Riemannian Geometry IV, Solutions 5 (Week 15)

5.1. Let $S^{2}=\left\{x \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}{ }^{2}=1\right\}$ be a unit sphere, and $c:[-\pi / 2, \pi / 2] \rightarrow S^{2}$ be a geodesic defined by $c(t)=(\cos t, 0, \sin t)$. Define a vector field $X:[-\pi / 2, \pi / 2] \rightarrow T S^{2}$ along c by

$$
X(t)=(0, \cos t, 0)
$$

Let $\frac{D}{d t}$ denote the covariant derivative along c.
(a) Calculate $\frac{D}{d t} X(t)$ and $\frac{D^{2}}{d t^{2}} X(t)$.
(b) Show that X satisfies the Jacobi equation.

Solution:

The problem can be solved by a direct computation: compute Christoffel symbols, and then compute first and second covariant derivatives of $X(t)$, then verify the Jacobi equation for $X(t)$.
(a) If we parametrize the sphere by $(x, y, z)=(\sin \vartheta \cos \varphi, \sin \vartheta \sin \varphi, \cos \vartheta)$, one has $\Gamma_{11}^{2}=-\sin \vartheta \cos \vartheta, \Gamma_{12}^{1}=$ $\Gamma_{21}^{1}=\cot \vartheta$ with others $\Gamma_{i j}^{k}$ equal to zero, where $\varphi=x_{1}$ and $\vartheta=x_{2}$ (see Exercise 3.3).
In these coordinates, the curve $c(t)=(\cos t, 0, \sin t)$ is $c(t)=\left(0, \frac{\pi}{2}-t\right), c^{\prime}(t)=(0,-1)=-\frac{\partial}{\partial \vartheta}$. Further, observe that

$$
\left.\frac{\partial}{\partial \varphi}\right|_{c(t)}=\left.(-\sin \vartheta \sin \varphi, \sin \vartheta \cos \varphi, 0)\right|_{\varphi=0, \vartheta=\frac{\pi}{2}-t}=(0, \cos t, 0)=X(t)
$$

Hence,

$$
\begin{gathered}
\frac{D}{d t} X(t)=\nabla_{c^{\prime}(t)} X(t)=\nabla_{-\frac{\partial}{\partial \vartheta}} \frac{\partial}{\partial \varphi}=-\left.\cot \vartheta \frac{\partial}{\partial \varphi}\right|_{c(t)}=-\tan t X(t) \\
\frac{D^{2}}{d t^{2}} X(t)=\frac{D}{d t}(-\tan t X(t))=-\sec ^{2} t X(t)+\tan ^{2} t X(t)=-X(t)=-\left.\frac{\partial}{\partial \varphi}\right|_{c(t)}
\end{gathered}
$$

(b) Compute $R\left(X, c^{\prime}\right) c^{\prime}=\nabla_{X} \nabla_{c^{\prime}} c^{\prime}-\nabla_{c^{\prime}} \nabla_{X} c^{\prime}-\nabla_{\left[X, c^{\prime}\right]} c^{\prime}$. As $X=\frac{\partial}{\partial \varphi}$ and $c^{\prime}=-\frac{\partial}{\partial \vartheta}$, we have $\left[X, c^{\prime}\right]=0$.

$$
\begin{gathered}
\text { Also, } \nabla_{X} \nabla_{c^{\prime}} c^{\prime}=\nabla_{\frac{\partial}{\partial \varphi}} \nabla_{-\frac{\partial}{\partial \vartheta}}-\frac{\partial}{\partial \vartheta}=\nabla_{\frac{\partial}{\partial \varphi}} 0=0 \\
\nabla_{c^{\prime}} \nabla_{X} c^{\prime}=\nabla_{-\frac{\partial}{\partial \vartheta}} \nabla_{\frac{\partial}{\partial \varphi}}-\frac{\partial}{\partial \vartheta}=\nabla_{\frac{\partial}{\partial \vartheta}}\left(\cot \vartheta \frac{\partial}{\partial \varphi}\right)=-\frac{1}{\sin ^{2} \vartheta} \frac{\partial}{\partial \varphi}+\cot \vartheta\left(\cot \vartheta \frac{\partial}{\partial \varphi}\right)=\left(\cot ^{2} \vartheta-\frac{1}{\sin ^{2} \vartheta}\right) \frac{\partial}{\partial \varphi}=-X(t)
\end{gathered}
$$

Thus, $R\left(X, c^{\prime}\right) c^{\prime}=X(t)=\frac{\partial}{\partial \varphi}$, and (since $\frac{D^{2}}{d t^{2}} X(t)=-X(t)=-\frac{\partial}{\partial \varphi}$) Jacobi equation holds.
5.2. (\star) Choose any $r>0$ and consider a cylinder $C \subset \mathbb{R}^{3}$ with induced metric,

$$
C=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=r^{2}\right\}
$$

C can be parametrized by

$$
(r \cos \varphi, r \sin \varphi, z), \quad \varphi \in[0,2 \pi), z \in \mathbb{R}
$$

(a) Show that a curve $c(t)=(r \cos (t / r), r \sin (t / r), 0)$ is a geodesic. Write $c(t)$ in the form $(\varphi(t), z(t))$.
(b) Let $\alpha \in \mathbb{R}$. Show that $c_{\alpha}(t)=(\varphi(t), z(t))=((t \cos \alpha) / r, t \sin \alpha)$ is a geodesic.
(c) Construct two distinct geodesic variations $F_{1}(s, t)$ and $F_{2}(s, t)$ of $c(t)$, such that $F_{1}(s, 0) \equiv c(0)$, and $F_{2}(s, 0) \neq c(0)$ for any $s \neq 0$. Compute the variational vector fields of F_{1} and F_{2}.
(d) Construct the basis of the space J_{c} of Jacobi fields along $c(t)$.
(e) Show that for any $t_{0} \in \mathbb{R}$ the points $c(0)$ and $c\left(t_{0}\right)$ are not conjugate along $c(t)$.

