M-Theory and Matrix Models

Gurdeep Sehmbi

Department of Mathematical Sciences,
University of Durham

October 31, 2011
(9) Introduction

- Why M-Theory?
- Whats new in M-Theory
- The M5-Brane
(2) My Research
- Matrix Models in a Large Flux
- Representation Theory
- More Matrix Models
- Multiple D4's and M5's

Superstrings

There are 5 different superstring theories which describe open and closed strings

D-Branes

- There are dualities between the 5 different theories, for example T-duality describes how we can relate IIA to IIB theories.
- Open strings have end points that live on D-branes
- D-p-branes are ($p+1$)-dimensional objects that move through D dimensional spacetime, they can have open/closed bc's

D-Branes

- A bosonic brane action would typically look like the following

$$
S_{D B I}=T_{p} \int \mathrm{~d}^{p+1} \sigma \sqrt{-\operatorname{det} P\left(G+2 \pi \alpha^{\prime} F\right)}
$$

These branes have a tension which is some power of g_{s} and I_{s}

- A p-brane couples to a p+1 form potential, you can add these potentials to the D-brane action

$$
S=S_{D B I}+\int A_{p+1}
$$

The Discovery of M-Theory

- M-theory was discovered as a strongly coupled limit to IIA theory
- This comes from a Kaluza Klein argument where

$$
M_{11}^{2}=-p_{m} p^{m}=0, \quad p_{11}=N / R_{11},
$$

where M_{11} is the mass of the graviton in 11D SUGRA/M-Theory

- The DO-brane has mass $\left(I_{s} g_{s}\right)^{-1}$ and KK modes have N units of $U(1)$ charge

The Discovery of M-Theory

- Matching up the two masses gives $R_{11}=l_{s} g_{s}, \quad g_{s} \rightarrow \infty$ gives us extra large dimension
- Eleven dimensional SUGRA has a 3-form potential
- M-theory has the same potential, yielding an electrically coupled M2 and a magnetically coupled M5 brane.
- Worldvolume theories for these branes would be 3 and 6 dimensional CFTs

AdS/CFT... Because no strings talk is complete without it

- We can look at the AdS/CFT correspondence here too!
- The correspondence tells us that a stack of M2-branes has bulk background $A d S_{4} \times S^{7}$, this was known from the 11-dimensional supergravity result of the M2.
- Bagger and Lambert discovered the theory of multiple M2-branes in 2007
- In 11 dimensions $\mathcal{N}=8$ is the maximal supersymmetry we could have.

Whats new in M-Theory

- BL proposed that the $\mathcal{N}=8, \mathrm{SO}(8)_{R}$ theory of multiple M 2 branes is a Chern-Simons gauge theory of level k.
- The revolutionary idea was that the scalars X^{\prime} took values in a 3-algebra $[\cdot, \cdot, \cdot]: V \times V \times V \rightarrow V$.

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{2} D^{\mu} X^{\prime} D_{\mu} X^{\prime}+\frac{i}{2} \bar{\Psi} \Gamma^{\mu} D_{\mu} \Psi+\frac{i}{4} \bar{\psi} \Gamma_{l J}\left[X^{\prime}, X^{J}, \Psi\right] \\
& -V(X)+\frac{k}{2} \varepsilon^{\mu \nu \lambda}\left(\tilde{A}_{\mu} \partial_{\nu} \tilde{A}_{\lambda}+\frac{2}{3} \tilde{A}_{\mu} \tilde{A}_{\nu} \tilde{A}_{\lambda}\right)
\end{aligned}
$$

where

$$
V(X)=\frac{1}{12} \operatorname{Tr}\left(\left[X^{\prime}, X^{J}, X^{K}\right],\left[X^{\prime}, X^{J}, X^{K}\right]\right)
$$

