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Introduction

Entanglement Entropy Everywhere: In condensed matter physics
characterizes phase transitions, used as diagnostic for universal
properties of lattice models, important in quantum information and
quantum computation, related to black hole entropy and can have
deep implications in quantum gravity, . . .

Quantum quenches involve sudden change of parameters of
Hamiltonian. That’s a difficult problem in general, related to
thermalization and relaxation of a quantum state.
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Density Matrices

Quantum mechanics can be reformulated in terms of density matrices:
Given a normalized state |ψ〉 we can form the density matrix ρ = |ψ〉〈ψ|
with the following properties:

ρ = ρ†

ρ ≥ 0 (ie all its eigenvalues are positive)

trρ = 1

ρ = ρ2

We can introduce some classical uncertainty by considering a mixed
density matrix, which is a statistical ensemble of such density matrices

ρmix =
∑

piρi ,

with
∑

pi = 1, and then ρ 6= ρ2.
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Reduced Density Matrices

Assume that the Hilbert space H factorizes: H = HA ⊗HB .
The reduced density matrix associated to system A is

ρA = trBρ,

for a given ρ acting on H.

For any observable OA of A,

〈OA〉 = trA(OAρA).

In general ρA will be mixed, ie |ψ〉 6= |ψA〉 ⊗ |ψB〉.

Vaios Ziogas Entanglement Entropy and Quenches December 1, 2014 5 / 30



Entanglement Entropy

The von Neumann entropy of a density matrix ρ is

S = −tr(ρ log ρ),

eg for a pure density matrix ρ0 we find S0 = 0, while for a thermal density
matrix ρth = e−βH

tr(e−βH )
we find S = β〈H〉+ 〈logZ 〉 = Sth, Z = tr(e−βH).

The entanglement entropy of system A is the von Neumann entropy of its
reduced density matrix:

SA = −tr(ρA log ρA).

All these definitions carry over to quantum field theory, where we usually
take the system A to be a d-dimensional region in a d-dimensional time
slice.
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Properties of Entanglement Entropy

Some interesting properties of entanglement entropy:

SA = SAc if ρ is pure (but SA∪Ac = 0)

SA∪B + SB∪C ≥ SB + SA∪B∪C

I (A,B) ≡ SA + SB − SA∪B ≥ 0

For QFTs, it obeys the area law:

SA ∼
Area(∂A)

εd−1
+ cd−3(

l

ε
)d−3 + . . . +


c1( l

ε) + c0, d even

c̃1 log( l
ε) + c̃0, d odd
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Replica Trick

It can be seen from the definition that:

SA = lim
n→1+

1

1− n
log trρn

A = − lim
n→1+

∂

∂n
trρn

A.

So, alternatively, we can find trρn
A, analytically continue to real n,

differentiate and set n = 1.

Specialize to thermal density matrices (ground state ρ0 is β →∞ limit of
ρth).
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Replica Trick

We can represent ρth(φ(x), φ′(x)) as a path integral in Euclidean space:

ρth(φ(x), φ′(x)) = Z−1〈φ(x)|e−βH |φ′(x)〉

= Z−1

∫ ϕ(ψ,β)=φ(x)

ϕ(ψ,0)=φ′(x)
[dϕ(ψ, τ)]e−

∫ β
0 LEdτ

The normalization factor is

Z = trρth =

∫
[dϕ(x)]ρth(ϕ(x), ϕ(x)) =

∫
[dϕ(ψ, τ)]e−

∫ β
0 LEdτ .

(1+1)d picture:
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Replica Trick

Then, the reduced density matrix associated to a region A will be given by:

ρA(φ(x), φ′(x)) = Z−1trAc 〈φ(x)|e−βH |φ′(x)〉

= Z−1

∫ ϕ(ψ,β)=φ(x)

ϕ(ψ,0)=φ′(x)
[dϕ(ψ, τ)]e−

∫ β
0 LEdτ ,

where now x ∈ A.

So now we integrate over

Vaios Ziogas Entanglement Entropy and Quenches December 1, 2014 10 / 30



Replica Trick

Finally, to obtain trρn
A, we take n copies of our path integral and impose

the identifications:

φi (x , τ = β−) = φi+1(x , τ = 0+), i = 1, . . . , n − 1

φn(x , τ = β−) = φ1(x , τ = 0+).

