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SDYM

Consider the Yang-Mills action

S =

∫

R4

Tr(F ∧ ∗F )

where F is the 2-form field strength of the gauge potential A. We can find
finite energy stationary points by using the identity

Tr(F ∧ ∗F ) = Tr(F ∧ F ) +
1

2
Tr((F − ∗F ) ∧ ∗(F − ∗F )),

resulting in the Bogomolny energy bound

S ≥

∫

R4

Tr(F ∧ F )

which is saturated when

∗F = F .

In 4 dimensions the self-duality equations describe instantons.
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Dimensional Reduction of SDYM

Many other integrable systems can be obtained from SDYM. In
components,

F = ∗F =⇒ Fµν =
1

2
ǫµναβFαβ

where
Fµν = ∂µAν − ∂νAµ + [Aµ,Aν ].

• Imposing independence on x4 gives the Bogomolny equations for a
monopole in R

3

F = ∗DΦ =⇒ Fij = ǫijk (∂kΦ + [Ak ,Φ])

where we identify Φ = A4 and DiΦ = ∂iΦ + [Ai ,Φ]. Hence Φ is a Lie
algebra-valued adjoint scalar.

• What happens if we do this again?
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Dimensional Reduction of SDYM

• Independece of two dimensions gives the Hitchin equations,

Ds̄Φ = 0 and Fss̄ =
i

4
[Φ†,Φ]

where s, s̄ are complex coodinates, s = x1 + ix2.

• Once more gives the Nahm equations,

∂sAi =
1

2
ǫijk [Aj ,Ak ],

• and finally,

[A1,A2] = [A3,A4] [A1,A3] = [A4,A2] [A1,A4] = [A3,A2]

which are relevant to the ADHM construction.

As we shall see, most of these dimensional reductions will be useful to us!
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Magnetic Monopoles

Consider the Yang-Mills-Higgs action

S =

∫

R3

Tr(F ∧ ∗F ) + Tr(DΦ ∧ ∗DΦ) + V (Φ).

We again find stationary points by a Bogomolny argument, resulting in

S ≥ 2

∫

R3

Tr(F ∧ DΦ) F = ∗DΦ.

Magnetic charge can be seen to arise by defining the Abelian field strength
f = Tr(FΦ) and the definition B = ∗F . Gauss’ theorem then gives the
monopoole charge as a surface integral. Note the fields are asymptotically
Abelian.
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Higgs Field

Derrick scaling means pure YM only has finite energy non-trivial solutions
in d=4. In d=2 or 3 we need a Higgs field Φ to stabilise the solution.

The asymptotic behaviour of Φ determines the topology and symmetry
breaking of the monopole. For SU(2) the gauge symmetry is broken to
U(1). So there is a map

Φ∞ : S
2
∞ 7→ S

2 ∼= SU(2)/U(1)

of degree
π2(S

2) = Z.

The monopole number is also the first Chern number of the gauge field,

N =
i

2π

∫

S2
∞

f .
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Nahm Transform - forward

The Nahm transform is a powerful tool to solve the Bogomolny equations.
It can be thought of as a generalised Fourier transform and is an
adaptation of the ADHM construction for instantons. [Corrigan & Goddard ’84]

• First, consider normalised solutions of the twisted Dirac-like operator

(σj ⊗ Dj − 12 ⊗ (iΦ(x) + s))v(x, s) = 0.

• The three Nahm matrices are given by

Ti(s) =

∫

R3

x
i
v
†(x, s)v(x, s)d3

x .

• They satisfy the Nahm equations in the interval s ∈ [−1, 1]

∂sTi =
i

2
ǫijk [Tj ,Tk ].
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Nahm Transform - inverse

• For the inverse, we consider solutions of

(

12k ⊗
d

ds
− (Tj + xj1k) ⊗ σj

)

Ψ(x, s) = 0

• From which we obtain monopole fields gauge equivalent to those we
started with:

Φ(x) = i

∫ 1

−1
s Ψ†(x, s)Ψ(x, s)ds Ai(x) =

∫ 1

−1
Ψ†(x, s) ∂iΨ(x, s)ds

Solving the Nahm equations is usually simpler than the Bogomolny
equations - but the inverse transform is hard and must often be
approximated or performed numerically.
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Nahm Transform - Properties

• It takes you between two systems satisfying the SDYM equations.

• Rank of gauge group and topological charge are permuted (so charge
1 solitons give Abelian Nahm equations!)

• The monopole is located at xi = −Tr(Ti ).

• The relevant 4-manifolds can be related by the example of the 4-torus
which is self-reciprocal under Nahm transform, with the four radii
inverted [Braam & van Baal ’89]:

T
4 → T̂

4
R

3 → R R
4 → • . . .

• Nahm data has singularities where the Dirac operators are not
invertible. This depends on the asymptotic behaviour of the
monopole fields.
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String Theory Picture

A stack of k D1-branes held between two D3-branes gives rise to a charge
k SU(2) monopole on the worldvolume of each D3-brane [Diaconescu ’97].
Dirac monopoles correspond to semi-infinite D1-branes extending outside
the D3s.