Whats new in M-Theory

- Using the notation $\tilde{A}_{\mu}{ }^{c}{ }_{d}=A_{\mu a b}{ }^{f a b c}{ }_{d}$, we can write the susy transforms:

$$
\begin{aligned}
\delta X^{\prime} & =i \bar{\epsilon} \Gamma^{\prime} \Psi \\
\delta \Psi & =D_{\mu} X^{\prime} \Gamma^{\mu} \Gamma^{\prime} \epsilon-\frac{1}{6}\left[X^{\prime}, X^{J}, X^{K}\right]^{I J K} \epsilon \\
\delta \tilde{A}_{\mu} & =i \bar{\epsilon} \Gamma_{\mu} \Gamma_{l} X^{\prime} \Psi,
\end{aligned}
$$

- M2-branes are $1 / 2 \mathrm{BPS}$ and so we choose $\Gamma^{012} \epsilon=\epsilon$
- Let's discuss a bit more about Lie 3-algebras

Whats new in M-Theory

- A Lie 3-algebra is a vector space with a basis $T^{a}, a=1, \ldots, N$ endowed with a trilinear product

$$
\left[T^{a}, T^{b}, T^{c}\right]=f_{d}^{a b c}{ }_{d} T^{d}
$$

- We can derive a generalised Jacobi Id called the fundamental identity by using a derivation on this product.
- The $\mathcal{N}=8$ theory required $f^{a b c}{ }_{d}=f^{[a b c]}{ }_{d}$, only solution prop to $\epsilon^{\text {abcd }}$. So BL theory has an $S O(4) \cong S U(2) \times S U(2)$ gauge symmetry.
- Reformulate as a bi-fundamental gauge theory.

Whats new in M-Theory

- BL theory only describes two coincident branes! Also the Chern-Simons level is restricted to $k=1,2$
- ABJM wrote down a bifundamental SCCS matter theory which has only $\mathcal{N}=6$ susy, but this described N coincident branes for any integer k.
- The moduli space of the ABJM theory is $\mathbb{R}^{8} / \mathbb{Z}_{k}, k \in \mathbb{Z}$ for a $U(N) \times U(N)$ gauge theory.
- ABJM theory does not need to use 3 algebras, the potential of the theory is calculated from a superpotential in the usual manner.

Whats new in M-Theory

- It is possible to enhance the $\mathcal{N}=6$ ABJM theory to get the full $\mathcal{N}=8$ theory by the use of monopole operators.
- The M2-brane picture is pretty well understood now.
- On to the M5-brane...

Whats new in M-Theory

- Much less is known about the M5-brane.
- Gravity side has $A d S_{7} \times S^{4}$.
- Field theory is given by an $\mathcal{N}=(2,0)$ supermultiplet $\left(B_{\mu \nu}, X^{\prime}, \Psi\right), I=6, \ldots, 10$.
- Difficult to write a gauge kinetic term for the field strength $H_{3}=d B_{2}$.
- $\int_{\Sigma_{6}} H_{3} \wedge H_{3}=0$
- Possible to write down a non-covariant action for a single M5-brane which is gauge fixed, (PST 1997).

Introduction

- Expect Riemannian geometry to break down at Plank scales.
- Spacetime becomes quantised and coordinates become quantum operators.
- Open strings ending on D-branes with a B-field turned on give a noncommutative geometry

$$
\left[X^{\mu}, X^{\nu}\right]=i \theta^{\mu \nu}
$$

Introduction

- M2-branes end on M5-branes. Has been shown that M5-brane geometry in the presence of 3 -form C-field is

$$
\left[X^{\mu}, X^{\nu}, X^{\lambda}\right]=i \theta^{\mu \nu \lambda} .
$$

- Lie 3-bracket given by fundamental identity:

$$
[[f, g, h], k, l]=[[f, k, l], g, h]+[f,[g, k, I], h]+[f, g,[h, k, I]]
$$

- Constraint is too strong and we do not understand the representation theory.

Introduction

- We propose the 'Quantum Nambu Bracket':

$$
[f, g, h]:=f g h+g h f+h f g-f h g-g f h-h g f
$$

- We will show that the quantum geometry $\left[X^{\mu}, X^{\nu}, X^{\lambda}\right]=i \theta^{\mu \nu \lambda}$ is given by the QNB.
- Refer to the above geometry as the 'Quantum Nambu Geometry'.