So, we find trρn
A = Zn(A)

Z n , where

Zn(A) =

∫
C

[
∏

dϕi ]e
−

∫ β
0

∑
LE [ϕi ],

and we denote by C the above conditions. In the (1+1)d case, they create
an n-sheeted Riemann surface.
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Twist operators

Now we restrict to (1+1)d CFTs and a single interval [u, v ]. Formally, the
twist operators σ and σ̃ are defined by requiring∫

Cn

[
∏

dϕi ]σ(u, 0)σ̃(v , 0) . . . e−
∫ β

0

∑
LE [ϕi ] =

∫
C

[
∏

dϕi ] . . . e
−

∫ β
0

∑
LE [ϕi ],

ie they encode the boundary conditions.
The twist operators are local and fixed uniquely if we require them to be
primary. Then

〈O(x , y , sheet i) . . .〉L,Rn =
〈σ(u, 0)σ̃(v , 0)Oi (x , y) . . .〉Ln,C

〈σ(u, 0)σ̃(v , 0)〉Ln,C
,
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Twist operators

Taking the limit T → 0, the sheets get uncompactified. Then the

conformal transformation z → w = n

√
z−u
z−v maps Rn to C. The

transformation of the stress energy tensor T gives

〈T (w)〉Rn =
c(n2 − 1)

24n2

(u − v)2

(w − u)2(w − v)2

By using the OPE of the twist operators with T , this gives the scaling
dimensions of the twist operators:

dn =
c

12
(n − n−1).
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Entanglement Entropy

So we find

trρn
A ∼ (

u − v

a
)−

c
6

(n−n−1),

where a is the UV cut-off, arising from the normalization of the two-point
function.
Finally

SA =
c

3
log

l

a
+ c ′,

where l = |u − v | and c ′ is a non-universal constant.
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Entanglement Entropy

By mapping C to a cylinder, we can immediately obtain the results for a
thermal state with temperature T = β−1

SA =
c

3
log(

β

πa
sinh

πl

β
) + c ′.

In the large T limit l � β we get an extensive behaviour SA = πc
3β l .

Similarly, for a CFT on a circle of circumference L,

SA =
c

3
log(

L

πa
sin

πl

L
) + c ′.

However, we cannot use this technique for finite T and L or multiple
intervals.
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Global Quantum Quenches

Prepare the system in ground state |ψ0〉 of a Hamiltonian H0. At t = 0, a
sudden change of parameters leads to a new Hamiltonian H. The density
matrix of the full system will undergo unitary evolution

ρ(t) = e−itH |ψ0〉〈ψ0|e itH

and it can be written in a path integral representation as well:

ρ(t)(ψ′′, ψ) = Z−1〈ψ′′|e−itH−εH |ψ0〉〈ψ0|e itH−εH |ψ′〉,

where ε is a dumping factor to ensure absolute convergence and
Z = 〈ψ0|e−2εH |ψ0〉.
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Global Quantum Quenches

Now, to find the reduced density matrix associated to an interval A, we
need to “sew” ψ′ and ψ′′ in Ac and integrate over them. We thus obtain
the following geometry:

and we have continued to complex time.

At this point we assume that H is conformally invariant and H0 has a mass
gap m0, but is close to H under the RG flow. Then |ψ0〉 will flow to a
conformal boundary state |ψ∗0〉 and ε ∼ m−1

0 .
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Global Quantum Quenches

Then, we can find

SA =
c

3
logm0 +

{
m0πc

6 t, t < l/2
m0πc

12 l , t ≥ l/2
,

assuming l , t � m−1
0 . We observe a period of linear growth and saturation

at an effective temperature Teff = m0/4.
This is well described by a quasi-particle picture (really justified only for
weak coupling), valid also for more intervals:
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AdS/CFT

The AdS/CFT correspondence suggests that certain quantum gravity
theories in (D+2) dimensions are equivalent to certain field theories in
(D+1) dimensions. More precisely, the partition functions describing those
theories should be equal:

ZQG [φ→ φ0] = ZFT [φ0],

and so all physical observables of one theory should match the physical
observables of the other.
The most studied instance of this correspondence involves asymptotically
AdS spacetimes, which are dual to CFTs living on their conformal
boundary. If we restrict to large-c , strongly coupled CFTs, classical GR
dominates in the LHS, and we can use the saddle-point approximation to
evaluate it.
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AdS

Pure AdSd+2 space is a solution of Einstein equations with negative
cosmological constant, described globally by the metric

ds2 = −(r2 + 1)dt2 + (r2 + 1)−1dr2 + r2dΩ2
d ,

where t ∈ (−∞,∞), r ∈ [0,∞) and dΩ2
d is the metric on the unit sphere

Sd (we have set the AdS radius to 1). In Poincare coordinates the metric
becomes

ds2 = −r2dt2 + r−2dr2 + r2d~x2,

where now ~x are flat coordinates, but only a part of the spacetime is
covered.

