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Riemannian Geometry IV, Solutions 4 (Week 14)

4.1. Constant sectional curvature of hyperbolic 3-space
Let H3 = {(x1, x2, x3) ∈ R3 | x3 > 0} be the upper half-space model of the 3-dimensional hyperbolic
space, i.e. its metric is defined by gij = 0 for i 6= j, gii = 1/x23.

(a) Show that sectional curvatures K( ∂
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(b) Use (a) and the linearity of the Riemann curvature tensor to show that for any p ∈ H3 and
v1, v2, v3, v4 ∈ TpH3

〈R(v1, v2)v3, v4〉 = −(〈v1, v3〉〈v2, v4〉 − 〈v1, v4〉〈v2, v3〉)

holds.

(c) Use (b) to show that 3-dimensional hyperbolic space H3 has constant sectional curvature −1.

(d) Show that n-dimensional hyperbolic space Hn = {x ∈ Rn | xn > 0} with metric gij = 0 for i 6= j,
gii = 1/x2n has constant sectional curvature −1.

Solution:

(a) We can compute the Christoffel symbols in a standard way obtaining
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Now, we compute K( ∂
∂x1

, ∂
∂x2

) and K( ∂
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∂x3

).
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Computation of K( ∂
∂x2

, ∂
∂x3

) is similar.

Remark. In fact, the plane spanned by vectors ∂
∂x1

, ∂
∂x3

is tangent to vertical hyperbolic plane x2 = c, so
the corresponding sectional curvature is exactly the curvature of hyperbolic plane which is equal to −1.
Thus, we could avoid the computation of K( ∂
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, ∂
∂x3

).

(b) By computations similar to ones done in (a), we obtain that〈
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Now we see that for all vectors {v1, v2, v3, v4} ⊂ { ∂
∂x1

, ∂
∂x2

, ∂
∂x3
} we have an equality

〈R(v1, v2)v3, v4〉 = − (〈v1, v4〉 〈v2, v3〉 − 〈v1, v3〉 〈v2, v4〉)

By linearity, the equality above holds for any quadruple of tangent vectors.

(c) This follows from (b) and Exercise 3.4.

(d) It is easy to see that the Christoffel symbol Γk
ij is not zero if and only if one of (i, j, k) equals n and

two others are equal. This implies that if all of (i, j, k, l) are distinct then Rijkl vanishes. Applying the
arguments of (b) we conclude that Hn has constant sectional curvature −1.

4.2. (?) The Bonnet – Myers theorem claims that if (M, g) is complete and connected, and there is ε > 0
such that Ricp(v) ≥ ε for every p ∈M and for every unit tangent vector v, then the diameter of M is
finite.
Show by example that the assumption ε > 0 is essential (i.e. cannot be substituted by the assumption
Ricp(v) > 0).

Solution: One may consider an elliptic paraboloid of revolution z = x2 + y2. Its curvature is positive, but
the paraboloid is not compact (e.g., it is unbounded). Note that although the curvature is positive (since the
manifold is 2-dimensional sectional and Ricci curvatures coincide) it is not separated from zero, so there is no
contradiction with Bonnet-Myers theorem.

4.3. Second Variational Formula of Energy
Let F : (−ε, ε) × [a, b] → M be a proper variation of a geodesic c : [a, b] → M , and let X be its
variational vector field. Let E : (−ε, ε)→ R denote the associated energy, i.e.,
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Solution:

Since E(s) = 1
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Differentiating the integrand with respect to s, using the Symmetry Lemma, and setting then s = 0 yields
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Now we use Lemma 8.5 to interchange the order of covariant derivatives, and again Riemannian property to
obtain〈
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since the variation F (s, t) is proper.

4.4. Scalar curvature
The scalar curvature s(p) at point p ∈M is defined by

s(p) =

n∑
j=1

Ricp(uj),

where {uj} is an orthonormal basis of Tp(M).

(a) Let V be a vector space, 〈· , ·〉 is an inner product on V , and Q is a quadratic form on V . Show
that there exists a linear map T ∈ End(V ) such that Q(x) = 〈Tx , x〉 for every x ∈ V .

(b) Show that the scalar curvature is well-defined, i.e. it does not depend on the choice of an
orthonormal basis of Tp(M).

Solution:

(a) Choose any orthonormal basis {ei} of V . Then Q(x) can be written as Q(x) = xtGx for appropriate
symmetric matrix G = (gij). Here gij = Q̃(ei, ej), where Q̃ is the symmetric bilinear form constructed by

Q, i.e. Q̃(x, y) = 1
2 (Q(x + y)−Q(x)−Q(y)).

Since the basis is orthonormal, the inner product can be written as 〈x , x〉 = xtx. We need to find (a
matrix) T such that Q(x) = 〈Tx , x〉, i.e. xtGx = (Tx)tx, or equivalently, xtGx = xtT tx. This holds if
G = T t, or T = Gt(= G since G is symmetric). It is easy to check that T is well-defined: if we change
basis via an orthogonal transformation matrix P , then G in the new basis becomes PGP t, and T becomes
PTP−1, which agree since P t = P−1 for orthogonal matrices.

(b) According to Lemma 7.9 from the lectures, Ricp is a quadratic form. Thus, (a) implies that there exists
T ∈ End(TpM) such that Ricp(u) = 〈Tu , u〉 for every u ∈ TpM . Denote the matrix of T in the basis {uj}
by (Tij). Then

s(p) =

n∑
j=1

Ricp(uj) =

n∑
j=1

〈Tuj , uj〉 =

n∑
j=1

〈
n∑
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n∑
j=1

Tjj = tr (T )

which does not depend on the basis.


