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Moonshine, n.
• An illusive shadow

• A dish composed partly of eggs

Dictionary of Archaic Words, J. O. Halliwell, London
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Introduction

We will introduce a surprising result known as Mathieu Moonshine which
appears when we consider the compactification of the Type II-B
superstring on a K3 surface.

Why did people consider this?

• Cancellation of the Weyl anomaly for the Superstring gives a critical
dimension D = 10.

• Phenomenologically interesting models are formed by compactifying
on a Calabi-Yau manifold.

• The only compact Calabi-Yau two-folds are K3 and the torus T 4.

We will try to write a partition function for the internal c = 4(1 + 1
2) = 6

theory.
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Gepner Models

• Compactifying the superstring on the tensor product of N = 2
theories leads to a consistent compactified string theory1

• Compactifying on a product of such minimal models whose central
charges add to ctot = 6 is equivalent to compactifying on a
Calabi-Yau 2-fold2

• N = 2 minimal models are exactly solvable QFTs.

1Doron Gepner. “Space-time supersymmetry in compactified string theory
and superconformal models”. In: Nuclear Physics B 296.4 (1988), pp. 757–778.

2Doron Gepner. “Exactly solvable string compactifications on manifolds of
SU (N) holonomy”. In: Physics Letters B 199.3 (1987), pp. 380–388.
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The N = 2 (2D) SCA
The N = 2 superconformal algebra contains the energy-momentum
operator T (z) of conformal dimension-2, two supercurrents G+(z),G−(z)
of dimension 3

2 , as well as an operator of dimension 1, J(z). The modes of
the fields satisfy

Definition

[Lm, Ln] = (m − n)Lm+n +
c
12δm+n,0m(m2 − 1)

[Lm, φn] = [(dφ − 1)m − n]φm+n

{G+
r ,G−s } = Lr+s +

1
2(r − s)Jr+s +

c
6 (r2 − 1

4)δr+s,0

[Jm, Jn] =
c
3 mδm+n,0

[Jm,G±n ] = ±G±m+n

(1)

where dφ is the conformal dimension of φ, i.e dG = 3
2 and dJ = 1, dQ and

m, n ∈ Z, r , s ∈ Z in the Ramond sector and r , s ∈ Z + 1
2 in the

Neveu-Schwarz sector.
Sam Fearn 10 / 2



The N = 2 (2D) SCA
The N = 2 superconformal algebra contains the energy-momentum
operator T (z) of conformal dimension-2, two supercurrents G+(z),G−(z)
of dimension 3

2 , as well as an operator of dimension 1, J(z). The modes of
the fields satisfy

Definition

[Lm, Ln] = (m − n)Lm+n +
c
12δm+n,0m(m2 − 1)

[Lm, φn] = [(dφ − 1)m − n]φm+n

{G+
r ,G−s } = Lr+s +

1
2(r − s)Jr+s +

c
6 (r2 − 1

4)δr+s,0

[Jm, Jn] =
c
3 mδm+n,0

[Jm,G±n ] = ±G±m+n

(1)

where dφ is the conformal dimension of φ, i.e dG = 3
2 and dJ = 1, dQ and

m, n ∈ Z, r , s ∈ Z in the Ramond sector and r , s ∈ Z + 1
2 in the

Neveu-Schwarz sector.
Sam Fearn 10 / 2



The N = 2 (2D) SCA
The N = 2 superconformal algebra contains the energy-momentum
operator T (z) of conformal dimension-2, two supercurrents G+(z),G−(z)
of dimension 3

2 , as well as an operator of dimension 1, J(z). The modes of
the fields satisfy

Definition

[Lm, Ln] = (m − n)Lm+n +
c
12δm+n,0m(m2 − 1)

