Scattering Amplitudes in $N=4$ SYM

Timothy Goddard

Durham University
Supervisor: Paul Heslop
January 15, 2012

Introduction to $N=4$ SYM

Problems with Earlier methods

Recent Developments

Analytic Results in Reduced Kinematics

$N=4$ SYM

- SU(N) 4d Gauge Theory
- 1. Gauge Field

2. 6 Massless Scalars (adjoint)
3. 4 Massless Fermions (adjoint)

- Conformal Theory

Many hidden symmetries, structures for both amplitudes and correlators

Why study a theory which is wrong?

- Playground for new techniques/methods in a simpler setting (Toy Model)

Why study a theory which is wrong?

- Playground for new techniques/methods in a simpler setting (Toy Model)
- Structures here may have analogues in other theories

Why study a theory which is wrong?

- Playground for new techniques/methods in a simpler setting (Toy Model)
- Structures here may have analogues in other theories
- Possibly Solvable

Why study a theory which is wrong?

- Playground for new techniques/methods in a simpler setting (Toy Model)
- Structures here may have analogues in other theories
- Possibly Solvable
- "Can either study the wrong calculations in the right theory or the right calculations in the wrong theory."

Feynman Diagrams: Naive

- Too many diagrams - Individual diagrams not gauge invariant
- Too many terms in each diagram - Non-Abelian gauge boson self-interactions complex
- Too many kinematic variables - Allowing construction of arbitrarily complex expressions
\Rightarrow Intermediate results vastly more complex than final results!

Example: 5-gluon Tree-Level

Figure: Tree-Level Feynman Rules

5-Point Tree-Level Expression

Result of a brute force calculation (actually only a small part of it):

Figure: 5-Point Tree-Level Expression taken from "Quantum Field Theory in a Nutshell" A.Zee $2^{\text {nd }}$ Edition

So What Instead?

- Separate Colour and Kinematics:

Colour stripped gluon amplitudes

So What Instead?

- Separate Colour and Kinematics:

Colour stripped gluon amplitudes

- Use variables which enforce stronger symmetries:

Spinor Helicity \rightsquigarrow Twistors

So What Instead?

- Separate Colour and Kinematics:

Colour stripped gluon amplitudes

- Use variables which enforce stronger symmetries:

Spinor Helicity \rightsquigarrow Twistors

- Supersymmetric Ward identities:

All amplitudes with less than two of each helicity gluons go
to zero

MHV case study

$$
A_{\mathrm{n}}^{\text {tree }}(i, j)=\frac{\langle i, j\rangle}{\langle 1,2\rangle \cdots\langle n, 1\rangle}
$$

\rightsquigarrow n-point Tree-level
\leadsto Planar
\rightsquigarrow Colour Stripped
\rightsquigarrow MHV = Maximally Helicity Violating (only two $-{ }^{\text {ve }}$ helicity gluons)
(Parke Taylor 1986)

Tree-Level:

- BCFW recursion (any gauge theory) [Britto Cachazo Feng Witten]

Tree-Level:

- BCFW recursion (any gauge theory) [Britto Cachazo Feng Witten]
- Dual Superconformal Symmetry
[Drummond Henn Korchemsky Sokatchev, Brandhuber Travaglini Heslop]
\rightsquigarrow Unrelated to standard conformal invariance: Whole new structure lurking in theory - became evident from ...

Integrand

- Wilson loop / Amplitude duality (Super)
[Alday Maldecena 2007, Drummond Henn Korchemsky Sokatchev, Brandhuber Travaglini Heslop]
\rightsquigarrow weak-strong

Integrand

- Wilson loop / Amplitude duality (Super) [Alday Maldecena 2007, Drummond Henn Korchemsky Sokatchev, Brandhuber Travaglini Heslop]
\rightsquigarrow weak-strong
- Amplitude / Correlator duality (Super)
[Alday Eden Korchemsky Maldacena Sokatchev, Eden Korchemsky Sokatchev, Eden Korchemsky Sokatchev Heslop]
\rightsquigarrow weak-weak

Amplitude

- Dual Conformal Invariance
[Drummond Henn Korchemsky Sokatchev, Brandhuber Travaglini Heslop]

Amplitude

- Dual Conformal Invariance
[Drummond Henn Korchemsky Sokatchev, Brandhuber Travaglini Heslop]
- Momentum Twistors

Amplitude

- Dual Conformal Invariance
[Drummond Henn Korchemsky Sokatchev, Brandhuber Travaglini Heslop]
- Momentum Twistors
- Symbol
[E.Goncharov Spradlin Vergu Volovich]

