
Adiabatic Hydrodynamics
and the Eightfold Way to Dissipation

Felix Haehl (Durham University)

9 February 2015

FH, R. Loganayagam, M. Rangamani [1502.00636], [1412.1090]



The hydrodynamic gradient expansion

Hydrodynamics: low-energy, near-equilibrium eff. field theory for generic
Gibbsian density matrix

microscopic theory

↓ L� `mfp

macroscopic fluid variables: uµ(x), T (x), µ(x) (u2=−1)

background sources: gµν(x), Aµ(x)

↓

Constitutive relations: Dynamics:

Tµν = Tµν(0) + Tµν(1) + . . .

Jα = Jα(0) + Jα(1) + . . .

∇νTµν ' FµνJν + T⊥νH

∇αJα ' 0J⊥H

E.g. (charged) ideal fluid: Tµν(0) = ε uµuν + pPµν , Jα(0) = q uα

T⊥νH

J⊥H (cov. anomalies)
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The hydrodynamic gradient expansion

”Current Algebra“ approach:

I Provide most general symmetry-allowed constitutive relations
order by order in ∇µ

I Transport coefficients of any particular fluid are determined by
microscopics

On top of all this: Second Law constraint

∃ JαS = s uα + JαS,(1) + . . . with DαJ
α
S & 0 (on-shell)

I Gives quite non-trivial constraints on physically allowed
constitutive relations, e.g.:

F Neutral 1st order: viscosities η, ζ ≥ 0
F Neutral 2nd order: 5 relations among 15

a-priori independent transport coefficients
F Anomaly induced transport completely fixed

Bhattacharyya ’12

Son-Surowka ’09

Jensen-Loganayagam-Yarom ’13
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Outline

X Review of hydrodynamics

→ So what’s the problem?

◦ Adiabaticity and dissipation

◦ Classification of adiabatic transport

◦ An example: neutral fluid

◦ The adiabatic master Lagrangian

◦ Conclusion
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So what’s the problem?

This phenomenological framework doesn’t make very much sense from point
of view of Wilsonian field theory

I Instead of just currents: would like effective action
I Would like to associate conservation laws with equations of motion

of the effective action
I JµS is particularly strange from microscopic perspective: is not

associated to any underlying symmetry principle
I In Wilsonian picture, how does the constraint DµJ

µ
S & 0 arise from

microscopic theory?
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So what’s the problem?

Some progress: Non-dissipative effective actions (DµJ
µ
S = 0)

I Goldstone modes of spntaneously broken
symmetries as fluid degrees of freedom

This approach can’t be the whole story:

I Empirically only gives a subset of non-dissipative hydro
I Dynamics in general involves dissipation
I Hydro states are mixed. Wilsonian picture for mixed states should

involve something like Schwinger-Keldysh doubling
F A lot about Schwinger-Keldysh is not well understood (arbitrariness of

influence functionals, violation of microscopic KMS condition, ...)

Dubovsky-Hui-Nicolis-Son ’11

Bhattacharya-Bhattacharyya

-Rangamani ’12

FH-Rangamani ’13
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Goals and phantasies

Understand most general constitutive relations allowed by second law:

. Classify hydrodynamic transport in a physically useful way

Suggest a unifying framework for adiabatic transport:

. Hydrodynamics as proper effective field theory

. New symmetry principle that explains the 2nd law constraint

Use hydrodynamics as a tractable starting point to learn basic lessons
about some important problems across physics:

. Wilsonian picture for systems out of equilibrium

. Wilsonian picture for noisy/dissipative systems

. Via AdS/CFT: gravity with horizons
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Off-shell entropy production and adiabaticity

Inequality constraint DµJ
µ
S & 0 is much more conveniently incorporated if

we don’t have to simplify it using equations of motion.