[Lm, φn] = [(dφ − 1)m − n]φm+n

{G+
r ,G−s } = Lr+s +

1
2(r − s)Jr+s +

c
6 (r2 − 1

4)δr+s,0

[Jm, Jn] =
c
3 mδm+n,0

[Jm,G±n ] = ±G±m+n

(1)

where dφ is the conformal dimension of φ, i.e dG = 3
2 and dJ = 1, dQ and

m, n ∈ Z, r , s ∈ Z in the Ramond sector and r , s ∈ Z + 1
2 in the

Neveu-Schwarz sector.
Sam Fearn 10 / 2



The N = 2 (2D) SCA
The N = 2 superconformal algebra contains the energy-momentum
operator T (z) of conformal dimension-2, two supercurrents G+(z),G−(z)
of dimension 3

2 , as well as an operator of dimension 1, J(z). The modes of
the fields satisfy

Definition

[Lm, Ln] = (m − n)Lm+n +
c
12δm+n,0m(m2 − 1)

[Lm, φn] = [(dφ − 1)m − n]φm+n

{G+
r ,G−s } = Lr+s +

1
2(r − s)Jr+s +

c
6 (r2 − 1

4)δr+s,0

[Jm, Jn] =
c
3 mδm+n,0

[Jm,G±n ] = ±G±m+n

(1)

where dφ is the conformal dimension of φ, i.e dG = 3
2 and dJ = 1, dQ and

m, n ∈ Z, r , s ∈ Z in the Ramond sector and r , s ∈ Z + 1
2 in the

Neveu-Schwarz sector.
Sam Fearn 10 / 2



The N = 2 (2D) SCA
The N = 2 superconformal algebra contains the energy-momentum
operator T (z) of conformal dimension-2, two supercurrents G+(z),G−(z)
of dimension 3

2 , as well as an operator of dimension 1, J(z). The modes of
the fields satisfy

Definition

[Lm, Ln] = (m − n)Lm+n +
c
12δm+n,0m(m2 − 1)

[Lm, φn] = [(dφ − 1)m − n]φm+n

{G+
r ,G−s } = Lr+s +

1
2(r − s)Jr+s +

c
6 (r2 − 1

4)δr+s,0

[Jm, Jn] =
c
3 mδm+n,0

[Jm,G±n ] = ±G±m+n

(1)

where dφ is the conformal dimension of φ, i.e dG = 3
2 and dJ = 1, dQ and

m, n ∈ Z, r , s ∈ Z in the Ramond sector and r , s ∈ Z + 1
2 in the

Neveu-Schwarz sector.
Sam Fearn 10 / 2



N = 2 Representations
Unitary representations of the N = 2 algebra with c < 3 exist only for
discrete values of the central charge

ck =
3k

k + 2 k ∈ N (2)

Highest weight states are characterised by energy, h and U(1) charge, Q

L0 |h,Q〉 = h |h,Q〉 (3)
J0 |h,Q〉 = Q |h,Q〉 (4)

These may be parameterised in the NS sector as

hNS,k
l ,m =

l(l + 2)−m2

4(k + 2)
(5)

QNS,k
l ,m =

m
k + 2 (6)

0 ≤ l ≤ k, |m| ≤ l , l ≡ m (2) (7)
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Characters
Definition
The character of a representation is

ch(τ, z) := Tr (qL0− c
24 yJ0) (8)

where q = e2πiτ , y = e2πiz , τ ∈ H, z ∈ C.

The character therefore encodes information about how many linearly
independent states exists at each energy level.
The character in the NS sector at level k can be given by

chNS(k)

l,m = q
hNS(k)

l,m −
ck
24 y

QNS(k)

l,m

∞∏
n=1

(1 + yqn− 1
2 )(1 + y−1qn− 1

2 )

(1− qn)2

×

∞∏
n=1

(1− q(k+2)(n−1)+l+1)(1− q(k+2)n−(l+1))(1− q(k+2)n)2

(1 + yq(k+2)n− 1
2 (l+m+1)

)(1 + y−1q(k+2)(n−1)+ 1
2 (l+m+1)

)(1 + y−1q(k+2)n− 1
2 (l−m+1)

)(1 + yq(k+2)(n−1)+ 1
2 (l−m+1)

)

(9)
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Modular Properties

The characters can be written in terms of functions with known modular
transformations allowing the modular properties of the characters to be
calculated

chNS(k)
l,m (τ + 1, z) = exp

{
2πi(hNS(k)

l,m − ck
24 −

m
2(k + 2)