Momentum Twistors

- $P^{2}=0$
- $\sum_{i} P_{i}=0$

Momentum Twistors

- $P^{2}=0$
- $P_{i}^{\mu}=x_{i+1}^{\mu}-x_{i}^{\mu}$ dual-space variables

$$
\sum_{i} P_{i}=0 \text { manifest }
$$

Momentum Twistors

- $P^{2}=0$
- $P_{i}^{\mu}=x_{i+1}^{\mu}-x_{i}^{\mu}$ dual-space variables
- $\sum_{i} P_{i}=0$

$$
\sum_{i} P_{i}=0 \text { manifest }
$$

- Momentum Twistor: $Z=(\lambda, \mu) \in \mathbb{C P}^{3} \quad \mu_{\dot{\alpha}}=x_{\alpha \dot{\alpha}} \lambda_{\alpha}$

Figure: Momentum Twistors mapping to and from dual-space

Momentum Twistors

- $P^{2}=0$
- $P_{i}^{\mu}=x_{i+1}^{\mu}-x_{i}^{\mu}$ dual-space variables
- $\sum_{i} P_{i}=0$

$$
\sum_{i} P_{i}=0 \text { manifest }
$$

- Momentum Twistor: $Z=(\lambda, \mu) \in \mathbb{C P}^{3} \quad \mu_{\dot{\alpha}}=x_{\alpha \dot{\alpha}} \lambda_{\alpha}$

Figure: Momentum Twistors mapping to and from dual-space

- Powerful new variables, symmetries constraints built-in!

Restriction

- Two choices for null vector and need to distinguish particle i from particle $i+1 \Rightarrow$ if particle i has 4 -momentum $(1,0,0,-1)$ particle $i+1$ needs to have 4-momentum $(1,0,0,1)$.

Restriction

- Two choices for null vector and need to distinguish particle i from particle $i+1 \Rightarrow$ if particle i has 4 -momentum $(1,0,0,-1)$ particle $i+1$ needs to have 4-momentum $(1,0,0,1)$.
- Need even number of particles to allow distinguishing of ' n ' and '1'
(we will often label particles by their cyclic position)

Useful choice for restriction namely (t, z)-plane, allows us to split the theory as: even particles + odd particles

$$
\lambda_{\text {even }}=\left(\begin{array}{c}
* \tag{1}\\
* \\
0 \\
0
\end{array}\right)
$$

$$
\lambda_{\mathrm{odd}}=\left(\begin{array}{c}
0 \\
0 \\
* \\
*
\end{array}\right)
$$

$\rightarrow \epsilon_{a b c d} \lambda_{i}^{a} \lambda_{j}^{b} \lambda_{k}^{c} \lambda_{l}^{d}=0$ unless $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}$ involve two odd and two even indices.

(1+1)-dimensions (MHV)

- Simplification in number of variables answer is expressed in, only $u_{i j} \rightsquigarrow$ conformal cross-ratios
- number of u 's $=(n-6)$ rather than $(3 n-15)$

(1+1)-dimensions (MHV)

- Simplification in number of variables answer is expressed in, only $u_{i j} \rightsquigarrow$ conformal cross-ratios
- number of u 's $=(n-6)$ rather than $(3 n-15)$
- First results: 8-point Strong Coupling [Alday and Maldacena]
- Corresponding weak coupling result [Del Duca Duhr Smirnov]

(1+1)-dimensions (MHV)

- Simplification in number of variables answer is expressed in, only $u_{i j} \rightsquigarrow$ conformal cross-ratios
- number of u 's $=(n-6)$ rather than $(3 n-15)$
- First results: 8-point Strong Coupling [Alday and Maldacena]
- Corresponding weak coupling result [Del Duca Duhr Smirnov]
- 2 loop, n-point [Khoze Heslop]
- 3-loop, 8-point [Khoze Heslop]

n-point 2-loop example

$$
\mathcal{R}_{n}^{(2)}=-\frac{1}{2} \sum_{\mathcal{S}} \log \left(u_{i_{1} i_{5}}\right) \log \left(u_{i_{2} i_{6}}\right) \log \left(u_{u_{3} i_{7}}\right) \log \left(u_{i 4 i_{8}}\right)-\frac{\pi^{4}}{72}(n-4)
$$

The Symbol

- Iterative definition of polylogarithms:

$$
\operatorname{Li}_{2}(z)=-\int_{0}^{z} \frac{d t}{t} \log (1-t)
$$

The Symbol

- Iterative definition of polylogarithms:
$L_{2}(z)=-\int_{0}^{z} \frac{d t}{t} \log (1-t)$
- $\mathcal{S}\left(\operatorname{Li}_{k}(z)\right)=-(1-z) \otimes z \otimes \ldots \otimes z$ with k-terms
- $\mathcal{S}(\log (z))=z$

The Symbol

- Iterative definition of polylogarithms:
$\operatorname{Li}_{2}(z)=-\int_{0}^{z} \frac{d t}{t} \log (1-t)$
- $\mathcal{S}\left(\operatorname{Li}_{k}(z)\right)=-(1-z) \otimes z \otimes \ldots \otimes z$ with k-terms
- $\mathcal{S}(\log (z))=z$
- Shuffle Algebra
$\mathcal{S}(\log (a) \log (b))=a \otimes b+b \otimes a$
- $\mathcal{S}(\log (a) \log (b) \log (c))=$ $a \otimes b \otimes c+a \otimes c \otimes b+c \otimes a \otimes b+b \otimes a \otimes c+b \otimes c \otimes a+c \otimes b \otimes a$

Using the Symbol

How would we use this to write down the solution seen above?
Answer use symmetries

- Length given by loop-level e.g. 2-loop \Rightarrow transcendentality 4 etc.
\rightarrow Fixes answer upto a comparatively small number of constants at highest transcendental weight.