A ||B Background

- Consider background $A d S_{5} \times S^{5}$.
- Background has a dilaton, axion, C_{2}, C_{4}.
- Turn on 3-form Flux for a D1-brane in the $A d S_{5}$ sector only.
- It has been shown that consistency requires the spacetime to take the form

$$
\mathbb{R}^{3} \times A d S_{2} \times S^{5}
$$

- Note for later that the RR 2-form potential is given by

$$
C_{2}=f_{i j k} X^{i} d X^{j} d X^{k}
$$

D1 MM in a Large Flux

- N parallel D1-branes action given by DBI + CS action
- Myers proposed a generalisation of the CS term given by

$$
S_{C S}=\mu_{1} \int \operatorname{Tr} P\left(e^{i \lambda i_{\Phi} \mathrm{i}_{\Phi}} \sum_{n} C_{n}\right) e^{\lambda F}
$$

- Here $\mu_{1}=1 /\left(g_{s} 2 \pi \alpha^{\prime}\right), \lambda=2 \pi \alpha^{\prime}$ and $X^{\prime}=2 \pi \alpha^{\prime} \Phi^{\prime}$. Our background has $B=0$.

D1 MM in a Large Flux

- Expanding $S_{C S}$ gives

$$
\begin{aligned}
S_{C S}= & \mu_{1} \int \operatorname{Tr}\left[\lambda F \chi+C_{2}+i \lambda^{2} F \mathrm{i}_{\Phi} \mathrm{i}_{\Phi} C_{2}\right. \\
& \left.\quad+i \lambda \mathrm{i}_{\Phi} \mathrm{i}_{\Phi} C_{4}-\frac{\lambda^{3}}{2} F \mathrm{i}_{\Phi}^{4} C_{4}\right] \\
:= & S_{\chi}+S_{C_{2}}+S_{C_{4}}
\end{aligned}
$$

- We will see only $S_{C_{2}}$ contributes in the double scaling limit of a large field strength.

D1 MM in a Large Flux

- Substituing our expression for C_{2} gives

$$
\begin{aligned}
S_{C_{2}} / \mu_{1}= & f \int d^{2} \sigma \operatorname{Tr}\left(\frac{1}{2} \epsilon_{i j k} X^{i} D_{\alpha} X^{j} D_{\beta} X^{k} \epsilon^{\alpha \beta}\right) \\
& +f \int d^{2} \sigma \operatorname{Tr}\left(i F X^{i} X^{j} X^{k} \epsilon_{i j k}\right)
\end{aligned}
$$

- Here $\alpha=0,1, i=2,3,4, i^{\prime}=5,6,7,8,9$.

D1 MM in a Large Flux

- By including a YM term (from DBI), can find EOM

contribution of:	$S_{C_{2}}$	$\mathrm{i}_{\Phi}^{2} C_{4}$	$\mathrm{i}_{\Phi}^{4} C_{4}$
EOM of $X^{i}:$	$O\left(\frac{f}{\alpha^{\prime}}\right)$	$O\left(\frac{1}{f^{\prime \prime}}\right)$	0
EOM of $X^{\prime}:$	0	$O\left(\frac{1}{f^{4} \alpha^{\prime 2}}\right)$	$O\left(\frac{1}{f^{4} \alpha^{\prime 2}}\right)$

- The YM term is given by

$$
S_{Y M / \mu_{1}}=\alpha^{\prime 2} \int \sqrt{-\operatorname{det} G_{\alpha \beta}} F_{\alpha \beta} F_{\alpha^{\prime} \beta^{\prime}} G^{\alpha \alpha^{\prime}} G^{\beta \beta^{\prime}}
$$

- So for large f and taking $\epsilon \rightarrow 0$, we have a double scaling limit

$$
\begin{aligned}
\alpha^{\prime} & \sim \epsilon \\
f & \sim \epsilon^{-a}, \quad a>0
\end{aligned}
$$

D1 MM in a Large Flux

- Choice $1 / 2<a<2$ gives us

$$
\lim _{\epsilon \rightarrow 0} S_{D 1}=S_{C_{2}}
$$

- So the double scaling limit gives us the low energy action for N D1-branes in a large F_{3} background.

