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String Theory
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Non-perturbative physics

I Recently: Instantons hold
part of the key to
understanding M5-branes?
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Why is this interesting?

There’s been a recent conjecture that everything about multiple
M5-branes is still encoded in 5 dimensional super-Yang-Mills
(D4-branes).

Wow, really‽ This is an amazing claim and is definitely worth lots
of study.

In the reduction, the Kaluza-Klein modes should be identified with
instantons. However, we have to be careful with the singularities
that arise if we want to quantise the theory.

The maths is cool and the calculations are fun.
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What is an instanton?

We’re sitting on a D4-brane so our theory is 4+1 Yang-Mills,

S =

∫
d5x Tr

(
1
4FµνF

µν + 1
2DµφD

µφ
)
.

Everything is classical, so we only need the equations of motion,

DµFµν + [Dµφ, φ] = 0,

D2φ = 0.



What is an instanton? (cont.)

Every solution has an energy associated with it,

E =

∫
d4x Tr

(
1
2Fi0Fi0 + 1

2D0φD0φ+ 1
4FijFij + 1

2DiφDiφ
)

Kinetic and Potential

The minimum energy solution is the vacuum, but that’s pretty
boring. There are other minimum energy solutions fixed by the
topological nature of the theory.
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What is an instanton? (cont.)

Recall the kinetic and potential energy density terms for the gauge
field, Fi0Fi0 and FijFij . For finite energy, these must go to zero at
spatial infinity.

The gauge field at finity is therefore pure gauge,

Aµ(x)
∣∣
|x|=∞ = g(x) ∂µg

−1(x),

where
g : S3 → SU(2) ' S3.

Maps like this have an integer topological degree, k, which is how
many times they ‘wind’ round S3. This splits our theory into
sectors with different topological degrees at infinity.
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Each topological sector will have a minimum energy solution.
These are instantons!

E = 2π2|k|+ |QE |

+

∫
d4x Tr

(
1
2(Fi0 −Diφ)2 + (Fij − 1

2εijklFkl)
2
)
.

So instantons satisfy,

Fij = 1
2εijklFkl

Diφ = Fi0.
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What does an instanton look like?

The scalar field profile of an
instanton. Unfortunately I can
only show two dimensions of the
4-dimensional space this is living
on.

An isosurface of the instanton
charge density. I do slightly
better here by showing three
dimensions, but only one value.



What about two instantons?

The scalar field of two
instantons. It looks just like two
copies of a single instanton!

Instanton charge density.



Two instantons close together

The scalar field of two close
instantons. They aren’t as
obviously separate now.

Instanton charge density.



How can I make pretty plots find instanton solutions?

With the ADHM construction.

Instead of solving a horrible differential equation for the
components of Aµ, we can instead solve some algebraic
constraints.

I don’t know how to motivate this procedure other than just
showing you it, so stick with me until we get to the end of this
section and all will become clear.
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The ADHM Construction

We start with a quaternionic matrix,

∆(x) =

 v1 v2
ρ+ τ σ
σ ρ− τ

−
0 0

1 0
0 1

 x

The parameters encode the following information about the
instantons:

|v1| and |v2| The sizes of the instantons
v̂1 and v̂2 The gauge rotation of each instanton

ρ The centre of mass
τ The separation of the instantons.



The ADHM Construction (cont.)

To find Ai, we first find an orthonormal basis of null vectors of ∆,
and group them together as U ,

∆†U = 0, and U †U = 12.

The gauge field is then given by

Ai = iU †∂iU,

and
Fij = −U †b(eifēj − ejfēi)b†U

is self-dual if f = (∆†∆)−1 is real.



The ADHM Construction (cont.)

To find Ai, we first find an orthonormal basis of null vectors of ∆,
and group them together as U ,

∆†U = 0, and U †U = 12.

The gauge field is then given by

Ai = iU †∂iU,

and
Fij = −U †b(eifēj − ejfēi)b†U
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The moduli space

The ADHM construction gives us all instantons of a given charge!
This means that the space of instantons is finite dimensional, and
has a coordinate system given by the parameters in the ADHM
data. We call this space the moduli space.

Caveat. The ADHM construction only gives us a unique instanton
up to a local gauge transformation. The moduli space is really all
the instanton solutions quotiented by local gauge transformations
so that each point is physically different. We can pick a
representative instanton at each point.

