Paul Jennings

Student Seminar

October 2014

The Skyrme-Faddeev model (with a brief introduction to topological solitons)

Paul Jennings

Student Seminar

October 2014

- What are topological solitons?
- Kinks
- σ -model lumps
- Skyrmions
- Hopfions

- Topological solitons are stable, particle-like solutions to a field theory, where they differ topologically from the vacuum.
- The topological character is often captured by an integer (usually topological degree or generalised winding number) called the topological charge.
- Smooth deformations of the field does not change the topology and so solutions of non-trivial topological charge are stable.
- Energy density is smooth and concentrated in some finite region of space.

Topological solitons

• If there are static stable solitons in the theory - it must satisfy Derricks theorem.

Derrick's Theorem

[J. Math. Phys. 5, 1252 (1964)]

Consider a time independent field theory with a finite energy non-vacuum field configuration. Let $e(\mu)$ be the energy under spatial rescaling $\mathbf{x} \mapsto \mu \mathbf{x}$. Then if $e(\mu)$ has no stationary point, the theory has no static solutions with finite energy other than the vacuum.

- In many cases we can find a bound on the energy in terms of the topological charge (a Bogomolny bound).
- Examples are kinks, lumps, baby Skyrmions, Skyrmions, monopoles, instantons.

A basic example: The kink

 \bullet A one-dimensional theory of a real scalar field ϕ defined by the Lagrangian

$$\mathcal{L}=rac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi-U(\phi),$$

for real non-negative function $U(\phi)$. Note for finite energy we need these to tend to a vacuum at spatial infinity.

- So long as there are multiple isolated vacua of the potential, solutions which go from one vacua to another are called kinks, and are topologically distinct from the vacuum solution.
- Examples of potential are the ϕ^4 kink, $U(\phi) = \lambda (m^2 \phi^2)^2$ and the sine-Gordon kink $U(\phi) = 1 \cos \phi$.

- Since the energy will be be comprised of two terms $E = E_2 + E_0$, and we are in one spatial dimension these will scale in opposite ways. Thus Derrick's theorem will not forbid static solutions.
- For the ϕ^4 kink we find associated topological charge

$$N=\frac{\phi_+-\phi_-}{2m},$$

where $\phi_{\pm} = \lim_{x \to \pm \infty} \phi(x)$. Then $N \in \{-1, 0, 1\}$.

A basic example: The kink

• This case is analytically solvable, with a kink given by the field $\phi = m \tanh \left(\sqrt{2\lambda}m(x-a)\right)$, where *a* is the location of the kink.

The σ -model lump

- We now move to two dimensions!
- We upgrade φ from before to a three-component scalar field φ ∈ S², and have Lagrangian

$$\mathcal{L}=rac{1}{2}\partial^{\mu}\phi\cdot\partial_{\mu}\phi-m^{2}V(\phi)$$

- For the energy to be finite again the field must tend to a vacuum value. This compactifies the ℝ² to S², and means that we have a topological charge which is a winding number.
- Looking at Derrick's theorem though, in this extra spatial dimension we see that this does not have stable solutions since we have no non-trivial solution. So these σ -model lumps are not solitons and can suffer from scale instabilities.

The baby-Skyrme model

• To solve this instability we add another term to the Lagrangian.

$$\mathcal{L} = rac{1}{2} \partial^{\mu} \phi \cdot \partial_{\mu} \phi - rac{\kappa}{4} (\partial_{\mu} \phi imes \partial_{
u} \phi) \cdot (\partial^{\mu} \phi imes \partial^{
u} \phi) - m^2 V(\phi)$$

where this term is the unique as the lowest order Lorentz invariant with field equations involving time derivatives of no more than second order. However becomes highly non-linear.

Has applications as an approximation in condensed matter theories
 [Yu, Onose et al. Nature 465, 901 (2010)]

- Numerical solutions are well known, with solutions looking like localised lumps of energy.
- With the standard analogue of the pion mass term, $V(\phi) = 1 \phi_3$, we find charge one solution.

- Can be easily extended into three dimensions by letting $\phi \in S^3$ be a four-component unit vector. Again is a winding number as another one-point compactification occurs.
- This is a theory of pions, with the solitons (called Skyrmions) of the theory representing baryons. It can be regarded as a low-energy effective theory of QCD in the large-colour limit.

The Skyrme model

• Solutions to this are well-known, where platonic symmetries are used to generate solutions.

[Battye, Sutcliffe; Rev. Math. Phys. 14, 29 (2002)]

- Three-dimensional theory with links to QCD and condensed matter physics. [Faddeev; Princeton preprint IAS-75-QS70 (1975)]
- It is defined by the static energy functional

$${\cal E}=rac{1}{32\pi^2\sqrt{2}}\int\partial_i\phi\cdot\partial_i\phi+rac{1}{2}(\partial_i\phi imes\partial_j\phi)\cdot(\partial_i\phi imes\partial_j\phi)\,d^3x,$$

where ϕ is a three-component unit vector.

