N-Body Simulations and models of Dark Energy

Elise Jennings Supported by a Marie Curie Early Stage Training Fellowship

N-body Simulations and Dark energy

elise jennings

Introduction

- N-Body simulations Motivation
- Method

initial conditions: according to structure formation model assign all particles to a grid : $\rho_{i,j,k}$ solve Poisson's equation on grid differentiate to get forces $F_{i,j,k} = -\nabla \phi_{i,j,k}$ interpolate $F_{i,j,k}$ back to particle positions

Dark Energy Models

Evidence for DE General Quintessence models Early Dark Energy models

N-Body Simulations

- Allows us to model growth of structure in the universe
- Important tool for accurate predictions in highly non-linear regime e.g. Hierarchical structure formation
- Determine properties of the primordial perturbations from inflation
- Useful for exploring how galaxies formed and theories of structure collaspe
- Measuring bias: the relation between large scale distribution of mass and the distribution of observable objects

Initial Conditions

- Placing particles in box
 - Grid -particles distributed on lattice -introduces artificial small scale periodicity
 - "Glass" state -particles advanced from random positions using opposite sign of gravity
- Zeldovich approximation to move particles. Primordial fluctuations nearly scale invariant and Gaussian

 $\vec{x} = \vec{q} - D(t) \vec{S}(q)$ $\vec{q} = initial coords, D(t) = growth factor$ • Displacement field \vec{S} related to pre-calculated Power spectrum

$$\frac{k^3}{2\pi^2} P(k,z) = \delta_H^2 \left(\frac{ck}{H_0}\right)^{n+3} T^2(k,z) \frac{D_1(z)^2}{D_1(0)^2}$$

N-body Simulations and Dark energy

elise jennings

- Overdensity $\delta = \frac{\rho \langle \rho \rangle}{\langle \rho \rangle}$
- Transfer function T(k, z) evolution of δ through horizon crossing and rad/matter transition
- D(z) scale independent growth at late times

$$\ddot{\delta} + 2 H \dot{\delta} - (3/2) H^2 \Omega_m \delta = 0$$

Angulo et. al 2007

Angulo et. al 2007

- simultaneously solve collisionless Boltzmann and Poisson equation. $\frac{\partial f}{\partial t} + \sum_{i=1}^{3} v_i \frac{\partial f}{\partial x_i} - \frac{\partial \Phi}{\partial x_i} \frac{\partial f}{\partial v_i} = 0$ f = distribution function $\nabla^2 \Phi(r) = 4 \pi G \rho(r)$
- Reduce problem, solve Poisson eqn for N particles
- Advance them forward using eqns of motion

from system's Hamiltonian ($\partial f/\partial t + [f,H] = 0$)

• Particle Mesh Codes-Creating $\rho(r)$

Nearest Grid point (NGP)

Barnes and Hut Oct tree

• Fast Fourier Transform $\rho(k)$

• use Green's function
$$-4\pi G/k^2$$

• Forces on mesh:finite difference the potential

$$F = -\left(\frac{\partial\phi}{\partial x}\right)_{ijk}$$

update particle positions and velocities

$$\frac{d\vec{x}}{dt} = \frac{\vec{p}}{a^2}$$
$$\frac{d\vec{p}}{dt} = -\frac{\nabla\Phi}{a}$$

 $\nabla^2 \Phi(r) = 4 \pi G \rho(r)$

- Alternative to PM code is to use a Tree
- Particle-particle method $\rho(\vec{r}) = \sum_{i=1}^{N} m_i \delta(\vec{r} \vec{r_i})$
- Gadget-2: Code for cosmological N-body/SPH simulations on massively parallel computers

PMTree code. Force split: long and short range.

