Riemannian Geometry IV, Term 2 (Section 6)

6 Crash course: Basics about Lie groups

6.1 Left-invariant vector fields and Lie algebra

Definition 6.1. A Lie group G is a smooth manifold with a smooth group structure, i.e. the maps $G \times G \to G$, $(g,h) \mapsto gh$ and $G \to G$, $g \mapsto g^{-1}$ are smooth.

Examples. Matrix Lie groups $GL_n(\mathbb{R})$, $SL_n(\mathbb{R})$, $O_n(\mathbb{R})$, $SO_n(\mathbb{R})$.

Definition 6.2. Let G a be a Lie group, $g \in G$. Then the maps $L_g : G \to G$ and $R_g : G \to G$ defined by $L_g(h) = gh$ and $R_g(h) = hg$ are called <u>left-</u> and right-translation. L_g and R_g are diffeomorphisms of G.

Remark. (a) $L_{q^{-1}} \circ L_q = id_G$, $L_{g_1}R_{g_2}(h) = R_{g_2}L_{g_1}(h) = g_1hg_2$.

(b) The differential $DL_g: T_hG \to T_{gh}G$ gives a natural identification of tangent spaces.

Example 6.3. Let $G \subset GL_n(\mathbb{R})$ be a matrix group, $v \in T_eG$. Then $DL_q(e)v = gv$.

Definition 6.4. A vector field $X \in \mathfrak{X}(G)$ is called <u>left-invariant</u> if for any $g \in G$ $DL_gX = X \circ L_g$, i.e. $DL_g(h)X(h) = X(gh)$.

Remark 6.5. (a) Left-invariant vector fields on G form a vector space over \mathbb{R} .

- (b) Left-invariant vector field is determined by its value at $e: X(g) = DL_q(e)X(e)$.
- (c) Hence, the space of left-invariant vector fields on G can be identified with T_eG .

Definition 6.6. The space of left-invariant vector fields on G is called the <u>Lie algebra</u> of G and denoted by \mathfrak{g} .

Lemma 6.7. Let M, N be smooth manifolds, $X \in \mathfrak{X}(M)$, $f \in C^{\infty}(N)$, $p \in M$, and let $\varphi : M \to N$ be a smooth map. Then

$$(d\varphi(p)X(p))f = X(p)(f \circ \varphi)$$

Proposition 6.8. Let X be a Lie group with Lie algebra \mathfrak{g} . Then for any $X,Y \in \mathfrak{g}$ the Lie bracket $[X,Y] \in \mathfrak{g}$. Consequently, \mathfrak{g} is indeed a Lie algebra (see Definition 2.22).

6.2 Lie group exponential map and adjoint representation

Definition 6.9. Define Exp : $M_n(\mathbb{R}) \to M_n(\mathbb{R})$ by Exp $(A) = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$.

Properties. (a) The infinite sum converges for any matrix $A \in M_n(\mathbb{R})$, so Exp (A) is well-defined;

- (b) Exp(0) = I;
- (c) if AB = BA then $\text{Exp}(A + B) = \text{Exp}(A) \cdot \text{Exp}(B)$; in particular, Exp(-A)Exp(A) = I, so $\text{Exp}(A) \in GL_n(\mathbb{R})$ for any $A \in M_n(\mathbb{R})$.

Example 6.10. Computation of the exponent for a diagonalizable matrix.

Proposition 6.11. Let G be a matrix Lie group. Let $v \in T_eG$ and let X be the unique left-invariant vector field on G with X(e) = v. Then the curve $c(t) = \text{Exp}(tv) \in G$ satisfies c(0) = e, c'(0) = v and c'(t) = X(c(t)).

A curve of the form c(t) = Exp(tv) is called a 1-parameter subgroup of G with c'(0) = v.

Remark. For an abstract Lie group the exponential map can be defined as follows. Let G be a Lie group and \mathfrak{g} be its Lie algebra. Let $v \in T_eG$ and let $X \in \mathfrak{g}$ be the unique left-invariant vector field with X(e) = v. Then there exists a unique curve $c_v : \mathbb{R} \to G$ with $c_v(0) = e$, $c'_v(t) = X(c_v(t))$ [without proof]. The curve c_v is called an integral curve of X. We define the exponential map by $\operatorname{Exp}(v) = c_v(1)$.

Definition 6.12. Let G be a Lie group. For $g \in G$ the adjoint representation $\operatorname{Ad}_g : T_eG \to T_eG$ is defined by

$$\operatorname{Ad}_{g}(w) = \frac{d}{dt} \Big|_{t=0} L_{g} R_{g^{-1}}(\operatorname{Exp}(tw)) = \frac{d}{dt} \Big|_{t=0} g \operatorname{Exp}(tw) g^{-1}.$$

For $v \in T_eG$ the adjoint representation ad $v : T_eG \to T_eG$ is defined by

$$\operatorname{ad}_{v}(w) = \frac{d}{dt}\Big|_{t=0} \operatorname{Ad}_{\operatorname{Exp}(tv)}(w) = \frac{d}{dt}\Big|_{t=0} \frac{d}{ds}\Big|_{s=0} \operatorname{Exp}(tv) \operatorname{Exp}(sw) \operatorname{Exp}(-tv).$$

Theorem 6.13 (without proof). Let G be a Lie group with a Lie algebra \mathfrak{g} . Then for all $X, Y \in \mathfrak{g}$ holds ad $X(e)Y(e) = [X,Y](e) \in T_eG$, i.e. by canonical identification of \mathfrak{g} with T_eG we have ad XY = [X,Y].

Example 6.14. Theorem 6.13 for the case of a matrix Lie group.

6.3 Riemannian metrics on Lie groups

Definition 6.15. For a given inner product $\langle \cdot, \cdot \rangle_e$ on T_eG , define the inner product at $g \in G$ for $v, w \in T_gG$ by $\langle v, w \rangle_g = \langle DL_{g^{-1}}(g)v, DL_{g^{-1}}(g)w \rangle_e$. The family $(\langle \cdot, \cdot \rangle_g)_{g \in G}$ of inner products defines a <u>left-invariant</u> Riemannian metric on G.

Remark 6.16. Let $(G, \langle \cdot, \cdot \rangle)$ be a Lie group with a left-invariant metric. Then

- (a) the diffeomorphisms $L_g: G \to G$ are isometries;
- (b) for any two left-invariant vector fields $X, Y \in \mathfrak{g}$ the function $g \mapsto \langle X(g), Y(g) \rangle_g$ is constant.

Theorem 6.17 (without proof). Let G be a <u>compact</u> Lie group. Then G admits a bi-invariant Riemannian metric $\langle \cdot, \cdot \rangle_q$, i.e. both families of diffeomorphisms L_g and R_g are isometries.

Corollary 6.18. Let $(G, \langle \cdot, \cdot \rangle)$ be a Lie group with bi-invariant metric, let $X, Y, Z \in \mathfrak{g}$. Then $\langle [X, Y], Z \rangle = -\langle [X, Z], Y \rangle$.

Corollary 6.19. Let $(G, \langle \cdot, \cdot \rangle)$ be a Lie group with bi-invariant metric and let ∇ be the Levi-Civita connection. Then for $X, Y \in \mathfrak{g}$ holds $\nabla_X Y = \frac{1}{2}[X, Y]$.

Corollary 6.20. (a) 1-parameter subgroups are exactly the geodesics of the bi-invariant metric on G;

(b) the Lie group exponential map Exp coincides with the Riemannian exponential map exp_e at the identity.