Neutron Stars: A Skyrmion Model

Susan Nelmes

Durham University

Student Seminar 24/01/2011

- The Skyrme Model
- The Rational Map Ansatz
- Neutron Stars

3

э

- The Skyrme model is a model of baryons.
- Baryons arise as topological solitons.
- Baryon number \leftrightarrow topological charge.
- Successful in modelling nuclei.

The Skyrme Lagrangian

•
$$L = \int \left(\frac{F_{\pi}^2}{16} \operatorname{Tr}(\partial_{\mu} U \partial^{\mu} U) + \frac{1}{32e^2} \operatorname{Tr}([\partial_{\mu} U U^{\dagger}, \partial_{\nu} U U^{\dagger}]^2) \right) \mathrm{d}^3 x.$$

• The Skyrme field, U(x, t), is a SU(2) valued scalar field.

The Skyrme Field Equation

• $\partial_{\mu}\left((\partial_{\mu}U)U^{\dagger}+\frac{1}{4}[(\partial^{\nu}U)U^{\dagger},[(\partial_{\nu}U)U^{\dagger},(\partial^{\mu}U)U^{\dagger}]]\right)=0.$

- The Skyrme boundary conditions are $U(x,t)
 ightarrow {
 m I}$ as $|x|
 ightarrow \infty.$
- The Skyrme field, U(x, t), with these boundary conditions, is a map from S^3 into S^3 .
- The homotopy group of a map from S^3 into S^3 is \mathbb{Z} .
- The topological charge, and therefore the baryon number, are integers.

- Consider a map $\Psi : S^n \to Y$.
- Ψ_1 and Ψ_2 are homotopic if Ψ_1 can be continuously transformed into Ψ_2 .
- $\pi_n(Y)$ is the n^{th} homotopy group.
- Example: $S^1 \to S^1$ has homotopy group \mathbb{Z} .

- The Skyrme boundary conditions are $U(x,t) \rightarrow I$ as $|x| \rightarrow \infty$.
- The Skyrme field, U(x, t), with these boundary conditions, is a map from S^3 into S^3 .
- The homotopy group of a map from S^3 into S^3 is \mathbb{Z} .
- The topological charge, and therefore the baryon number, are integers.

The Rational Map Ansatz - Introduction

• Using polar coordinates in \mathbb{R}^3 define the stereographic coordinates $z = \tan\left(\frac{\theta}{2}\right) e^{i\phi}$.

The Rational Map Ansatz

•
$$U = \exp(i\vec{\sigma} \cdot \hat{n}_R F(r, t)),$$

•
$$\hat{n}_R = \frac{1}{1+|R|^2}(R+\bar{R},i(\bar{R}-R),1-|R|^2).$$

•
$$R = \frac{p(z)}{q(z)}$$
.

•
$$R = z, R = z^2, R = \frac{z^3 - \sqrt{3}iz}{\sqrt{3}iz^2 - 1}, R = \frac{z^4 + 2\sqrt{3}iz^2 + 1}{z^4 - 2\sqrt{3}iz^2 + 1}$$

• $F(0, t) = \pi, F(\infty, t) = 0$.

The Rational Map Ansatz - Solutions

The Rational Map Ansatz - Solutions

Susan Nelmes (Durham University)

Neutron Stars: A Skyrmion Model

Student Seminar 24/01/2011

∃ ► < ∃</p>

- 17

10 / 12

э

Neutron Stars - Introduction

11 / 12

- Large baryon number, typically 10⁵⁸.
- Gravity must be included.
- Using the Rational map ansatz.
- Skyrme Crystals.