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Introduction

ΛQCD ∼ 250 MeV,
A quark Q is heavy ⇔ mQ � ΛQCD .

mu ,md ,ms � ΛQCD ⇒ light quarks

mc > ΛQCD but not by much!

b quark only quark such that

ΛQCD � m� M(mW ,mZ ,mH ,mt)

b phenomenology crucially important at the LCH, from flavour physics, to Higgs
characterisation and measurements and as window to New Physics.

From a theoretical viewpoint we need better control on this kind of processes
which appear as both BSM signals and SM irreducible backgrounds.

Important examples: H and Z associated production.



Introduction

ΛQCD ∼ 250 MeV,
A quark Q is heavy ⇔ mQ � ΛQCD .

mu ,md ,ms � ΛQCD ⇒ light quarks

mc > ΛQCD but not by much!

b quark only quark such that

ΛQCD � m� M(mW ,mZ ,mH ,mt)

b phenomenology crucially important at the LCH, from flavour physics, to Higgs
characterisation and measurements and as window to New Physics.

From a theoretical viewpoint we need better control on this kind of processes
which appear as both BSM signals and SM irreducible backgrounds.

Important examples: H and Z associated production.



Introduction

ΛQCD ∼ 250 MeV,
A quark Q is heavy ⇔ mQ � ΛQCD .

mu ,md ,ms � ΛQCD ⇒ light quarks

mc > ΛQCD but not by much!

b quark only quark such that

ΛQCD � m� M(mW ,mZ ,mH ,mt)

b phenomenology crucially important at the LCH, from flavour physics, to Higgs
characterisation and measurements and as window to New Physics.

From a theoretical viewpoint we need better control on this kind of processes
which appear as both BSM signals and SM irreducible backgrounds.

Important examples: H and Z associated production.



g

b

b̄

The gluon splitting
is the dominant
mode of production
of b quarks at the
LHC

Contribution to σ:

σ ∝ αS

η2∫
0

dµ2

µ2 + m2
b

∼ αS log
η2

m2
b

Can take place either in the initial state or in the final state:

g

g

b

b̄

b

b̄

H

σ ∝ α2
S log2 ŝ

m2
b

q

q̄ H

g

b

b̄

σ ∝ α2
S log

ŝ
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m2
b

b

b̄
H

σ ∝ ︸ ︷︷ ︸
Absorbed into a b-PDF!

∑
n

(
αS log

ŝ
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ŝ

m2
b

∼ O(1)

Solution

5 flavour scheme, re-sum such
logs via DGLAP eqs in b-PDF.

mb = 0

g

g

b

b̄

b

b̄

H

σ ∝ α2
S log2 ŝ
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What happened?

When logs are dominant over mass effects we have that:
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DGLAP equations:{
db(x,µ2)

d log µ2 = αS ·(Pqg ⊗ fg ) (x , µ2)

b(x ,m2
b)= 0

=⇒ b(x , µ2)=αS log
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(Pqg ⊗ fg ) (x , µ2)+O(α2
S )
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What does that mean?

4F QCD series

Then a generic observable in the 4F scheme

σ(4) =

∫∫
dx1dx2f

(4)
i (x1, µ

2
F )f

(4)
j (x2, µ

2
F )σ̂

(4)
ij (x1, x2, µ

2
F )

where

σ̂
(4)
ij (x1, x2, µ

2
F ) =

∞∑
n=0

(αS )nσ̂
(4),(n)
ij (x1, x2, µ

2
F )

5F QCD series

σ(5) =

∫∫
dx1dx2f

(5)
i (x1, µ

2
F )f

(5)
j (x2, µ

2
F )σ̂

(5)
ij (x1, x2, µ

2
F )

where

σ̂
(5)
ij (x1, x2, µ

2
F ) =

∞∑
n=0

(αS )nσ̂
(5),(n)
ij (x1, x2, µ

2
F )



What does that mean?

