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Riemannian Geometry IV, Solutions 2 (Week 12)

2.1. Let G ⊂ GLn(R), v, w ∈ TIG. Use the definition

adwv =
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

Exp (tw) Exp (sv) Exp (−tw)

of the adjoint representation and the expansion of the power series for exponents of tw and sv to show
that adwv = [w, v].

Solution: This can be done by a straightforward computation. Namely, by expanding all the exponents as

power series and collecting the coefficients of t1s1 in the product one can immediately see that the coefficient

is wv − vw. Now observe that after taking derivatives with respect to s and t at (0, 0) one obtains exactly the

coefficient of t1s1.

2.2. (a) Let A,B ∈ Mn(R), [A,B] = 0. Take t ∈ R and show that Exp (t(A + B)) = Exp (tA) Exp (tB)
(in particular, you obtain that Exp (A+B) = Exp (A) Exp (B)).

(b) Show that

Exp

t


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 =


1 t t2/2 t3/6
0 1 t t2/2
0 0 1 t
0 0 0 1

 .

Guess what would be the exponential of an n× n-matrix of the same form (i.e., a Jordan block
with zero eigenvalue).

(c) Show that

Exp

t

c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c


 = etc


1 t t2/2 t3/6
0 1 t t2/2
0 0 1 t
0 0 0 1

 .

Solution:

(a) As in the previous exercise, expand both exponents Exp (tA) and Exp (tB) as power series and collect the

coefficient of tn in the product. The monomials involved will be of type (tA)k(tB)n−k

k!(n−k)! , so the monomial

containing tn in the product will be

n∑
k=0

(tA)k(tB)n−k

k!(n− k)!
=

n∑
k=0

tn
AkBn−k

k!(n− k)!
=
tn

n!

n∑
k=0

AkBn−k n!

k!(n− k)!
=
tn

n!
(A+B)n

(b) Let A =


0 t 0 0
0 0 t 0
0 0 0 t
0 0 0 0

. We have

A2 =


0 0 t2 0
0 0 0 t2

0 0 0 0
0 0 0 0

 , A3 =


0 0 0 t3

0 0 0 0
0 0 0 0
0 0 0 0

 , Ak = 0 for all k ≥ 4.

So the power series Exp (A) terminates after 4 terms and we conclude that

Exp (A) = I +A+
1

2
A2 +

1

3!
A3 =


1 t t2/2 t3/(3!)
0 1 t t2/2
0 0 1 t
0 0 0 1

 .



(c) Let B = tcI, where I denotes the 4×4 identity matrix, and let A be as in (a). Then we have Exp (B) = etcI
and A and B commute. This implies that

Exp

t

c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c


 = Exp (A+B) = Exp (B)Exp (A) = etc


1 t t2/2 t3/(3!)
0 1 t t2/2
0 0 1 t
0 0 0 1

 .

2.3. (?) Let (G, 〈·, ·〉) be a Lie group with a bi-invariant Riemannian metric (i.e., both Lg and Rg are
isometries for every g ∈ G). Let g denote the Lie algebra of G, and let X,Y, Z ∈ g.

(a) Show that 〈X,Y 〉 is a constant function on G.

(b) Use the relation

〈Z,∇XY 〉 =
1

2
(X〈Z, Y 〉+ Y 〈Z,X〉 − Z〈Y,X〉+ 〈X, [Z, Y ]〉+ 〈Y, [Z,X]〉 − 〈Z, [Y,X]〉)

and the fact that the metric is left-invariant to prove that 〈Z,∇Y Y 〉 = 〈Y, [Z, Y ]〉.
(c) By Corollary 6.18, the bi-invariance of the metric implies that

〈[U,X], V 〉 = −〈U, [V,X]〉

for X,U, V ∈ g. Use this fact to conclude that ∇Y Y = 0 for all Y ∈ g.

(d) Show that ∇XY = 1
2 [X,Y ].

Solution:

(a)
〈X(g), Y (g)〉g = 〈DLg(e)X(e), DLg(e)Y (e)〉g = 〈X(e), Y (e)〉e,

so 〈X(g), Y (g)〉g does not depend on g.

(b) The relation with 6 terms in the RHS implies that

〈Z,∇Y Y 〉 =
1

2
(Y 〈Z, Y 〉+ Y 〈Z, Y 〉 − Z〈Y, Y 〉+ 〈Y, [Z, Y ]〉+ 〈Y, [Z, Y ]〉 − 〈Z, [Y, Y ]〉) =

1

2
(〈Y, [Z, Y ]〉+ 〈Y, [Z, Y ]〉) ,

since the first three derivatives of the right hand side of the relation vanish by (a). Moreover, we have
[Y, Y ] = 0. Thus, we conclude that

〈Z,∇Y Y 〉 = 〈Y, [Z, Y ]〉.

