Riemannian Geometry IV, Homework 5 (Week 15)

Due date for starred problems: Thursday, March 3.
5.1. Let $S^{2}=\left\{x \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$ be a unit sphere, and $c:[-\pi / 2, \pi / 2] \rightarrow S^{2}$ be a geodesic defined by $c(t)=(\cos t, 0, \sin t)$. Define a vector field $X:[-\pi / 2, \pi / 2] \rightarrow T S^{2}$ along c by

$$
X(t)=(0, \cos t, 0)
$$

Let $\frac{D}{d t}$ denote the covariant derivative along c.
(a) Calculate $\frac{D}{d t} X(t)$ and $\frac{D^{2}}{d t^{2}} X(t)$.
(b) Show that X satisfies the Jacobi equation.
5.2. (\star) Choose any $r>0$ and consider a cylinder $C \subset \mathbb{R}^{3}$ with induced metric,

$$
C=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=r^{2}\right\}
$$

C can be parametrized by

$$
(r \cos \varphi, r \sin \varphi, z), \quad \varphi \in[0,2 \pi), z \in \mathbb{R}
$$

(a) Show that a curve $c(t)=(r \cos (t / r), r \sin (t / r), 0)$ is a geodesic. Write $c(t)$ in the form $(\varphi(t), z(t))$.
(b) Let $\alpha \in \mathbb{R}$. Show that $c_{\alpha}(t)=(\varphi(t), z(t))=((t \cos \alpha) / r, t \sin \alpha)$ is a geodesic.
(c) Construct two distinct geodesic variations $F_{1}(s, t)$ and $F_{2}(s, t)$ of $c(t)$, such that $F_{1}(s, 0) \equiv c(0)$, and $F_{2}(s, 0) \neq c(0)$ for any $s \neq 0$. Compute the variational vector fields of F_{1} and F_{2}.
(d) Construct the basis of the space J_{c} of Jacobi fields along $c(t)$.
(e) Show that for any $t_{0} \in \mathbb{R}$ the points $c(0)$ and $c\left(t_{0}\right)$ are not conjugate along $c(t)$.

5.3. Jacobi fields on manifolds of constant curvature.

Let M be a Riemannian manifold of constant sectional curvature K, and $c:[0,1] \rightarrow M$ be a geodesic parametrized by arc length. Let $J:[0,1] \rightarrow T M$ be an orthogonal Jacobi field along c (i.e. $\left\langle J(t), c^{\prime}(t)\right\rangle=0$ for every $t \in[0,1]$).
(a) Show that $R\left(J, c^{\prime}\right) c^{\prime}=K J$.
(b) Let $Z_{1}, Z_{2}:[0,1] \rightarrow T M$ be parallel vector fields along c with $Z_{1}(0)=J(0), Z_{2}(0)=\frac{D J}{d t}(0)$. Show that

$$
J(t)= \begin{cases}\cos (t \sqrt{K}) Z_{1}(t)+\frac{\sin (t \sqrt{K})}{\sqrt{K}} Z_{2}(t) & \text { if } K>0 \\ Z_{1}(t)+t Z_{2}(t) & \text { if } K=0 \\ \cosh (t \sqrt{-K}) Z_{1}(t)+\frac{\sinh (t \sqrt{-K})}{\sqrt{-K}} Z_{2}(t) & \text { if } K<0\end{cases}
$$

Hint: Show that these fields satisfy Jacobi equation, and there value and covariant derivative at $t=0$ is the same as for $J(t)$.

