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Riemannian Geometry IV, Term 2 (Sections 7-8)

7 Curvature

7.1 Riemann curvature tensor

Definition 7.1. Let (M, g) be a Riemannian manifold, let X(M) be the space of vector fields onM , and let
∇ be the Levi-Civita connection. Define a map (Riemann curvature tensor) R : X(M)×X(M)×X(M)→
X(M) by R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Remark. R is linear in all variables, so, it is a tensor; moreover, R(fX, gY )hZ = fghR(X,Y )Z for any
f, g, h ∈ C∞(M).

Lemma 7.2. R has the following symmetries:
(a) R(X,Y )Z = −R(Y,X)Z (c) 〈R(X,Y )Z,W 〉 = −〈R(X,Y )W,Z〉
(b) R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0 (d) 〈R(X,Y )Z,W 〉 = −〈R(Z,W )X,Y 〉

(first Bianchi Identity)

Definition 7.3. Define components of Riemann curvature tensor Rijkl = 〈R( ∂
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Then Rijkl =
∑

mR
l
ijkgml and Rl

ijk =
∑

mRijkmg
ml.

Example 7.4. Computation of components Rijks and Rl
ijk for hyperbolic plane (in the upper half-plane

model).

7.2 Sectional curvature

Definition 7.5. Let (M, g) be a Riemannian manifold, p ∈ M , v1, v2 ∈ TpM , and let Π ⊂ TpM be the
2-plane spanned by v1, v2.
The sectional curvature of Π at p is K(Π) = K(v1, v2) = 〈R(v1,v2)v2,v1〉

‖v1‖2‖v2‖2−〈v1,v2〉2 .

Proposition 7.6. K(Π) does not depend on the basis {v1, v2} of Π.

Examples. Sectional curvature of a 2-sphere and hyperbolic plane.

7.3 Ricci curvature

Given v, w ∈ TpM define a linear map R(·, v)w : TpM → TpM by u 7→ R(u, v)w.

Definition 7.7. Ricci curvature tensorRic(v, w) is the trace of the mapR(·, v)w: Ricp(v, w) = tr(R(·, v)w).
In an orthonormal basis {ui}, Ricp(v, w) =

∑n
j=1〈R(uj , v)w, uj〉.

Definition 7.8. Ricci curvature at p is Ricp(v) = Ricp(v, v) =
∑n

j=1〈R(uj , v)w, uj〉
In an orthonormal basis {v = u1, . . . , un} we have Ricp(v) =

∑n
j=2K(v, uj).

Lemma 7.9. Ric(v, u) is a symmetric bilinear form (i.e. Ric(v) is a quadratic form).

Example. If K(v, w) is constant (= K) and ‖v‖ = 1, then Ric(v) = (n− 1)K.
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8 Bonnet – Myers Theorem

Theorem 8.1 (Bonnet – Myers, 1935). Let (M, g) be a connected, complete Riemannian manifold of
dimension n.
Suppose that Ric(v) ≥ n−1

r2
for all v ∈ SM = {w ∈ TM | ‖w‖ = 1}. Then diam M (= sup

p,q∈M
d(p, q)) ≤ πr.

In particular, M is bounded, so, it is compact (as it is complete).

Theorem 8.2 (Second variation formula of length). Let c : [a, b]→M be a geodesic parametrized by arc
length, let F : (−ε, ε)× [a, b]→M be a proper variation of c, let X(t) = ∂F

∂s (0, t) be the variational vector

field. Define X⊥(t) = X(t) − 〈X(t), c′(t)〉c′(t), the orthogonal component of X(t). Let l(s) be the length
of the variation.

Then l′′(0) =
∫ b
a (‖DX⊥

dt ‖
2 −K(c′, X⊥)‖X⊥‖2)dt.

Remark. In the case if X is collinear to c′ (i.e. X⊥ = 0) we define K(c′, X⊥) = 0.

Corollary 8.3. If K(Π) < 0 for every p ∈M and every 2-plane Π ⊂ TpM then every geodesic is locally
minimal.

Example 8.4. For the n-dimensional sphere Sn
r of radius r the inequality in the Bonnet – Myers Theorem

becomes an equality. Hence, the bound is sharp.

Lemma 8.5. Let F (s, t) be a variation of a geodesic c(t), and let Z(s, t) ∈ TF (s,t)M be smooth. Then
D
ds

D
dtZ −

D
dt

D
dsZ = R(∂F∂s ,

∂F
∂t )Z.

Example 8.6. Let Tn = Rn/Zn be an n-dimensional torus with arbitrary metric g (compatible with the
smooth structure). Then there exists p ∈ Tn and v ∈ TpTn such that Ricp(v) ≤ 0.
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