)

}
chNS(k)

l,m τ, z +
1
2 (10)

chNS(k)
l,m (

−1
τ
,

z
τ

) =
1

k + 2 exp
{

πikz2

τ(k + 2)

}
×

k∑
l′=0

k+2∑
m′=−(k+1)

sinπ(l + 1)(l ′ + 1)

k + 2 exp
{
πimm′
k + 2

}
chNS(k)

l′,m′ (τ, z)

(11)
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Spectral Flow
The N = 2 SCA has a continuous automorphism given by3

Ln → Ln + ηJn +
c
6η

2δn,0

Jn → Jn +
c
3ηδn,0

G±r → G±r∓η

(12)

• η = 1
2 gives R ↔ NS known as ‘spectral flow’

• η = 1 (NS,R) ↪→ (NS,R) known as ‘two-fold spectral flow’
These flows correspond to the shifts z → z ∓ τ

2 and z → z ∓ τ in our
characters respectively, under which we find the following transformations

chNS(k)
l ,m (τ, z +

τ

2 ) = q−
ck
24 y−

ck
12 chR(k)

l ,m (τ, z) (13)

ch(NS,R)(k)
l ,m (τ, z + τ) = q−

ck
6 y−

ck
6 ch(R,NS)(k)

l ,m−2 (τ, z) (14)

3A Schwimmer and N Seiberg. “Comments on the N= 2, 3, 4
superconformal algebras in two dimensions”. In: Physics Letters B 184.2 (1987),
pp. 191–196.
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The 16 Model

In a Gepner model, we consider a product
∏

i kmi
i such that

c =
∑

i
mi cki =

∑
i

mi
3ki

ki + 2 (15)

The 16 theory, the tensor product of 6 level 1 theories, has c = 6.

Gepner showed that a modular invariant combination of N = 2 characters
with c = 6 where all states have integral U(1) charge gives a partition
function consistent with superstring compactification on a Calabi-Yau
two-fold.

Definition
An orbit is a combination of characters which has integral U(1) charge and
is invariant under two-fold spectral flow.

Sam Fearn 16 / 2
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The 16 model orbits
At level k = 1 we have three characters corresponding to
l = m = 0, l = m = 1, l = −m = 1

• A := chNS
0,0(τ, z)

• B := chNS
1,1(τ, z)

• B := chNS
1,−1(τ, z)

These characters transform into each other under spectral flow

A→ q−
1
6 y−

1
6 B (16)

B → q−
1
6 y−

1
6 C (17)

C → q−
1
6 y−

1
6 A (18)

We use this to construct our first orbit NS1

NS1 := A6 + B6 + C6 → q−1y−1NS1 (19)
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Orbits under modular transformations
Using our previous results about the modular transformations of the
characters we can calculate the S transform of A

A→ chNS
0,0(−1

τ
,

z
τ

) =
1√
3

eπi z2
3τ (A + B + C) (20)

Similarly we can calculate

A6 → 1
27e2πi z2

τ (A + B + C)6 (21)

B6 → 1
27e2πi z2

τ (A− e
1
3πi B + e

2
3πi C)6 (22)

C6 → 1
27e2πi z2

τ (A + e
2
3πi B − e

1
3πi C)6 (23)

Using this

NS1
S−→ 1

27e2πi z2
τ {3(A6 + B6 + C6) + 90(A4BC + AB4C + ABC4)

+ 60(A3B3 + A3C3 + B3C3) + 270A2B2C2}
(24)
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Orbits Continued
We have now found a total of four orbits

NS1 :=A6 + B6 + C6 NS2 := A3B3A3C3 + B3C3 (25)
NS3 :=A2B2C2 NS4 := A4BC + AB4C + ABC4 (26)

We can calculate the matrix Si ,j of the S transforms of the orbits

NSi (τ, z) = Si ,jNSj(−
1
τ
,

z
τ

)e−2πi z2
τ (27)

For the 16 model we find

S =
1

27


3 60 270 90
3 −21 27 9
1 2 9 −6
3 6 −54 9

 (28)