Use Lagrange multipliers {βµ,Λβ} and consider off-shell statement:

∆ ≡ ∇µJµS + βµ

{
∇νTµν − Jν · Fµν − Tµ⊥H

}
+(Λβ + βλAλ) ·

{
DνJ

ν − J⊥H
}
≥ 0

Natural Lagrange multipliers:

I βµ = 1
T u

µ (thermal vector along ’local thermal circle’)
I (Λβ + βλAλ) = µ

T (chemical potential in thermal units)

Task: solve for {JµS , Tµν , Jν} as functionals of {βµ,Λβ, gµν , Aµ}

Marginal case ∆ = 0: ’adiabaticity equation’

I Particularly rich structure! ⇒ study separately
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Off-shell entropy production and adiabaticity

∆ ≡ ∇µJµS + βµ

{
∇νTµν − Jν · Fµν − Tµ⊥H

}
+(Λβ + βλAλ) ·

{
DνJ

ν − J⊥H
}
≥ 0

Can switch from microcanonical to grand-canonical ensemble and talk about
free energy current Gσ instead of JσS :

−
Gσ

T
≡ JσS − (JσS )canonical = JσS +

[
βνT

νσ + (Λβ + βνAν) · Jσ
]

Grand-canonical version:

−
[
∇σ

(
Gσ

T

)
−
G⊥
H

T

]
=

1

2
Tµν δ

B
gµν + Jµ · δ

B
Aµ + ∆

I δ
B
gµν ≡ £βgµν = ∇µβν +∇νβµ

I δ
B
Aµ ≡ £βAµ + ∂µΛβ + [Aµ, Λβ]
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Classification of hydrodynamic transport
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Classification of hydrodynamic transport
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Anomaly induced transport (Class A)

−
[
∇σ

(
Gσ

T

)
−
G⊥
H

T

]
=

1

2
Tµν δ

B
gµν + Jµ · δ

B
Aµ + ∆

Will now discuss various classes of solutions

First of all: let’s get rid of anomalies G⊥
H

= −
[
uνTν⊥H + µ · J⊥H

]
I Can always split off from a solution {Gσ, Tµν , Jν} a particular

solution {(Gσ)A, (T
µν)A, (J

ν)A} that takes care of anomalies
with (∆)A = 0:

−
[
∇σ
(

(Gσ)A
T

)
− G

⊥
H

T

]
= 1

2 (Tµν)A δBgµν + (Jν)A · δBAµ

I Anomalous transport coefficients fixed in terms of anomaly polynomial
⇒ finite class

Loganayagam ’11

Jensen-Loganayagam-Yarom ’13
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Dissipative transport (Class D)

∆ ≡ −∇σ
(Gσ
T

)
− 1

2T
µν δ

B
gµν − Jµ · δBAµ ≥ 0

Now consider transport which does generically produce entropy (∆ > 0)

Such terms appear in three varieties:

1 Sign-definite terms (inequalities from 2nd law)
→ These only show up at leading order!

2 Sign-indefinite terms which are dominated by sign-definite terms
(no constraints from 2nd law)

3 Sign-indefinite terms which are dominant in derivative expansion
(forbidden by 2nd law)

Example: Tµν(1) = −ζ ΘPµν (Θ ≡ ∇µuµ)

gives ∆ = ζ 1
T Θ2 ⇒ ζ ≥ 0 (type 1 )

⇒ At O(∂k≥2):
any Tµν(k) = γ [O(∂k)]µν s.t. ∆ = γΘ2 [O(∂k−1)]

will be subdominant, hence unconstrained (type 2 )

Bhattacharyya ’11 ’13 ’14
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Hydrostatically forbidden terms (Class HF )

∆ ≡ −∇σ
(Gσ
T

)
− 1

2T
µν δ

B
gµν − Jµ · δBAµ ≥ 0

Type 3 : sign-indefinite terms at dominant order in ∂

I Need to be zero for consistency with 2nd law!
I Example: Ideal fluid

Tµν(0) = ε uµuν + pPµν , JµS,(0) = s uµ

⇒ ∆ ' (Ts− ε− p)︸ ︷︷ ︸
=0 (!)

Θ

T
+

(
T
ds

dT
− dε

dT

)
︸ ︷︷ ︸

=0 (!)