Using the Symbol

How would we use this to write down the solution seen above?
Answer use symmetries

- Length given by loop-level e.g. 2-loop \Rightarrow transcendentality 4 etc.
- Cyclicity and Parity
\rightarrow Fixes answer upto a comparatively small number of constants at highest transcendental weight.

Using the Symbol

How would we use this to write down the solution seen above?
Answer use symmetries

- Length given by loop-level e.g. 2-loop \Rightarrow transcendentality 4 etc.
- Cyclicity and Parity
- Integrability constraint - Ensures symbol represents a real function.
\rightarrow Fixes answer upto a comparatively small number of constants at highest transcendental weight.

Using the Symbol

How would we use this to write down the solution seen above?
Answer use symmetries

- Length given by loop-level e.g. 2-loop \Rightarrow transcendentality 4 etc.
- Cyclicity and Parity
- Integrability constraint - Ensures symbol represents a real function.
- Collinear Limits (triple)
\rightarrow Fixes answer upto a comparatively small number of constants at highest transcendental weight.

Local Planar Integrals

1.pdf
2.pdf

(1+1)-dimensions NMHV

- Use new local planar integrals [Arkani-Hamed et al.] to evaluate functions, impose restrictions on u 's and see whether L_{2} 's \rightarrow log's.

($1+1$)-dimensions NMHV

- Use new local planar integrals [Arkani-Hamed et al.] to evaluate functions, impose restrictions on u 's and see whether L_{i} 's \rightarrow log's.
- Problem: Coefficients (R-invariants) blow-up term-by-term.

R-Invariants

$$
[i, j, j+1, k, k+1]=\frac{\delta^{0 \mid 4}(i\langle j, j+1, k, k+1\rangle+\operatorname{cyclic})}{\langle i, j, j+1, k\rangle\langle j, j+1, k, k+1\rangle\langle j+1, k, k+1, i\rangle\langle k, k+1, i, j\rangle\langle k+1, i, j, j+1\rangle}
$$

- Real poles $\langle j, j+1, k, k+1\rangle$ collinear pairs
- $\operatorname{SU}(4) \rightarrow \mathrm{SU}(2) \times \mathrm{SU}(2):$ term-by-term
- Spurious poles cancel in sum!

Tree Level

- R's group in such a way that spurious poles to disappear. Result of this is all pure gluon amplitudes disappear!

Tree Level

- R's group in such a way that spurious poles to disappear. Result of this is all pure gluon amplitudes disappear!
- i,j,k all even: $[i, j, j+\underset{\sim}{1}, k, k+1]+[j, k, k+1, i, i+1]+$ $[k, i, i+1, j, j+1]=\tilde{R}(i, i+1, j, j+1, k, k+1)$ see on board!

Tree Level

- R's group in such a way that spurious poles to disappear. Result of this is all pure gluon amplitudes disappear!
- i,j,k all even: $[i, j, j+1, k, k+1]+[j, k, k+1, i, i+1]+$ $[k, i, i+1, j, j+1]=\tilde{R}(i, i+1, j, j+1, k, k+1)$ see on board!
- \Rightarrow two 'even' χ 's and two 'odd' χ 's

Results

Left with a result like the MHV case:
For component of superamplitude to be non-zero need helicity to be split equally between even indexed and odd indexed external particles

Have n-point equation at tree-level:

$$
\Gamma_{n, \text { tree }}^{\mathrm{NMHV}}=\sum_{j, k \in A} \tilde{R}(1, j, k)(-1)^{j+k+1}
$$

$A=\{j, k$ such that $|1-j|>1,|1-k|>1,|j-k|>1, j<k, \bmod (\mathrm{n})\}$

Loop Level

- Should continue to loops but only after integral, not at level of integrand. This is what I'm now working on to show and results seem to be slowly falling into place.

Loop Level

- Should continue to loops but only after integral, not at level of integrand. This is what I'm now working on to show and results seem to be slowly falling into place.
- 2-loop?
- $\mathrm{N}^{2} \mathrm{MHV} \rightsquigarrow$ Grasmannian
- Symbol \rightarrow result purely from symmetry if we input some constraints (cyclic, collinear limits)
- Symmetries we're not yet using to mould equation