Caveat to the caveat. The global gauge transformations turn out
to be quite important so we will still include those in the moduli
space.
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Moduli Space Geometry

A tangent vector is like a an infinitesimal variation which leaves
you in the space. If we vary Ai → Ai + δAi then δAi must satisfy
the linearised self-dual equation:

D[iδAj] = εijklDkδAl.

Any variation δAi satisfying this can be though of as a tangent
vector to the moduli space. There is a natural inner product which
gives us our metric:

g(δAi, δ
′Ai) =

∫
d4xTr

(
δAiδ

′Ai
)
.

For a consistent metric, we have to project orthogonal to gauge
transformations:

DiδAi = 0.
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Metric from ADHM data

The ADHM parameters, zr = vi1, v
i
2, τ

i, provided a natural
coordinate system on the moduli space and the tangent vectors in
this coordinate system are

δrAi = ∂rAi −Diεr,

where εr is chosen so that DiδrAi = 0.

Once again the ADHM construction turns the problem of
calculating the metric in an algebraic problem,

δrAi = ∂rAi = U †δr∆fēib
†U − U †beifδr∆†U.
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James rolls up his sleeves

The metric on the two instanton moduli space is

ds2 = dv21 + dv22 + dτ2 + dσ2 − k2

NA
,

where

k = v̄1dv2 − v̄2dv1 + 2(τ̄ dσ − σ̄dτ)

NA = |v1|2 + |v2|2 + 4
(
|τ |2 + |σ|2

)
.

For ∆†∆ to be real we must have

σ =
τ

4|τ |2
(v̄2v2 − v̄1v2).



James really rolls up his sleeves

ds
2

=

[
dv

2
1 + dv

2
2 + dτ

2

+
1

4|τ |2
(
|v1|

2
dv

2
2 + |v2|

2
dv

2
1 + 2(v1 · dv1)(v2 · dv2)

− (v1 · dv2)
2 − (v2 · dv1)

2 − 2(v1 · v2)(dv1 · dv2)

+ 2εijklv
i
1v

j
2 dv

k
1 dv

l
2

)
+

1

4|τ |4
(
|v1|

2|v2|
2 − (v1 · v2)

2
)

dτ
2

−
1

2|τ |4
(
|v1|

2
(v2 · dv2) + |v2|

2
(v1 · dv1)

− (v1 · v2)(v1 · dv2)− (v1 · v2)(v2 · dv1)
)
τ · dτ

+
1

8|τ |4
(
εijklΛi dΛjτk dτl

+ (Λ · dτ)(τ · dΛ)− (Λ · τ)(dΛ · dτ)
)
τ · dτ

−
1

NA

(
v1 · dv2 − v2 · dv1

−
2

|τ |2
(
εmnpqv

m
2 v

n
1 τ

p
dτ

q
+ (v2 · τ)(v1 · dτ)− (v1 · τ)(v2 · dτ)

))2]



So what do we do with it?

We can approximate the motion of slow moving instantons by
motion on the moduli space. Motion close to the bottom of a
valley floor can be approximated by motion entirely along the
valley floor, so long as we only ever climb a small way up the sides.
The effective action for slow moving instantons is

S =
1

2

∫
dt grsż

rżs − |v|2grsKrKs +O(ż2v2)

So now we can ask what happens when we push two instantons
towards each other and see how they interact.



Interesting propertied

I Singularities on the moduli space.
The moduli space has a conversed angular momentum,

L = |v1|2θ̇1 + |v2|2θ̇2 + interaction terms.

For a single instanton this prevents |v| from passing through
zero and keeps away from the singularity. Does this happen
for interacting instantons?

No :(.

I Right-angled scattering.

I Geodesic submanifolds of the moduli space.
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Conclusions

It turns out that we can readily find configurations of two
instantons in which one shrinks to zero size. For one instanton a
conserved angular momentum prevents this from happening, but
for two intereacting instantons this protection is gone.

By examining the symmetries of the ADHM data we see a clear
mechanism for right-angled scattering. This appears in the
dynamical scattering process frrequently as we would expect from
other soliton systems.
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Future work

The same calculation can in principle be performed for SU(N) and
this might give us some insight into the expected N3 degrees of
freedom of the M5-branes.

We can also look at larger charge instantons. Finding symmetric
solutions would be particularly pleasing, as this is motivated by the
relation between instantons and skyrmions.
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