(u∇)T

T

I A-priori: 3 parameters
I But second law enforces: 2 relations

This is Class HF : combinations forbidden by 2nd law (or equivalently by
existence of equilibrium)
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Hydrostatics (Class H)

ΣM

ΣM

Kµ

Hydrostatic transport: time-independent equilibrium configurations

I ∃ timelike Killing vector and gauge
transformation K = {Kµ,ΛK}:

δ
K
gµν = δ

K
Aµ = 0

I Spacetime manifold M: Euclidean
fibre bundle ΣM × S1

Transport captured by Euclidean path integral/partition function:

WHydrostatic = −[total free energy] = −
[ˆ

ΣM

(
Gσ

T

)
dd−1Sσ

]
Hydrostatic

I Decompose: Gσ = S βσ + Vσ
I This splits Class H into two subclasses: H = HS ∪HV

I Variation w.r.t. {gµν , Aµ} gives all hydrostatic {Tµν , Jµ}

Felix Haehl (Durham University), 15/33



Lagrangian solutions (Class L)

Consider effective actions with obvious symmetries:

S =

ˆ √
−g L[βµ,Λβ, gµν , Aµ]

Basic variation defines hydrodynamic currents:

δS =
´ √
−g

[
1
2 T

µν δgµν + Jµ · δAµ + T hσ δβ
σ + T n · (δΛβ + Aσ δβ

σ) +∇µ(/δΘ
PS

)µ
]

Demand invariance under diffeos & flavour X = {ξµ,Λ}: δ
X
S = 0 (!)

I This gives Bianchi identities:

∇νTµν = Jν · Fµν+
gµν
√
−g

δ
B

(√
−g T hν

)
+ gµν T n · δ

B
Aν

DσJ
σ =

1
√
−g

δ
B

(√
−g T n

)
I Together with Gσ ≡ −Luσ + T (/δBΘPS

)σ one can show that these
imply adiabaticity equation!
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Lagrangian solutions (Class L)

So far: have effectively treated {βµ,Λβ} as non-dynamical

To get hydrodynamic equations, consider constrained
variational principle ”�”:

I Vary {βµ,Λβ} along Lie orbits while holding {gµν , Aµ} fixed:

� : �βµ = δ
X
βµ , �Λβ = δ

X
Λβ , �gµν = �Aµ = 0 .

I These variations give equations of motion:

gµν
√
−g

δ
B

(√
−g T hν

)
+ gµν T n · δ

B
Aν ' 0

1
√
−g

δ
B

(√
−g T n

)
' 0

I Together with Bianchi identities, get hydro equations:

∇νTµν ' Jν · Fµν

DσJ
σ ' 0
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Lagrangian solutions (Class L)

M

M

{ϕa, c}

Alternative picture for constrained variational principle:

I Physical fields are pullbacks of a reference
configuration:

gµν = ∂ϕa

∂xµ
∂ϕb

∂xν
gab[ϕ(x)] , βµ = ∂xµ

∂ϕa
�a[ϕ(x)]

(and similarly {Aµ,Λβ}
{ϕa,c}
−−−−−→ {Aa,Λ�})

I Dynamics now encoded in {ϕa, c}
I Can get hydrodynamic conservation equations

by varying pullback fields {ϕa, c}, while holding
the reference configuration fixed

• Aside: non-dissipative effective actions are a special case of this

. Pullback fields {ϕa, c} correspond to Goldstones {φa, c} of broken
symmetries (after Legendre transform and gauge fixing)
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What do we have so far?

Class A: anomalies can be dealt with once and forever

Class D: can genuinely produce entropy (∆ ≥ 0)

Class HF : Constitutive relations inconsistent with existence of equilibrium

Gσ = Sβσ + Vσ

Class H = HS ∪HV : Hydrostatic response to free energy density and flux

Class L: Wilsonian action giving currents consistent with second law

I But Lagrangians being scalars, we only get: Class L = HS ∪HS

Some more situations that we’re missing so far:

I Free energy current Gσ could be zero or topological
I Non-hydrostatic free energy flux vectors
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Berry-curvature type solutions (Class B)

∆ ≡ −∇σ
(Gσ
T

)
− 1

2T
µν δ

B
gµν − Jµ · δBAµ = 0

Consider the following currents:

(Tµν)B ∼
(
N (µν)(αβ) −N (αβ)(µν)

)
δ
B
gαβ

(Jα)B ∼ S[αβ] · δ
B
Aβ

(Gσ)B = 0 (and cross terms X )

I Trivially solve adiabaticity equation
I Manifestly non-hydrostatic (δ

B
= 0 in hydrostatics)

I Seemingly not captured by Lagrangians (Class L)

Easy task at any order in ∇:
find all tensor structures {N ,X ,S} built out of {βµ,Λβ, gµν , Aµ}

Examples in d = 2 + 1: Hall conductivity, Hall viscosity
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Transverse non-hydrostatic free energy (Class HV )