Pure AdS is dual to the vacuum state of a CFT.
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BTZ Black Hole

In 3 dimensions, there is also the BTZ black hole solution, described by
the metric

ds2 = −(r2 − r2
+)dt2 + (r2 − r2

+)−1dr2 + r2dφ2,

where now r2
+ is the location of the event horizon. In Poincare coordinates,

the angular coordinate φ gets uncompactified φ→ ~x .
Note that this is asymptotically AdS3.

The BTZ black hole is dual to a thermal state in an (1+1)d CFT with
temperature T ∼ r+.
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Holographic Entanglement Entropy

Prescription to compute the entanglement entropy of a region A on the
boundary of a static spacetime:

SA = MinΣA

Area(ΣA)

4GN

where ΣA are Euclidean surfaces anchored on ∂A and subject to a
homology constraint, and GN is the Newton constant of the bulk.

Here z = 1/r ∼ a is the UV cut-off, on which the theory is defined before
taking ε→ 0, and γA is the surface that minimizes the area of all ΣA.
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Checks & Extension

Reproduces the divergence structure of entanglement entropy

In particular, computation of length of geodesics in Poincare AdS3

reproduces the vacuum result for a (1+1)d CFT SA = c
3 log l

a , after
the identification c ≡ 3

2GN
.

In global coordinates we recover the compact result and in BTZ the
finite temperature result.

Easy proof of strong subadditivity.

. . .

For non-static spacetimes, there is a covariant proposal that replaces
“minimal” surfaces with “extremal” surfaces.
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Vaidya-BTZ

The Vaidya-BTZ solution describes an incoming null shell in AdS that
collapses and forms a BTZ black hole.

ds2 = −(r2 + 1− θ(v)(r2
+ + 1))dv2 + 2dvdr + r2dφ,

where v = arctan r + t − π
2 are infalling null coordinates. For v < 0 have

pure AdS3 and for v > 0 have BTZ.

From the boundary point of view, looks like we start from vacuum, inject
energy uniformly into our a system and end up with a thermal state−→
“dual” to global quantum quench.
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HEE & Mutual Information

Compute (regularized) length of spacelike geodesics in Poincare
coordinates numerically. For a fixed interval:

Mutual information for two equal length intervals:
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HEE & Mutual Information

Observations:

Reproduction of linear growth and saturation of entanglement entropy.

“Bump” in mutual information visible in many cases.

So we see that the qualitative behaviour of the CFT calculations is quite
universal, observed also in these “holographic” quenches (note that before
there was no mention of the strength of the coupling or the central
charge).
However, there is an important difference: we started from a CFT and not
a gapped theory, so we have initial long range correlations, accounting for
the differences observed.
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Conclusion and Future Directions

We have seen the definition and basic properties of entanglement
entropy, and the basic techniques for its calculation in (1+1)d CFTs.

We discussed the quasi-particle interpretation of the evolution of
entanglement entropy under a quantum quench.

Finally, we gave a quick overview of the holographic approach to
similar processes.

Local Quenches

Many other approaches to holographic quantum quenches: other
geometries, E/M quenches, probe fields and branes on fixed
background, AdS/BCFT,. . .

We can also generalize to global Vaidya-BTZ; novel phenomena may
arise!
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Thank you

Vaios Ziogas Entanglement Entropy and Quenches December 1, 2014 28 / 30



References

Figures taken from

P. Calabrese and J. Cardy (2009)

Entanglement entropy and conformal field theory

J. Phys. A: Math. Theor. 42(50).

C. A. B. Bayona, and N. R. F. Braga (2007)

Anti-de Sitter boundary in Poincare coordinates

Gen.Rel.Grav. 42, 1367–1379.

V. E. Hubeny, H. Maxfield (2013)

Holographic probes of collapsing black holes

arXiv:1312.6887.

T. Takayanagi (2012)

Entanglement Entropy from a Holographic Viewpoint

Class.Quant.Grav. 29 (2012) 153001.

J. Abajo-Arrastia, J. Aparicio, E. Lopez (2010)

Holographic Evolution of Entanglement Entropy

JHEP 1011:149 (2010).

Vaios Ziogas Entanglement Entropy and Quenches December 1, 2014 29 / 30



References

A. Allais, E. Tonni (2011)

Holographic evolution of the mutual information

JHEP 1201:102 (2012).

Vaios Ziogas Entanglement Entropy and Quenches December 1, 2014 30 / 30


	Introduction
	Field Theory Side
	Density Matrices
	Entanglement Entropy
	Replica Trick
	Twist Operators
	Global Quantum Quenches

	Gravity Side
	AdS/CFT
	Holographic Entanglement Entropy
	Vaidya-BTZ

	Conclusion and Future Directions