Tree code: particles which are 'far away'act as single massive particle

Illustration of a tree code

Resolution Force resolution

Soften gravity to avoid $\Delta r = 0$ singularity. Introduce a fixed scale: ϵ $\vec{F}(\vec{r}) = \sum_{i=1}^{m_i m_j}$

$$F(\vec{r}) = \sum \frac{m_i m_j}{|\vec{r_i} - \vec{r_j}|^2 + \epsilon^2}$$

Mass resolution
Set by size of box and N

E.g. 2million particles in
$$L_{\rm box} = 25 {\rm h}^{-1} {\rm Mpc}$$
 with $\Omega = 0.3 \rightarrow m_p = \sim 10^8 {\rm h}^{-1} M_{\rm sun}$

Detail with which final object can be studied (e.g. cannot resolve dwarf galaxies $M_{\rm dwarf} \sim 10.7 {\rm h}^{-1} M_{\rm sun}$)

DarkEnergy

• Evidence for acceleration which implies dark energy

Supernovae la luminosity distance and redshift observations Cosmic Microwave Background Radiation WMAP5: $\Omega_k < 0.008 \ (95\% C.L.), \ \Omega_m = 0.274 \pm 0.015$ Large Scale structure (LSS) e.g.clusters of galaxies $\rho_m \sim 0.3 \rho_{crit}$

Models for Dark Energy

$$R_{\mu\nu} - 1/2 \, g_{\mu\nu} \, R = 8\pi G \, T_{\mu\nu}$$

• Cosmological constant

Cosmology $\rho_{\lambda} = 0.7 \rho_c \sim 10.^{-48} \text{Gev}^4$ QFT estimate (~ 100Gev)⁴, at Planck scales ~ 120 orders difference

• Change matter Lagrangian

Quintessence models, K-essence, Chaplygin gas, scalar-tensor theories

• Changing gravity

F(R) theories, Brane world Cosmologies, Conformal Gravity . . .

Quintessence

Scalar field model, orginally introduced to answer "why now" problem

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV}{d\phi} = 0$$
$$w = \frac{P_{\phi}}{\rho_{\phi}} = \frac{\dot{\phi}/2 - V(\phi)}{\dot{\phi}/2 + V(\phi)}$$

• Within a flat universe, dark energy picture the expansion rate is

$$\frac{H(z)^2}{H_0^2} = \Omega_m (1+z)^3 + (1-\Omega_m) e^{3 \int_0^z dln(1+z')(1+w(z'))}$$

- Tracker potential $V(\phi) = M^{4+\alpha}\phi^{-\alpha}$ Exp potential $V(\phi) = M^4 e^{\lambda\phi}$ Scale M fixed by requiring $V(\phi \simeq Mpl) \simeq \rho_c$
- If $\alpha >> 2$ the scalar field tracks the matter but decays slower so it eventually comes to dominate

- Friedman eqn and growth rate eqn probe different parts of theory
- For any distance measurement, can find a w(z) that fits it. Not neccessarily fit the growth of structure.
- Early Dark Energy model

Strong impact on structure formation expected. Slower growth rate than Λ CDM so structure must form earlier to match present observed cluster abundances.

$$\ddot{\delta} + 2H\dot{\delta} - (3/2)H^2\Omega_m\delta = 0$$

Parametrisation for w(z)

- Each model of DE its own form for w. To compare models we need a parametrisation
- Usually use $w = w_0 + w_a(1-a)$
- EDE Wetterich (2004) proposed a useful parametrisation

Amount of DE today: $\Omega_{de,0}$ Eqn of state parameter today: w_0 Average value of early DE: $\Omega_{de,e}$

$$w(z) = \frac{w_0}{(1+by)^2}$$

where $y = ln(1+z)$ and
$$b = \frac{-3w_0}{ln(\frac{1-\Omega_{de,e}}{\Omega_{de,e}}) + ln(\frac{1-\Omega_m}{\Omega_m})}$$

N-body Simulations and Dark energy

elise jennings

14

Grossi et. al 2008

- Testable predictions: probing growth of structure at each redshift measure of $w(\boldsymbol{z})$
- Pan-Starrs1 Medium survey: 70 deg², 3000 clusters in range z = 1 2
- More work is needed studing EDE models in N-Body simulations

Summary and future work

- The contribution to the energy density that leads to the observed acceleration could be more general component than a bare cosmological constant.
- Quintessence models where a scalar field, ϕ rolls down it's potential can act as an effective cosmological constant
- The growth of structure depends sensitively on the expansion rate of the universe which in turn depends on Dark Energy eqn of state.
- Early Dark Energy models:time varying w(z) gives rise to more structures at higher redshift than in Λ CDM, could also affect BAO and CMB through Integrated Sachs Wolfe effect.
- N-body simulations are a valuable tool in analysing structure growth in various Dark Energy models
- Simulations lead to significant results in restricting parameter space as well as testing analytic models (e.g. spherical collaspse model)