Remember splitting: Gσ = S βσ + Vσ with βσVσ = 0

Consider solutions to adiabaticity equation with non-trivial and
non-hydrostatic Vσ

I Transport genuinely due to free energy flux

These are in general parameterized as

(Tµν)HV
∼ DρCρ(µν)(αβ)

N δ
B
gαβ + 2 C

ρ(µν)(αβ)
N DρδBgαβ

(Jα)HV
∼ DρCρ(αβ)

S · δ
B
Aβ + 2 C

ρ(αβ)
S · DρδBAβ

(and cross terms CX )

I Easy task at any order in ∇:
find all tensor structures {CN ,CX ,CS} built out of {βµ,Λβ, gµν , Aµ}

Felix Haehl (Durham University), 21/33



Conserved entropy current (Class C)

Another trivial solution to adiabaticity equation:
exactly conserved entropy current

(JµS )C = Jµ with DµJµ ≡ 0 , (Tµν)C = 0 , (Jµ)C = 0

If cohomologically non-trivial: describes topological states in the fluid
(no energy/charge transport)

I Example: Euler current Jσ
Euler

in d = 2 + 1

DσJσ
Euler
≡ 0 ,

ˆ
ΣM

√
−γ (Jσ

Euler
uσ) ∝ χ(ΣM)

Golkar-Roberts-Son ’14
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Summary of eight classes of transport

Theorem: The eightfold way of hydrodynamic transport

These eight classes describe all of hydrodynamic transport
consistent with the second law: every second law-compatible
transport coefficient falls into one of these classes.
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Example: neutral Weyl-invariant fluid at O(∂2)

Most general 2nd order (neutral, Weyl-invariant) stress tensor:

Tµν
(2)

= (λ1 − κ)σ<µασα
ν>

→ Class D

+ (λ2 + 2τ − 2κ)σ<µαωα
ν>

→ Class B

+ τ
(
uαDWα σ

µν − 2σ<µαωα
ν>
)

→ Class HS

+ λ3 ω
<µαωα

ν>

→ Class HS

+ κ
(
Cµανβuαuβ + σ<µασα

ν> + 2σ<µαωα
ν>
)

→ Class HS
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Example: neutral Weyl-invariant fluid at O(∂2)

Most general 2nd order (neutral, Weyl-invariant) stress tensor:

Tµν
(2)

= (λ1 − κ)σ<µασα
ν>

→ Class D

+ (λ2 + 2τ − 2κ)σ<µαωα
ν>

→ Class B

+ τ
(
uαDWα σ

µν − 2σ<µαωα
ν>
)

→ Class HS

+ λ3 ω
<µαωα

ν> → Class HS

+ κ
(
Cµανβuαuβ + σ<µασα

ν> + 2σ<µαωα
ν>
)

→ Class HS

τ , λ3, κ

Are all derivable from a Lagrangian (Class L)

LW2 =
1

4

[
−

2κ

(d− 2)
(WR) + 2 (κ− τ)σ2 + (λ3 − κ)ω2

]
Note: λ3 and κ are hydrostatic, τ is genuinely hydrodynamic
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Example: neutral Weyl-invariant fluid at O(∂2)

Most general 2nd order (neutral, Weyl-invariant) stress tensor:

Tµν
(2)

= (λ1 − κ)σ<µασα
ν> → Class D

+ (λ2 + 2τ − 2κ)σ<µαωα
ν>

→ Class B

+ τ
(
uαDWα σ

µν − 2σ<µαωα
ν>
)

→ Class HS

+ λ3 ω
<µαωα

ν> → Class HS

+ κ
(
Cµανβuαuβ + σ<µασα

ν> + 2σ<µαωα
ν>
)

→ Class HS

(λ1 − κ)
Leads to ∆ ' −(λ1 − κ) 1

T σ
µ
νσ

ν
ρσ

ρ
µ

⇒ Class D but unconstrained (subleading compared to ∆ ∼ σ2)
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Example: neutral Weyl-invariant fluid at O(∂2)

Most general 2nd order (neutral, Weyl-invariant) stress tensor:

Tµν
(2)

= (λ1 − κ)σ<µασα
ν> → Class D

+ (λ2 + 2τ − 2κ)σ<µαωα
ν> → Class B

+ τ
(
uαDWα σ

µν − 2σ<µαωα
ν>
)