Matrix Models in a Large Flux
Representation Theory

Equations of Motion and Quantum Nambu Geometry

$$
\begin{aligned}
& \varepsilon^{\alpha \beta} \varepsilon_{i j k}\left[X^{j}, D_{\beta} X^{k} X^{i}\right]+\varepsilon^{\alpha \beta} \varepsilon_{j j k}\left[D_{\beta}, X^{i} X^{j} X^{k}\right]=0, \\
& \frac{3}{2} \varepsilon_{i j k} D_{\alpha} X^{j} D_{\beta} X^{k} \varepsilon^{\alpha \beta}+\varepsilon_{i j k}\left[F ; X^{j}, X^{k}\right]^{\prime}=0,
\end{aligned}
$$

- $[A ; B, C]^{\prime}:=[B, C] A+A[B, C]+B A C-C A B$
- $\operatorname{Tr}[A, B, C] D=\operatorname{Tr}[D ; B, C]^{\prime} A$, in analogy to the relation $\operatorname{Tr} D[A, B]=\operatorname{Tr}[D, A] B$.

Equations of Motion and Quantum Nambu Geometry

Solutions:

- $D_{\alpha} X^{i}=0$,
- $F=0$,
- $\left[X^{i}, X^{j}\right]=i \theta \epsilon^{i j}$ is allowed but there is another more interesting solution,
- $\left[X^{i}, X^{j}, X^{k}\right]=i \theta \epsilon^{i j k}$

A Representation with Z_{3} Symmetry

- Can construct a rep with 'raising/lowering' operators.
- Look at a different rep, want to consider reps on a 3-dim real space.

$$
\left[X^{1}, X^{2}, X^{3}\right]=i \theta
$$

- Introduce a unitary operator,

$$
\begin{aligned}
U|\omega\rangle & =\left|\rho^{2} \omega\right\rangle, \quad \rho^{3}=1 \in \mathbb{C} \\
U^{\dagger}|\omega\rangle & =|\rho \omega\rangle,
\end{aligned}
$$

and assuming

$$
X^{1}|\omega\rangle=(\omega+a)|\omega+1\rangle
$$

one obtains

$$
\begin{aligned}
U^{\dagger} X^{1} U|\omega\rangle & = & \left(\rho^{2} \omega+a\right)|\omega+\rho\rangle, \\
U^{\dagger 2} X^{1} U^{2}|\omega\rangle & = & (\rho \omega+a)\left|\omega+\rho^{2}\right\rangle
\end{aligned}
$$

A Representation with Z_{3} Symmetry

- If the fields X^{1}, X^{2} and X^{3} are unitarily related to each other by

$$
\begin{aligned}
& X^{2}=U^{\dagger} X^{1} U \\
& X^{3}= \\
& U^{\dagger} X^{2} U
\end{aligned}
$$

then

$$
\begin{aligned}
X^{1}|\omega\rangle & =(\omega+a)|\omega+1\rangle \\
X^{2}|\omega\rangle & =\rho^{2}(\omega+a \rho)|\omega+\rho\rangle \\
X^{3}|\omega\rangle & =\rho\left(\omega+a \rho^{2}\right)\left|\omega+\rho^{2}\right\rangle
\end{aligned}
$$

and we see that

$$
\left[X^{1}, X^{2}, X^{3}\right]|\omega\rangle=3\left(a^{2}-a\right)\left(\rho-\rho^{2}\right)|\omega\rangle
$$

||B Matrix Model

- Expand around the QNG and examine emerging gauge theories
- Denote the covariant derivative $i D^{\alpha}=i \partial^{\alpha}+A^{\alpha}, \alpha=0,1$ as

$$
i D^{\alpha}=X^{\alpha}
$$

- We can show that $S_{D 1}$ can be written as

$$
S_{D 1}=\frac{f}{\left.g_{s}\right|_{s} ^{2}} \int d^{2} \sigma \operatorname{Tr} X^{a} X^{b} X^{c} X^{d} X^{e} \epsilon_{a b c d e}
$$