We note that this matrix satisfies S2 = 1.
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Orbits are modular invariant
We define

Di :=
S1,i
Si ,1

(29)

which satisfies
Di Sij = DjSj,i (30)

without summation. We can now write an S-invariant combination as∑
i

Di NSi NSi
S−→
∑
i ,j,k

Di Si ,jSi ,kNSjNSk

=
∑
i ,j,k

DjSj,i Si ,kNSjNSk

=
∑
j,k

DJδj,kNSjNSk

=
∑

j
NSjNSj

(31)
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Symmetry Enhancement and N = 4
Alvarez-Gaumé and Freedman4 showed that a sigma model on a
hyperkähler manifold has N = 4 symmetry.

Eguchi et al.5 showed that the operators corresponding to the two-fold
spectral flow are the SU(2) currents J±. When the states in a
representation have integral charge these operators are realised as fields in
the theory. This extends the algebra to the N = 4 algebra.
We can therefore decompose our orbits into N = 4 characters.

• Ln,Ga
r , Ḡa

r , J i
m

• HWS |h, l〉
• Unitarity bounds h ≥ k

4 (R), h ≥ l (NS), c = 6k, 0 ≤ l ≤ k
• Massless representation when the bound is saturated.

4Luis Alvarez-Gaume and Daniel Z Freedman. “Geometrical structure and
ultraviolet finiteness in the supersymmetric σ-model”. In: Communications in
Mathematical Physics 80.3 (1981), pp. 443–451.

5Tohru Eguchi et al. “Superconformal algebras and string compactification
on manifolds with SU(n) holonomy”. In: Nuclear Physics B 315.1 (1989),
pp. 193–221.
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The Partition Function and the Elliptic Genus

We can find orbits in the other sectors by using the spectral flow and can
write down a modular invariant combination of orbits

Z =
∑

i
Di (NSi NSi + ÑSi ÑSi + Ri Ri + R̃i R̃i ) (32)

where the ÑS, R̃ sectors are the NS,R sectors with (−1)F insertions.

(−1)F = (−1)FL+FR = (−1)2J3
0 +2J̄3

0 is the usual fermion number operator.

Definition
The Elliptic Genus of an N = (4, 4) conformal field theory corresponding
to a sigma model on a target space M is defined as

εM(τ, z) := TrHR

(
(−1)F qL0− c

24 q̄L̄0− c̄
24 y2J3

0
)

(33)
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More Elliptic Genus
The elliptic genus is simply the partition function in the R̃ sector

ZR̃(τ, z ; τ̄ , z̄) := TrHR

(
(−1)F qL0− c

24 q̄L̄0− c̄
24 y2J3

0 ȳ2J̄3
0
)

(34)

with the right-movers projected out

εM(τ, z) = ZR̃(τ, z ; τ̄ , z̄ = 0) (35)

It is also independent of τ̄ since, decomposing HR into left and right
movers HR =

⊕
(j,j∗)∈J HR

j ⊗HR
j∗

εM(τ, z) =
∑

(j,j∗)∈J
TrHR

j

(
(−1)FLqL0− c

24 y2J3
0
)
× TrHR

j∗

(
(−1)FL q̄L̄0− c̄

24
)

=
∑

(j,j∗)∈J
chR

j (τ, z +
1
2)× Ij∗

(36)
where Ij∗ is just the Witten Index of the representation j∗.
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The Elliptic Genus of 16

ε(τ, z) = ZR̃(τ, z ; τ̄ , z̄ = 0)

=
d+d ′∑
i=1

Di R̃i (τ, z)
¯̃R i (τ̄ , z̄ = 0)

(37)

Note the second factor is the Witten Index. Using details of the
representation theory of N = 46

6Eguchi et al., “Superconformal algebras and string compactification on
manifolds with SU(n) holonomy”.
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i=1

Di R̃i (τ, z)
¯̃R i (τ̄ , z̄ = 0)

(37)

Note the second factor is the Witten Index. Using details of the
representation theory of N = 46