(c) The bi-invariance implies that

〈[Y,X], Y 〉 = −〈Y, [Y,X]〉 = −〈[Y,X], Y 〉,

so 〈[Y,X], Y 〉 = 0. This gives us 〈X,∇Y Y 〉 = 0 for all left-invariant X, so we have ∇Y Y = 0 for all
left-invariant Y .

(d) We calculate

0 = ∇X+Y (X + Y ) = ∇XY +∇YX +∇XX +∇Y Y = ∇XY +∇YX = 2∇XY − [X,Y ].

Division by two finally yields

∇XY =
1

2
[X,Y ].



2.4. The special unitary group SUn ⊂ Mn(C) consists of n × n matrices A with complex entries and unit
determinant satisfying the equation ĀtA = I = AĀt.

(a) Show that SUn forms a group under matrix multiplication.

(b) Show that SU2 consists of all matrices of the form(
z w
−w̄ z̄

)
, z, w ∈ C, |z|2 + |w|2 = 1.

(c) Show that SU2 is a smooth (real) manifold. Find its dimension.

(d) Show that SU2 is a Lie group.

(e) Find the Lie algebra su2 of SU2 as a subspace of M2(C). Find any basis {v1, v2, v3} of su2.
Compute explicitly the left-invariant vector fields X1, X2, X3 on SU2 such that Xi(I) = vi.

Solution:

(a) Let A,B ∈ SUn. Then
(AB)t(AB) = B̄tĀtAB = B̄t(ĀtA)B = B̄tB = I,

so AB ∈ SUn. Also, det Āt detA = det I = 1 and det Āt = detA, which implies |detA| = 1 6= 0. Thus,
A−1 exists. Now observe that (Āt)−1A−1 = (AĀt)−1 = I, so A−1 ∈ SUn.

(b) Let A =

(
a b
c d

)
, a, b, c, d ∈ C. Then, computing ĀtA, we see that A ∈ SU2 if and only if the following

equations hold:
|a|2 + |b|2 = 1, |c|2 + |d|2 = 1, ac̄+ bd̄ = 0, ad− bc = 1.

Multiplying the last two equations by c and d̄ respectively and adding them to each other, we see that
a(|c|2 + |d|2) = d̄, which implies a = d̄. This, in its turn, immediately implies that c = −b̄.
Thus, we proved that every A ∈ SU2 has required form. Conversely, it is clear that every matrix of such
form has unit determinant and satisfies ĀtA = I.

(c) We can embed SU2 in R4 with coordinates (x1, . . . , x4) by writing z = x1 + ix2 and w = x3 + ix4. Thus,
SU2 = f−1(0) for f : R4 → R, f(x) = x21 + x22 + x23 + x24 − 1. Since 0 is a regular value, SU2 is a 3-dim
smooth manifold (actually, the description above shows that SU2 is the 3-dim sphere S3).

(d) The multiplication and inverse are polynomials in the entries so they are clearly smooth.

(e) Let A(t) =

(
x1(s) + ix2(s) x3(s) + ix4(s)
−x3(s) + ix4(s) x1(s)− ix2(s)

)
be a curve in SU2, A(0) = I. Differentiating the equation

x21(s) + x22(s) + x23(s) + x24(s) = 1 at s = 0, we obtain x′1(0) = 0. In other words,

su2 = TISU2 =

{(
xi w
−w̄ −xi

)
| x ∈ R, w ∈ C, x2 + |w|2 = 1

}
.

We can take as a basis of su2, for example, matrices

v1 =

(
0 −i
−i 0

)
, v2 =

(
0 −1
1 0

)
, v3 =

(
−i 0
0 i

)
(this particular choice of signs can be explained by the fact that the matrices σ1 = iv1, σ2 = iv2, σ3 = iv3
are Pauli matrices you could meet in Quantum Mechanics).

To construct left-invariant fields Xi recall from Example 6.3 that for matrix groups Xi(g) = gXi(I). Thus,

for g =

(
z w
−w̄ z̄

)
, we have

X1(g) =

(
−iw −iz
−iz̄ iw̄

)
, X2(g) =

(
w z
z̄ w̄

)
, X3(g) =

(
−iz iw
iw̄ iz̄

)