4F QCD series

Then a generic observable in the 4F scheme

σ(4) =

∫∫
dx1dx2f

(4)
i (x1, µ

2
F )f

(4)
j (x2, µ

2
F )σ̂

(4)
ij (x1, x2, µ

2
F )

where

σ̂
(4)
ij (x1, x2, µ

2
F ) =

∞∑
n=0

(αS )nσ̂
(4),(n)
ij (x1, x2, µ

2
F )

5F QCD series

σ(5) =

∫∫
dx1dx2f

(5)
i (x1, µ

2
F )f

(5)
j (x2, µ

2
F )σ̂

(5)
ij (x1, x2, µ

2
F )

where

σ̂
(5)
ij (x1, x2, µ

2
F ) =

∞∑
n=0

(αS )nσ̂
(5),(n)
ij (x1, x2, µ

2
F )



αS is not a constant!

RG equations

dαS (µ2)

d log(µ2)
= β(αS ) = −b0α

2
S +O(α3

S )

b0 actually depends on the number of light that can flow through the gluon loop, nf !

Flavour dep. RG equations

dα
(nf )
S (µ2)

d log(µ2)
= β(nf )(α

(nf )
S ) = −b(nf )

0

(
α

(nf )
S

)2
+O(α3

S )

where

b0 =
33 − 2 nf

12π
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The two different runnings
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Data are more in agreement with the 5F running!



Real QCD series!

4F QCD series

Then a generic observable in the 4F scheme

σ(4) =

∫∫
dx1dx2

∑
ij=g,q

f
(4)
i (x1, µ

2
F )f

(4)
j (x2, µ

2
F )σ̂

(4)
ij

(
x1, x2,

µ2

m2
b

, α
(4)
S (µ2)

)

where

σ̂
(4)
ij (x1, x2, µ

2
F ) =

∞∑
n=0

(α
(4)
S (µ2))nσ̂

(4),(n)
ij (x1, x2, µ

2
F )

5F QCD series

σ(5) =

∫∫
dx1dx2

∑
ij=g,q,b

f
(5)
i (x1, µ

2
F )f

(5)
j (x2, µ

2
F )σ̂

(5)
ij

(
x1, x2, α

(5)
S (µ2)

)
where

σ̂
(5)
ij (x1, x2, µ

2
F ) =

∞∑
n=0

(α
(5)
S (µ2))nσ̂

(5),(n)
ij (x1, x2, µ

2
F )



Real QCD series!

4F QCD series

Then a generic observable in the 4F scheme

σ(4) =

∫∫
dx1dx2

∑
ij=g,q

f
(4)
i (x1, µ

2
F )f

(4)
j (x2, µ

2
F )σ̂

(4)
ij

(
x1, x2,

µ2

m2
b

, α
(4)
S (µ2)

)

where

σ̂
(4)
ij (x1, x2, µ

2
F ) =

∞∑
n=0

(α
(4)
S (µ2))nσ̂

(4),(n)
ij (x1, x2, µ

2
F )

5F QCD series

σ(5) =

∫∫
dx1dx2

∑
ij=g,q,b

f
(5)
i (x1, µ

2
F )f

(5)
j (x2, µ

2
F )σ̂

(5)
ij

(
x1, x2, α

(5)
S (µ2)

)
where

σ̂
(5)
ij (x1, x2, µ

2
F ) =

∞∑
n=0

(α
(5)
S (µ2))nσ̂

(5),(n)
ij (x1, x2, µ

2
F )



4F versus 5F scheme

4F scheme
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They should agree..

Scale independence requires:
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(5)
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... at each order the difference between the two should be of higher order in αS ...
but...
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bb̄ → h @ LO, total XS

Yep! They should agree...

4F Scheme

5F Scheme

4F µR = µF = mH/4

5F µR = µF = mH/4
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State of the art

The Santander matching

Weighted average between the 4 and the 5F scheme

σ(Tot) =
σ(4) + w σ(5)

1 + w

w = log
mH

mb
− 2 .
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FO-NLL

”Fixed-Order-Next-to-Leading-Log”

Originally invented for b-quark hadro-production

Used to match a fixed-order (FO) with a next-to-leading-log (NLL) calculation.

Extended to DIS and matching extended

Match any FO with any NmLL calculation, as long as you have them!

Based on standard QCD factorization!

How does it work?