ε(τ, z) =− 2R̃1(τ, z) +
d∑

i=2
Di R̃i (τ, z)

=− 2chR̃
0 (l =

1
2 ; τ, z) +

d∑
i=2

Di ai chR̃
0 (l = 0; τ, z)

+

(
−2F1(τ) +

d∑
i=2

Di ai Fi (τ)

)
ĉhR̃

(h =
1
4 ; τ, z)

(38)

6Eguchi et al., “Superconformal algebras and string compactification on
manifolds with SU(n) holonomy”.
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Note the second factor is the Witten Index. Using details of the
representation theory of N = 46

ε(τ, z) =20chR̃
0 (l = 0; τ, z)− 2chR̃

0 (l =
1
2 ; τ, z)

+ 2
(
45q + 231q2 + 770q3 + 2277q4 + . . .

)
ĉhR̃

(h =
1
4 ; τ, z)

(38)
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And Now For Something Completely Different
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A sporadic group
Theorem
The Classification of Finite Simple Groups.
This theorem states that all finite simple groups fall into one of the following families:

1 Cyclic groups of order n for n prime.
2 Alternating groups of degree at least 5.
3 Simple Lie type groups.
4 The 26 sporadic simple groups.

M24 is one of the sporadic finite simple groups. It is a subgroup of the well known
Monster group M, as shown below.

M

B

HN

M12

M11
M22

M23

M24

J4

Fi24

Fi23

Fi22

Ru J1 J3

ON

He

Th

Co1

Co3 Co2
Sz

Mc HS J2

Ly
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The Golay Code

Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique [24, 12, 8] code up to equivalency, G24. This code is
known as the Extended Binary Golay Code.

There are numerous ways to define G24.
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The Golay Code

Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique [24, 12, 8] code up to equivalency, G24. This code is
known as the Extended Binary Golay Code.

There are numerous ways to define G24.

Lexicographic Code

c0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

c1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1)

c2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1)

c3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1)

...

Sam Fearn 28 / 2



The Golay Code

Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique [24, 12, 8] code up to equivalency, G24. This code is
known as the Extended Binary Golay Code.

There are numerous ways to define G24.

The Mathematical Game of Mogul

H H H H H H H H H H H H H H H H H H H H H H H H

H H T H H H T H H T H H H H H T H H H H H T H T
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The Golay Code
Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique [24, 12, 8] code up to equivalency, G24. This code is
known as the Extended Binary Golay Code.

There are numerous ways to define G24.

The Golay code was used to transmit photos back from the Voyager
spacecraft.

Sam Fearn 28 / 2



M24

We can define M24 in many different ways, however one that suits us is
the following.

Definition

M24 := Aut(G24) (39)

That is, M24 = {τ ∈ S24| τ(c) ∈ G24 ∀c ∈ G24}

M24 has order 210 · 33 · 5 · 7 · 11 · 23 = 244823040
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M24 Representation Theory
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Mathieu Moonshine
When considering the 16 model we calculated the elliptic genus as

ε(τ, z) =20chR̃
0 (l = 0; τ, z)− 2chR̃

0 (l =
1
2 ; τ, z)

+ 2
(
45q + 231q2 + 770q3 + 2277q4 + . . .

)
ĉhR̃

(h =
1
4 ; τ, z)

We can now see that these coefficients are all sums of dimensions of
irreducible representations of M24.

Gannon7 introduced the twining elliptic genera for g ∈ M24
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and proved that all Hn are indeed representations of M24.

7Terry Gannon. “Much ado about Mathieu”. In: arXiv preprint
arXiv:1211.5531 (2012).
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Final Comments on the Elliptic Genus

The (geometric) elliptic genus is a ring homomorphism from the
cobordism ring of smooth oriented compact manifolds into a ring of
modular functions.

If X is a Calabi-Yau D-fold, then εX(τ, z) is a weak Jacobi form of weight
0 and index D

2 .

The elliptic genus contains information about other topological invariants,
specifically

εX(τ, z = 0) = χ(X) (41)

When a CFT has a sigma-model construction the two notions of elliptic
genus agree.
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Questions?


