then, computing $\bar{A}^{t} A$, we see that $A \in S U_{2}$ if and only if the following equations hold:

$$
|a|^{2}+|b|^{2}=1, \quad|c|^{2}+|d|^{2}=1, \quad a \bar{c}+b \bar{d}=0, \quad a d-b c=1 .
$$

Multiplying the last two equations by c and \bar{d} respectively and adding them to each other, we see that $a\left(|c|^{2}+|d|^{2}\right)=\bar{d}$, which implies $a=\bar{d}$. This, in its turn, immediately implies that $c=-\bar{b}$.
Thus, we proved that every $A \in S U_{2}$ has required form. Conversely, it is clear that every matrix of such form has unit determinant and satisfies $\bar{A}^{t} A=I$.
(c) We can embed $S U_{2}$ in \mathbb{R}^{4} with coordinates $\left(x_{1}, \ldots, x_{4}\right)$ by writing $z=x_{1}+i x_{2}$ and $w=x_{3}+i x_{4}$. Thus, $S U_{2}=f^{-1}(0)$ for $f: \mathbb{R}^{4} \rightarrow \mathbb{R}, f(\boldsymbol{x})=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-1$. Since 0 is a regular value, $S U_{2}$ is a 3 -dim smooth manifold (actually, the description above shows that $S U_{2}$ is the 3 -dim sphere S^{3}).
(d) The multiplication and inverse are polynomials in the entries so they are clearly smooth.
(e) Let $A(t)=\left(\begin{array}{cc}x_{1}(s)+i x_{2}(s) & x_{3}(s)+i x_{4}(s) \\ -x_{3}(s)+i x_{4}(s) & x_{1}(s)-i x_{2}(s)\end{array}\right)$ be a curve in $S U_{2}, A(0)=I$. Differentiating the equation $x_{1}^{2}(s)+x_{2}^{2}(s)+x_{3}^{2}(s)+x_{4}^{2}(s)=1$ at $s=0$, we obtain $x_{1}^{\prime}(0)=0$. In other words,

$$
\mathfrak{s u}_{2}=T_{I} S U_{2}=\left\{\left(\begin{array}{cc}
x i & w \\
-\bar{w} & -x i
\end{array}\right)\left|x \in \mathbb{R}, w \in \mathbb{C}, x^{2}+|w|^{2}=1\right\} .\right.
$$

We can take as a basis of $\mathfrak{s u}_{2}$, for example, matrices

$$
v_{1}=\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right), \quad v_{2}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad v_{3}=\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right)
$$

(this particular choice of signs can be explained by the fact that the matrices $\sigma_{1}=i v_{1}, \sigma_{2}=i v_{2}, \sigma_{3}=i v_{3}$ are Pauli matrices you could meet in Quantum Mechanics).
To construct left-invariant fields X_{i} recall from Example 6.3 that for matrix groups $X_{i}(g)=g X_{i}(I)$. Thus, for $g=\left(\begin{array}{cc}z & w \\ -\bar{w} & \bar{z}\end{array}\right)$, we have

$$
X_{1}(g)=\left(\begin{array}{cc}
-i w & -i z \\
-i \bar{z} & i \bar{w}
\end{array}\right), \quad X_{2}(g)=\left(\begin{array}{cc}
w & z \\
\bar{z} & \bar{w}
\end{array}\right), \quad X_{3}(g)=\left(\begin{array}{cc}
-i z & i w \\
i \bar{w} & i \bar{z}
\end{array}\right)
$$