- Large N reduction gives

$$
S_{\| B}=\frac{f}{g_{s} l_{s}^{2}} \operatorname{Tr} X^{a} X^{b} X^{c} X^{d} X^{e} \epsilon_{a b c d e}, \quad a, b, c, d, e=0,1,2,3,4 .
$$

M-Theory Matrix Model

- IIB background invariant under $\mathrm{KV} \partial_{i}, i=2,3,4$.
- Compactify x^{2} on circle of radius R_{2} and T-dualize

$$
S^{1} \times \mathbb{R}^{2} \times A d S_{2} \times S^{5}
$$

- D1-brane \rightarrow D2-brane under this T-duality
- In II A theory with D2-brane action

$$
S_{D 2}=\frac{f}{g_{s} I_{s}} \int d^{3} \sigma X^{a} X^{b} X^{c} X^{d} X^{e} \epsilon_{a b c d e}
$$

M-Theory Matrix Model

- In IIA theory, we have D0, D2, D4, D6, D8-branes.
- M-theory on a circle in the infinite momentum frame gives us only states with positive D0-charge
- Under the same double scaling, we are left with

$$
S_{D 0}=\frac{1}{g_{s} l_{s}} \int P\left(C^{(1)}\right)=\frac{f}{g_{s} l_{s}} \int d t \epsilon_{i j} X^{i} D_{t} X^{j}, \quad i, j=3,4
$$

- BFSS model describes M-theory in infinite momentum frame using QM - D0-branes

M-Theory Matrix Model

- D2-action describes D0-branes too
- Dimensionally reduce D2-action
- In the large flux curved background, M-theory action is
$S_{M}=\frac{i f}{g_{s} l_{s}} \int d t \operatorname{Tr} D_{t} X^{b} X^{c} X^{d} X^{e} \epsilon_{b c d e}, \quad b, c, d, e=1,2,3,4$
where $X^{0}=-i D_{t}$

|| A Matrix Model

- Write constants in terms of M-theory radius R_{11}, compactify on x^{2}, perform 11-2 flip
- The flip changes the M-theory direction on the torus. All this means is

$$
R_{2}=g_{s} l_{s}, \quad R_{11}=N
$$

with lightcone momentum $p_{+}=1$

- Obtain the II A matrix model

$$
S_{I I A}=\frac{f}{N} \int d^{2} \sigma \operatorname{Tr} X^{a} X^{b} X^{c} X^{d} X^{e} \epsilon_{a b c d e}
$$

where $a, b, c, d, e=0,1,2,3,4$

Multiple D4-branes

- Consider a fluctuation around the QNG

$$
X^{i}=x^{i} \mathbf{1}_{K \times K}+A^{i}\left(\sigma, x^{j}\right)
$$

- The II A action becomes

$$
S_{5}=\frac{f}{N} \int_{\Sigma_{5}} \operatorname{tr} X^{a} X^{b} X^{c} X^{d} X^{e} \epsilon_{a b c d e}
$$

where $\int_{\Sigma_{5}}=\int d^{2} \sigma \int_{x}$ and \int_{x} is an integral on QNG

Multiple D4-branes

- Argue this describes K parallel D4-branes
- Introduce 3-form H

$$
\begin{aligned}
H^{a b c} & =-i\left[X^{a}, X^{b}, X^{c}\right] \\
H^{d e 5} & =-i\left[X^{d}, X^{e}\right], \quad a, b, c, d, e=0,1,2,3,4
\end{aligned}
$$

where

$$
H^{* \mu \nu \lambda}:=\frac{1}{6 \sqrt{-g}} \epsilon^{\mu \nu \lambda \rho \alpha \beta} H_{\rho \alpha \beta}
$$

is the Hodge dual of $H_{\rho \alpha \beta}$.