Imposing D-terms vanish gives the Nahm equations satisfied along the
D1-brane. This confirms the interpretation of the Nahm matrices as
describing the position of the D1-branes on the D3.

Similar setup for the periodic monopole, consisting of D3-branes between
NS5-branes, gives Hitchin equations on a cylinder. [Cherkis & Kapustin ’03]

0 1 2 3 4 5 6 7 8 9

D3 x x x x
D1 x x
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String Theory Picture

A stack of k D1-branes held between two D3-branes gives rise to a charge
k SU(2) monopole on the worldvolume of each D3-brane [Diaconescu ’97].
Dirac monopoles correspond to semi-infinite D1-branes extending outside
the D3s.

Imposing D-terms vanish gives the Nahm equations satisfied along the
D1-brane. This confirms the interpretation of the Nahm matrices as
describing the position of the D1-branes on the D3.

Similar setup for the periodic monopole, consisting of D3-branes between
NS5-branes, gives Hitchin equations on a cylinder. [Cherkis & Kapustin ’03]
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Periodic Solutions

Consider arranging instantons or monopoles in a lattice. This is equivalent
to compactifying on a torus. The Nahm transform allows us to consider
the self-duality equations on the reciprocal lattice (N.B. the Nahm
correspondence has only been proved for some of these!) [Jardim ’04]

‘physical space’ ‘Nahm space’
instanton R

4 •

periodic instanton R
3 × S1 Ŝ1

doubly periodic instanton R
2 × T 2 T̂ 2

triply periodic instanton R × T 3 T̂ 3

monopole R
3

R

periodic monopole R
2 × S1

R × Ŝ1

There are three self-reciprocal possibilities: T 4, R × T 2 (doubly periodic
monopole), R

2 (vortices?)
Rafael Maldonado (Durham) Periodic Monopoles 5th March 2012 11 / 23



Chains of Instantons

A chain of instantons in 4 Euclidean dimensions can be interpreted as an
instanton at finite temperature, or caloron.

One can construct the caloron fields by simply taking a suitable
superposition of the fields obtained from the Ansatz of Corrigan, Fairlie
and ’t Hooft. [Harrington & Shepard ’78]

The caloron has some interesting limits:

• The BPS monopole is obtained as the caloron size→ ∞.

• We recover the single instanton if size<<period.

• Far from the chain the fields become 3-dimensional.

Topologically, calorons have an instanton charge and various monopole
charges.
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Chains of Instantons

Recall the asymptotic behaviour of a monopole determines its symmetry
breaking and topology. For periodic systems we look at the holonomy in
the periodic direction,

V (xi) = e
R

x0
Aµdxµ

.

The Harrington-Shepard caloron has trivial holonomy. There are more
interesting examples which tend to the H-S caloron in the ‘massless
monopole’ (no symmetry breaking) limit. [Lee & Lu ’98]

In this case an SU(m) caloron splits into m constituent monopoles. The
interpretation is that a caloron is a monopole with gauge group an
extended Lie group. [Garland & Murray ’88]
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Chains of Monopoles

Monopoles have been studied in a similar context. But there are problems:

• A similar procedure used to obtain the Harrington-Shepard caloron
gives a divergent infinite sum.

• The energy diverges logarithmically with distance (the fields fall as
1/r2), so it is not clear how to implement a Bogomolny argument.

Nevertheless, we can still look for solutions to the Bogomolny equations
on R

2 × S1 with boundary conditions motivated by a chain of Dirac
monopoles, so looks Abelian from a distance. [Cherkis & Kapustin ’03]

The Nahm data satisfies Hitchin’s equations on a cylinder R × Ŝ1:

D̂ s̄Φ̂ = 0 F̂ ss̄ =
i

4
[Φ̂†, Φ̂].
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Chains of Monopoles

Take coordinates z ∈ [0, 2π) in the periodic direction and ζ, ζ∗ in the
transverse directions. The asymptotic holonomy of A − iΦdz is

V (ζ) ∼ diag
(

ζℓev + O(ζℓ−1), ζ−ℓe−v + O(ζ−ℓ−1)
)

where ℓ and v are given by the asymptotics and ℓ is the monopole charge.

The coordinates on monopole space and those on Nahm space are related
by the spectral curve polynomial

det(e2πs − V (ζ)) = 0.

The asymptotic holonomy diverges for ℓ 6= 0, so the Hitchin cylinder
R × Ŝ1 is smooth.
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Chains of Monopoles

For SU(2) charge 1 we have ℓ = 1, so there are no singularities in the
Nahm data. The Hitchin equations are Abelian and solve to [Ward ’05]

Âr = 0 Ât = i.const Φ̂ = C cosh(2πs).

For the inverse Nahm transform we must find two independent solutions of

(

2∂s̄ − z Φ̂ − ζ

Φ̂∗ − ζ∗ 2∂s + z

)

ψ = 0.