Solution:

(a) One way to do this is to use symmetry of C. More precisely, the reflection in the plane $z=0$ is obviously an isometry of C, and it preserves $c(t)$. By the uniqueness theorem of a geodesic in a given direction, the trace of $c(t)$ should be a trace of a geodesic. Now observe that $\left\|c^{\prime}(t)\right\|=1$, so $c(t)$ is a geodesic.
Another way is to observe that C is locally isometric to \mathbb{R}^{2}, and the isometry takes $c(t)$ to a straight line on \mathbb{R}^{2}.
Finally, one can compute the induced metric and Christoffel symbols (they are all zeros!), and then verify that $c(t)$ satisfies the ODE for geodesics.
In coordinates (φ, z), the geodesic $c(t)$ is written as $c(t)=(t / r, 0)$.
(b) The second and the third methods from (a) work perfectly fine in this case as well.
(c) We can take

$$
F_{1}(s, t)=\left(r \cos \left(\frac{t \cos s}{r}\right), r \sin \left(\frac{t \cos s}{r}\right), t \sin s\right)
$$

Clearly, $F_{1}(0, t)=c(t), F_{1}(s, 0) \equiv(r, 0,0)=c(0)$, and every $t \mapsto F_{1}\left(s_{0}, t\right)$ is a geodesic by (b). The variational vector field is $X_{1}(t)=(0,0, t)$.
Shifting $c(t)$ in vertical direction, we can take

$$
F_{2}(s, t)=(r \cos (t / r), r \sin (t / r), s)
$$

The corresponding variational vector field is $X_{2}(t)=(0,0,1)$.
(d) We need $2 n=4$ linearly independent vector fields. We have already found two, and observe that X_{1} and X_{2} are both orthogonal and clearly linear independent, so they form a basis of the space of orthogonal Jacobi fields. We can also take $X_{3}(t)=c^{\prime}(t)$ and $X_{4}=t c^{\prime}(t)$, all of them together form a basis.
(e) Assume that $J(0)=J\left(t_{0}\right)=0$ for some $J \in J_{c}$. Since $J(0)=0$, J should be a linear combination of X_{1} and X_{3}. However, such a non-zero linear combination never vanishes except for $t=0$.

5.3. Jacobi fields on manifolds of constant curvature.

Let M be a Riemannian manifold of constant sectional curvature K, and $c:[0,1] \rightarrow M$ be a geodesic parametrized by arc length. Let $J:[0,1] \rightarrow T M$ be an orthogonal Jacobi field along c (i.e. $\left\langle J(t), c^{\prime}(t)\right\rangle=0$ for every $t \in[0,1]$).
(a) Show that $R\left(J, c^{\prime}\right) c^{\prime}=K J$.
(b) Let $Z_{1}, Z_{2}:[0,1] \rightarrow T M$ be parallel vector fields along c with $Z_{1}(0)=J(0), Z_{2}(0)=\frac{D J}{d t}(0)$. Show that

$$
J(t)= \begin{cases}\cos (t \sqrt{K}) Z_{1}(t)+\frac{\sin (t \sqrt{K})}{\sqrt{K}} Z_{2}(t) & \text { if } K>0, \\ Z_{1}(t)+t Z_{2}(t) & \text { if } K=0, \\ \cosh (t \sqrt{-K}) Z_{1}(t)+\frac{\sinh (t \sqrt{-K})}{\sqrt{-K}} Z_{2}(t) & \text { if } K<0 .\end{cases}
$$

Hint: Show that these fields satisfy Jacobi equation, there value and covariant derivative at $t=0$ is the same as for $J(t)$.

Solution:

(a) We conclude from Exercise 3.4 that

$$
R\left(v_{1}, v_{2}\right) v_{3}=K\left(\left\langle v_{2}, v_{3}\right\rangle v_{1}-\left\langle v_{1}, v_{3}\right\rangle v_{2}\right) .
$$

This implies

$$
R\left(J, c^{\prime}\right) c^{\prime}=K\left(\left\langle c^{\prime}, c^{\prime}\right\rangle J-\left\langle J, c^{\prime}\right\rangle c^{\prime}\right) .
$$

Since $\left\|c^{\prime}\right\|^{2}=1$ and $J \perp c^{\prime}$, we obtain

$$
R\left(J, c^{\prime}\right) c^{\prime}=K J .
$$

(b) We only consider the case $K>0$, all other cases are similar. The vector field

$$
J(t)=\cos (t \sqrt{K}) Z_{1}(t)+\frac{\sin (t \sqrt{K})}{\sqrt{K}} Z_{2}(t)
$$

satisfies $J(0)=Z_{1}(0)$ and

$$
\frac{D J}{d t}(t)=-\sqrt{K} \sin (t \sqrt{K}) Z_{1}(t)+\cos (t \sqrt{K}) Z_{2}(t)
$$

which implies $\frac{D J}{d t}(0)=Z_{2}(0)$. Obviously, we have

$$
\frac{D^{2} J}{d t^{2}}(t)=-K \cos (t \sqrt{K}) Z_{1}(t)-\sqrt{K} \sin (t \sqrt{K}) Z_{2}(t)=-K J(t)
$$

and therefore we obtain

$$
\frac{D^{2} J}{d t^{2}}(t)+K J(t)=0
$$

i.e., J satisfies the Jacobi equation.