→ Class HS

+ λ3 ω
<µαωα

ν> → Class HS

+ κ
(
Cµανβuαuβ + σ<µασα

ν> + 2σ<µαωα
ν>
)

→ Class HS

(λ2 + 2τ − 2κ)

Is of the form of a Class B constitutive relation

(Tµν)B ≡ −
1

4

(
N (µν)(αβ) −N (αβ)(µν)

)
δ
B
gαβ

(Gσ)B = 0

because of orthogonality: σ<µαωα
ν> δ

B
gµν = 0
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Example: neutral Weyl-invariant fluid at O(∂2)

Out of 5 transport coefficients, 3 come from a Lagrangian: τ , λ3 and κ

Within Class L, the other 2 combinations are zero:

(λ1 − κ) = 0 and (λ2 + 2τ − 2κ) = 0

I These relations have been observed in holography

I First relation ensures no entropy production at subleading order
(this is not required by second law!)
→ ”Principle of minimum dissipation“ in holography?

Haack-Yarom ’08

FH-Loganayagam-Rangamani ’14York-Moore’09

Baier-Romatschke-Son-Starinets-Stephanov ’08
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A new symmetry for hydrodynamics

So far only a subset of our 8 classes were described by Lagrangians

This was to be expected: non-equilibrium effective field theory should
involve Schwinger-Keldysh doubling

Just doubling everything gives too much freedom (violate second
law by writing effective Lagrangians for forbidden Class HF )

I Important problem for understanding EFT for mixed states

Introduce new U(1)T gauge symmetry to keep this under control

Proposed field content:

. Hydrodynamic fields: {βµ,Λβ}

. Background sources: {gµν , Aµ}

. SK-like partner sources: {g̃µν , Ãµ}

. U(1)T photon and holonomy field: {A(T)
µ,Λ

(T)

β }

Action of U(1)T is twisted: longitudinal diffeo on all fields plus
inhomogeneous thermal ”Goldstone-like” shift on partner sources

Felix Haehl (Durham University), 28/33



The eightfold master Lagrangian (Class LT)

Any constitutive relations {Tµν , Jµ,Gσ} which satisfy adiabaticity
equation can be obtained from a diffeo/flavour/U(1)T invariant Lagrangian:

LT =
1

2
Tµν g̃µν + Jµ · Ãµ −

Gσ

T
A(T)

σ

I Bianchi identity for U(1)T invariance reduces to adiabaticity equation
I Equations of motion are:

F For diffeo invariance: DνT
µν ' Fµν · Jν

F For flavour gauge invariance: DµJ
µ ' 0

F For U(1)T invariance: DµJ
µ
S ' 0

Conversely: any diffeo/flavour/U(1)T invariant Lagrangian gives adiabatic
constitutive relations

Felix Haehl (Durham University), 29/33



Heuristic picture for U(1)T symmetry

Field content and symmetries are such that we get precisely the 7
adiabatic classes and nothing more (Class HF )

Conserved entropy current is now associated to a symmetry

General picture:

I Non-equilibrium dynamics captured by effective action after
Schwinger-Keldysh doubling

I Influence functionals are constrained by requirement of U(1)T

invariance
I U(1)T invariance is the macroscopic manifestation of KMS

condition and ensures consistency with the second law

FH-Loganayagam-Rangamani [w.i.p.]
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Summary

8 classes of constitutive relations consistent with the second law describe all
of hydrodynamic transport at all orders

The classification is not just about mathematical structure, but seems to
be cognizant of physical properties of fluids:

I Various fluid systems seem to know about this classification
I A lot about holographic fluids seems to be described in Class L
I Conjecture: long-wavelength near-horizon AdS dynamics can be

usefully characterized using the eightfold way

Computations become simpler in this framework (eightfold way often wants
to pick ”nice” basis)

We suggest a new U(1)T symmetry principle that unifies the 7 adiabatic
classes and explains the entropy current constraint
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Many questions...

Much of this story should have a counterpart in gravity

I Most obvious hints come from Class L. Can L be derived from
holography?

Investigate “Minimum dissipation conjecture“:
Holographic fluids optimize entropy production (at all orders).