As long as we stay away from the points ζ = ±C , ψ has Gaussian
solutions localised around ±s0 = ±(cosh−1(ζ/C ))/(2π). The monopole
fields are then approximately

Aζ =
ζ

4
√

ζ2 − C 2
σ3 Aζ∗ = −(Aζ)

∗ −(Az+iΦ) =
1

2π
cosh−1

(

ζ

C

)

σ3.
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Chains of Monopoles

We can plot the energy density E = ∇2|Φ|2 in the plane z = const:

E ∝ (r4 − 2r2C 2 cos(2θ) + C 4)−1/2

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

There are two energy peaks! Can they be interpreted as constituents?
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Chains of Monopoles

The 2-d fields can be derived from a potential φ satisfying the Poisson
equation with sources at ±C :

Ar = −
1

r
∂θφ Aθ = r∂rφ ⇒ Frθ = ∇2φ = δ(ζ −C )+ δ(ζ + C ).

Equivalently, we can compute the first Chern number,

c1 =
1

2π

∫

∂R2=S1

Aθdθ,

and we find that each peak contributes a factor of 1.

The magnetic field, Frθ, is concentrated near the points ζ = ±C . As C is
increased, our approximation improves: it works closer to the flux tubes,
and z dependence quickly becomes weaker.
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Chains of Monopoles

I’ve been looking at several extensions:

• limits of C (can we recover the single monopole?),

• higher charge,

• larger gauge groups,

• Nahm transform for vortices,

• Dirac singularities,

• comparison with calorons and doubly periodic instantons,

• dynamics on Nahm space.
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Chains of Monopoles

I’ve been looking at several extensions:

• limits of C ,

• higher charge,

• larger gauge groups,

• Nahm transform for vortices (expect to be self-reciprocal),

• Dirac singularities,

• comparison with calorons and doubly periodic instantons,

• dynamics on Nahm space.
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Chains of Monopoles

I’ve been looking at several extensions:

• limits of C ,

• higher charge,

• larger gauge groups,

• Nahm transform for vortices,

• addition of magnetically charged Dirac singularities,

• comparison with calorons and doubly periodic instantons,

• dynamics on Nahm space.
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Chains of Monopoles

I’ve been looking at several extensions:

• limits of C ,

• higher charge,

• larger gauge groups,

• Nahm transform for vortices,

• Dirac singularities,

• comparison with calorons and doubly periodic instantons,

• dynamics on Nahm space

The Nahm space is now more interesting than a line, so it would be
interesting to see whether the solutions of the Hitchin equations
behave like soltions. Varying monopole parameters we can get 90◦

scattering on the cylinder. But how about the topology?
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Chains of Monopoles

A charge 2 periodic monopole has been constructed. [Harland & Ward ’08]

Here the Nahm data is U(2) and we can take the Hitchin Higgs field to be
off-diagonal, with (as before)

det Φ̂ = C cosh(2πs).

Note cosh(2πs) has two zeros, at s = ±i/4. We find two different
solutions, according to whether or not the zeros are in the same
component of Φ̂. The solutions have different dynamics, with orthogonal
scattering directions.

Do this by studying gauge transformations of the inverse Nahm transform,

(

2Ds̄ − z Φ̂ − ζ

Φ̂∗ − ζ∗ 2Ds + z

)

ψ = 0.

Open questions: do the fields again become independent of z in the large
size/period limit? How do the constituents interact?

Rafael Maldonado (Durham) Periodic Monopoles 5th March 2012 20 / 23



Chains of Monopoles

As monopoles are obtained from the large scale limit of a periodic
instanton, we expect periodic monopoles to be some limit of the instanton
on R

2 × T 2.

A doubly periodic instanton has been constructed [Ford & Pawlowski ’01] which
splits into two periodic monopole constituents when one period is much
greater than the other.

The Nahm data consists of Hitchin equations on T̂ 2 with two singularities
and is solved in terms of the doubly periodic Jacobi ϑ-function. How does
this fit in with the smooth Nahm data of the periodic monopole?

Recall we can relate the coordinates in monopole space, ζ, to those on the
Nahm cylinder, s, by

e4πs − ζe2πs + 1 = 0.
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Chains of Monopoles

The map ζ → 1/ζ∗ inverts the monopole fields in the circle r = 1 and the
resulting spectral curve can be interpreted as that of a BPS monopole
with two opposite Dirac singularities at the origin.

The boundary conditions now give two singularities on R × Ŝ1 which
behave like the regions s → ±∞ on the original cylinder.

Our periodic monopole thus seems to arise from the doubly periodic
instanton where one of the constituents has been sent to ∞.

In the string theory picture, a second compactification requires the
introduction of new D1-branes, which become the Dirac monopoles, or
extra roots of the gauge group, in the periodic monopole limit.

The second Chern class of the doubly periodic instanton becomes the
magnetic charge of the monopole.
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Summary

• Nahm transform takes us from solutions of dimensionally reduced
SDYM on one manifold to solutions on a reciprocal manifold with
respect to the 4-torus.

• The transformed system is easier to solve exactly, but the inverse
transform is hard.

• Periodic arrays of monopoles and instantons usually show the
appearance of lower dimensional constituents.

• Qualitative behaviour is similar for all periodic systems.
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