- Finite energy considerations lead to $\phi(\infty) = (0, 0, 1)$, so now $\phi: S^3 \to S^2$. Center of soliton taken to be antipodal point.
- Derrick's scaling theorem allows static solutions with a non-zero size.

• We have topological charge, the Hopf charge, given by

$$Q=rac{1}{4\pi^2}\int_{S^3}F\wedge A,$$

where F = dA is the pull-back of the area two-form on the target S^2 .

• Alternatively, we can interpret this more geometrically in terms of the linking number of the preimages of two distinct points.

• Initial conditions can be generated via rational maps.

[Sutcliffe; Proc. R. Soc. Lond. A463, 3001 (2007)]

• We map $(x_1, x_2, x_3) \in \mathbb{R}^3$ to the unit three-sphere $S^3 \subset \mathbb{C}^2$ via the map

$$(Z_1, Z_0) = \left((x_1 + ix_2) \frac{\sin f}{r}, \cos f + i \frac{\sin f}{r} x_3 \right),$$

where $r^2 = x_1^2 + x_2^2 + x_3^2$ and f(r) is monotonically decreasing function satisfying $f(0) = \pi$, $f(\infty) = 0$.

 The Riemann sphere coordinate, W, of the field are given by rational map

$$W = rac{\phi_1 + i\phi_2}{1 + \phi_3} = rac{p(Z_1, Z_0)}{q(Z_1, Z_0)}.$$

• We see that $W = Z_1^n/Z_0^m$ generates axially symmetric fields, denoted $\mathcal{A}_{n,m}$, with topological charge Q = mn. This rational map generates the static energy configurations for charge one to four.

Note that Q3 solution buckles.

 We also have the possibility of linked solutions. Fields linked once, denoted L^{1,1}_{n,n} (where subscript denotes constituent charges and superscript denotes linking number) are generated via

$$W = rac{Z_1^{n+1}}{Z_1^2 - Z_0^2} = rac{Z_1^n}{2(Z_1 - Z_0)} + rac{Z_1^n}{2(Z_1 + Z_0)}.$$

• Solutions linked once gain charge two via linking. In general the charge is given by the sum of subscripts and superscripts. Energy minimum for charges five and six.

- Also can have solutions which are torus knots (i.e. the knot can be drawn on the surface of a torus) the first example of which is the trefoil knot
- An (a, b) torus knot is generated by rational map

$$W = \frac{Z_1^{\alpha} Z_0^{\beta}}{Z_1^{a} + Z_0^{b}},$$

where α positive integer and β non-negative which has charge $Q = \alpha b + \beta a$. First appears at charge seven.

Energy Minimisation

- We then take our initial ansatz and follow an energy minimisation algorithm to relax to a (quasi-) stable energy minimum, which give static solutions.
- For example, an initial field $7A_{17}$ relaxes to $7K_{32}$:

• Solutions have been found for charges up to charge sixteen.

[Sutcliffe; Proc. R. Soc. Lond. A463, 3001 (2007)]

9K32

10K3,2

 $11\mathcal{L}^{2,2}_{3,4}$

 $11K_{3,2}$

• Solutions have been found for charges up to charge sixteen.

[Sutcliffe; Proc. R. Soc. Lond. A463, 3001 (2007)]

250 prime knots with minimal crossing number up to 10

Ģt

250 prime knots with minimal crossing number up to 10

(AF) ĘΗ)

Only 7 of which are torus knots.

- First step towards finding non-torus knots cable knots are the obvious extension of torus knots.
- What is a cable knot? Take torus knot \mathcal{K}_2

- First step towards finding non-torus knots cable knots are the obvious extension of torus knots.
- What is a cable knot? Take torus knot \mathcal{K}_2

• We call this knot the \mathcal{K}_2 cable on \mathcal{K}_1 .

• We know that a cable knot can be generated by the map

$$W = \frac{Z_1^{\alpha} Z_0^{\beta} (Z_1 - Z_0)^{\gamma}}{Z_0^4 - 2Z_1^3 Z_0^2 - 4\eta^2 Z_1^3 Z_0 + Z_1^6 - \eta^4 Z_1^3},$$

for some $\eta \neq 0$, which describes a \mathcal{K}_{32} cable on \mathcal{K}_{32} . Choice of positive integer α , non-negative integer β and $\gamma \in \{0, 1\}$.

• Lower charges relax to torus knots or links of torus knots, above charge 22 we find solutions of the right form.

Cable Knotted Hopfions

 Solutions with the form of cable knots and links for charges 22 – 35 with the exception of charge 33.

- We have seen a range of topological solitons.
- We have seen the SF model, and the types of solution.
- We have seen the first known examples of non-torus knots.
- What happens for even higher charges? Iterated torus knots?
- What about the other non-torus knots? Non-prime knots?
- What is the behaviour of these knots under classical isospin?

Thank you for listening.

http://www.maths.dur.ac.uk/YTF/2014