Multiple D4-branes

- Claim

$$
S_{5}=\int_{\Sigma_{5}} \operatorname{tr} H^{a b c} H^{d e 5} \epsilon_{a b c d e}
$$

describes the D4's. To see the connection, we examine an abelian M5-brane theory and dimensionally reduce

- PST wrote the action for a single M5-brane in 6d by coupling to a scalar.

Multiple D4-branes

- Gauge fixing gives us the following non-covariant action

$$
S_{P S T}=-\frac{1}{4} \times \int d^{6} \sigma\left(\frac{1}{6} \epsilon_{a b c d e} H^{a b c} H^{d e 5}+H^{* a b 5} H_{a b 5}^{*} \sqrt{-g}\right)
$$

- After dim reduction on x^{5}, 1st term is precisely our action!
- 2nd term comes from a YM term, this is neglected in double scaling limit

Multiple M5-branes

- Recent proposal that M5-branes on S^{1} is equivalent to D4-branes with instantons.
- There is a precise mapping between instanton states and KK modes
- Seems natural to promote $X^{5}=\mathbf{1}$ to a general field

$$
H^{\mu \nu \lambda}=-i\left[X^{\mu}, X^{\nu}, X^{\lambda}\right]
$$

- Different from field strength of 2-form formulation, here in terms of a 1-form
- Two formulations are related non-trivially

Multiple M5-branes

- Propose action

$$
\begin{aligned}
S_{M 5}=-\frac{1}{4} & \int_{\Sigma_{6}} \operatorname{tr}\left(\frac{1}{6} \epsilon_{a b c d e} H^{a b c} H^{d e 5}\right. \\
& \left.+\left(c_{2} H^{a b c} H_{a b c}+c_{3} H^{a b 5} H_{a b 5}\right) \sqrt{-g}\right)
\end{aligned}
$$

where $\Sigma_{6}=\Sigma_{5} \times S^{1}$

- H must satisfy a Bianchi Id. Most natural one is

$$
\left[X^{[\mu}, H^{\nu \lambda \rho]}\right]=0
$$

- Requiring self-duality solves EOM

$$
H_{a b 5}=-\frac{1}{6} \epsilon_{a b c d e} H^{c d e}
$$

Multiple M5-branes

- The solution for coefficients are given by 1-parameter family

$$
c_{2}=-\frac{1}{18}\left(c_{1} / 2\right), \quad c_{3}=\frac{5}{6}\left(c_{1} / 2\right)
$$

- Moreover, the self-duality condition on H implies that the QNG is self-dual!

$$
\left[x^{\mu}, x^{\nu}, x^{\lambda}\right]=i \theta^{\mu \nu \lambda} \mathbf{1}
$$

Multiple M5-branes

- The final action for K parallel M5-branes (or K non-abelian 3 -form) is

$$
\begin{aligned}
S_{M 5, \theta}= & -\frac{1}{4} \int_{X} \operatorname{tr}\left(\frac{1}{6} \epsilon_{a b c d e} H^{a b c} H^{d e 5}\right. \\
& \left.+\left(\alpha \frac{-1}{3} H^{a b c} H_{a b c}+(1-\alpha) H^{a b 5} H_{a b 5}\right) \sqrt{-g}\right)
\end{aligned}
$$

where \int_{x} is determined by the rep of the QNG.

- Only $\alpha=1 / 6$ gives us the correct Bianchi Id and self-duality condition.
- The last two terms combine to give the non-abelian generalisation of the gauge fixed PST action!

Conclusion

Results:

- New kind of geometry in string theory
- D1's in a large flux \rightarrow non-abelian 3-form on M5's.
- Identify $C^{\mu \nu \lambda}=\theta^{\mu \nu \lambda}$

Future:

- More representation theory
- QFT on a QNG
- Supersymmetry