Extend the formalism to write effective actions for dissipative fluids

U(1)T hints at profound consequences for the structure of non-equilibrium
QFT in general

I Understand microscopic origin (KMS) and consequences of U(1)T
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Further Details



Anomaly-induced transport (Class A)

Inflow mechanism: anomalous constitutive relations can be derived from
Class L extended to d+ 1 dimensions (∂Md+1 =M):

Sanom =

ˆ
Md+1

VP [A,Γ, Â, Γ̂] , VP ≡ ICS [A,Γ]− ICS [Â, Γ̂]− dBd[A,Γ, Â, Γ̂]

with Â = A+ µu and Γ̂mn = Γmn + Ωmnu

(Tαβ)A =
2
√
−g

δSanom

δgαβ

∣∣∣∣
boundary

(Jα)A =
1
√
−g

δSanom

δAα

∣∣∣∣
boundary

I These currents solve adiabaticity equation with (JαS )A = − 1
2βσ Σ̂

⊥[ασ]
H

I Currents make sense, but e.o.m. are not anomalous hydrodynamics

To get correct anomalous dynamics, perform Schwinger-Keldysh doubling
with suggestive influence functional:

SSK
anom =

ˆ
Md+1

VP [AR,ΓR, ÂR, Γ̂R]− VP [AL,ΓL, ÂL, Γ̂L] + VP [ÂR, Γ̂R, ÂL, Γ̂L]

FH-Loganayagam-Rangamani ’13
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Dissipative transport (Class D)

Most general dissipative constitutive relations are of the following form:(
Tµν

Jα

)
D

= −
(

Υ†ηg Υ†σg
Υ†ηA Υ†σA

)(
η 0
0 σ

)(
Υηg ΥηA
Υσg ΥσA

)(
1
2
δ
B
g

δ
B
A

)

I Υ are derivative operators, {η,σ} are ”intertwining“ tensor fields

Corresponding entropy production:

∆ =

[
1

2
Υηg δBg + ΥηAδBA

]
η

[
1

2
Υηg δBg + ΥηAδBA

]
+

[
1

2
Υσg δBg + ΥσAδBA

]
σ

[
1

2
Υσg δBg + ΥσAδBA

]
I This is positive definite (i.e. allowed by second law) if {η,σ} have

eigenvalues ≥ 0
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Relation between Class B and Class D

Consider the following constitutive relations:

(Tµν)B,D ≡ −
1

2
N (αβ)(µν) δ

B
gαβ

(Jα)B,D ≡ −Sαβ · δBAβ
(Gσ)B,D = 0 ,

I Recall: this parameterizes (part of) Class B for:

N (αβ)(µν) = −N (µν)(αβ) , Sαβ = −Sβα

I The same gives (a subset of) Class D for:

N (αβ)(µν) = N (µν)(αβ) , Sαβ = Sβα (& both positive definite)

I This can be seen from the corresponding entropy production
being a quadratic form:

∆ = 1
4 N

(αβ)(µν) (δ
B
gαβ) (δ

B
gµν) + Sαβ · (δ

B
Aα) (δ

B
Aβ)
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Non-dissipative effective actions (Class ND)

Fundamental fields (uncharged fluid):
fluid element labels / Goldstone modes φI (I = 1, . . . , d− 1)

Reparametrization symmetry:

φI 7→ ξI(φ)

det(∂ξI/∂φJ) = 1

Entropy current:

JσS ∝ εσα1···αd−1εI1···Id−1

∏d−1
j=1 ∂αjφ

Ij

≡ s uσ

The φI are nothing else than our pullback fields M→M after Legendre
transformation to entropic description (T → T (s))

The symmetries (volume preserving diffeomorphisms) are obtained by fixing
a particular gauge for the redundancy of the theory on M

Dubovsky-Hui-Nicolis-Son ’11
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Euler current d = 2n+ 1 dimensions (Class C)

The exactly conserved Euler current in d = 2n+ 1 dimensions:

Jσ
Euler
≡ −

1

2n
cEuler ε

σα1α2...α2n−1α2n uµ ε
µν1ν2...ν2n−1ν2n

×
(

1

2
Rν1ν2α1α2 −∇α1uν1∇α2uν2

)
...

×
(

1

2
Rν2n−1ν2nα2n−1α2n −∇α2n−1uν2n−1∇α2nuν2n

)
∇σJσ

Euler
= 0

I E.g. in d = 3 with M3 = R× ΣM : measures topology of ΣM via

ˆ
ΣM

√
−γ

(
Jσ

Euler
uσ
)
∝ χ (ΣM )
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