Very simple basic idea

4F and 5F have many things different but also something in common ⇒ full
prediction:

σ(FONLL) = σ(4) + σ(5) − double counting
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A little more details

The 5F QCD series

σ(5) =

∫∫
dx1dx2

∑
ij=g,q,b

f
(5)
i (x1, µ

2
F )f

(5)
j (x2, µ

2
F )σ̂

(5)
ij

(
x1, x2, α

(5)
S (µ2)

)

Use DGLAP eqs to express fb in terms of fq,g

At the scale µ2 with L = log µ2/m2
b

f
(5)
b (x , µ2) =

∑
i=q,g

∫ 1

x

dy

y
f

(5)
i (y , µ2)Cbi

(
x

y
, α5

S (µ2), L

)

σ(5) =

∫∫
dx1dx2

∑
ij=g,q

f
(5)
i (x1, µ

2
F )f

(5)
j (x2, µ

2
F )A(5)
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x1, x2, α

(5)
S (µ2), L

)
A are convolution of σ̂ and C!
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A deeper look into the resummation!

A αS expansion

At any fixed-order N we have:

A(5)
ij

(
x1, x2, α

(5)
S (µ2), L

)
=

N∑
p

(
α

(5)
S (µ2)

)p
︸ ︷︷ ︸

b-pdf un-resummation

∞∑
k=0

A(p),(k)
ij (x1, x2)

(
α

(5)
S (µ2)L

)k

While
A(p),(k)

ij (x1, x2) =
∑

l=q,g,b

Cli ⊗ σ̂lj

Need to adjust the 4F scheme as well!



A deeper look into the resummation!

A αS expansion

At any fixed-order N we have:
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The 4F scheme

The αS Running
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Even more!

B expansion!

To any fixed order N:
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Now both 4F and 5F are expressed as a power series in the same exp parameter
with the same PDFs!

let me call fi (x1, µ
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2) = Lij (x1, x2, µ
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The FONLL XS

σ(FONLL)

σ(FONLL) = σ(4) + σ(5) − double counting

= Lij (x1, x2, µ
2)⊗

N∑
p

(
α

(5)
S (µ2)

)p
×
{
B(p)
ij
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m2
b

)
+
∞∑
k=0

A(p),(k)
ij (x1, x2)

(
α

(5)
S (µ2)L

)k}
− double counting



Working out the double counting piece!

The massless-limit of the massive scheme

Terms who don’t vanish for mb → 0 in the B must also be present in the 5F
scheme

We define the massless-limit of the massive scheme to be those scheme in which
only logarithmic terms are retained in the massive scheme

It then follows that:

B(0),(p)
ij (x1, x2, L) =

p∑
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ij (x1, x2)Lk
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2)⊗

N∑
p

(
α

(5)
S (µ2)

)p p∑
k=0

A(p−k),(k)
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The FONLL master formula

Putting everything together

σ(FONLL) = σ(4) + σ(5) − double counting

= Lij (x1, x2, µ
2)⊗

N∑
p

(
α

(5)
S (µ2)

)p
×
{
B(p)
ij

(
x1, x2,

µ2

m2
b

)
+
∞∑
k=0

A(p),(k)
ij (x1, x2)

(
α

(5)
S (µ2)L

)k
−

p∑
k=0

A(p−k),(k)
ij (x1, x2)Lk

}

In othe words we have replaced the first N orders of the massless scheme with their
known massive scheme counterparts while preserving the resummation of higher order
logs!
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4F vs 5F scheme

4F scheme

O(α2
S ) is the LO
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4F vs 5F scheme

5F scheme

5F needs to be at least at NNLO!

O(α0
S ):

b

b̄
H

O(αS ): (1-loop)+

g

b

b

b

H

b̄

b
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g

H

O(αS ) (2-loop)+ (1-loop)+ . . . +

g

g

b

b̄
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H
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FONLL to bb̄ → h

Without going into much details ...

Take the 5F scheme - the leading log part of:

g

g

b

b̄

b

b̄

H
q

q̄

g

b

b̄

H

+ all the b initiated up to O(α2
S )

Add them back in the 4F scheme!

g

g

b

b̄

b

b̄

H
q

q̄

g

b

b̄

H

With correct mass dependence!



Good bye plot

Now they seem to agree better!

4F Scheme

5F Scheme @ NNLO

FONLL
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