Higgs+Jet at NNLO with Antenna Subtraction Method

Student Seminar

Xuan Chen

Institute for Particle Physics Phenomenology University of Durham

Durham, November 17, 2014

Xuan Chen (IPPP, Durham)

Higgs Boson: Precision Physics

- Higgs discovery requires very sophisticated theory predictions
 - Higer-order perturbative calculations
 - Resummation program
 - Reliable non-perturbative tools (PDFs, PS, Jet structure ...)
- $\bullet~{\sf BSM}$ effects are well hidden $\rightarrow~{\sf more}$ precise study of Higgs couplings

Higgs Boson: Cutting Edge Predictions

- Higgs production: testing the edge of pQCD
 - Theoretical uncertainty is expected around 5%
 - $N^3LO \text{ pp} \rightarrow \text{H}$ towards the full result (second term in threshold expansion) Anastasiou, Duhr et al (14)
 - Approximation from resummation Bonvini, Ball et al (13,14); De Florian, Mazzitelli et al (14)
- Higgs + jets final states: jet-bin analysis, differential cross section
 - Critical to test Higgs couplings and properties
 - Resumming jet vetoes Stewart, Tackmann et al; Banfi, Monni et al (13)
 - Higgs+Jet @ NNLO Boughezal, Caola et al (13); Chen, Gehrmann et al (14)
 - Higgs+Jets @ NLO MCFM, Sherpa, GoSam, aMC@NLO, POWHEG, MadLoop
- Improving above tools:
 - Finite m_t, m_b correction Harlander et al, (12); Grazzini, Sargsyan (13)
 - Parton shower (PS) matching @ NNLO Hamilton, Nason et al (13)
 - NNPDF for LHC Run II Ball, Bertone et al (14)

Higgs + jets: jet bin analyses in LHC

• $pp \to H \to \gamma \gamma$

• $pp \to H \to ZZ^*$

- Different Signal/Background ratio for each bin
- Large theory error in high jet multiplicity
- Different experimental challenge in parameter space

Xuan Chen (IPPP, Durham)

Higgs + jets: jet bin analyses in LHC

- Various selection rules in experiment to distinguish signal from background
- Need to study the precise theory involving those selection rules (e.g. jet veto cut)

• 0-jet bin:
$$\sigma_0 = \sigma_{tot} - \sigma_{\geq 1}$$

• Unertainty can be reduced by improving $\sigma_{\geq 1}$

$Higgs + jets: \ Differential \ cross \ section \ in \ LHC$

- Differential corss sections contain detailed properties of Higgs
- Large prediction error dominate by missing higher orders
- Request for more precise differential predictions

Higgs+jet @ NNLO in gluon fusion

- \bullet Independent computation of $gg \to H + J$ at NNLO in HEFT using Antenna Subtraction method
 - Computation for 8TeV LHC
 - Fully differential cross section
 - VEGAS integration coded up in FORTRAN
 - Dedicated phasespace generator
 - k_T with R=0.5, P_T cut at 30GeV
 - Use NNPDF23 set
 - Fixed central scale $\mu_R = \mu_F = M_H$
- One of the first NNLO processes done with two different subtraction formalisms
 - $gg \rightarrow H + J$ Sector-improved decomposition subtraction. Boughezal, Caola, Melnikov, Petriello, Schulze 1302.6216 [hep-ph] (cross section)
 - gg \rightarrow H + J Antenna subtraction. Chen, Gehrmann, Glover and Jaquier 1408.5325 [hep-ph] (differential distribution)
 - Important crosscheck

Higgs+jet @ NNLO in gluon fusion

• Importance of other channels

Cross section @ LO (pb)								
Process	30 GeV	50 GeV	100 GeV	150 GeV	200 GeV			
$gg \rightarrow gH$	7.6	4.2	1.4	0.67	0.35			
$pg \rightarrow pH$	9.9	6.1	2.8	1.8	1.4			
$pp \rightarrow gH$	7.7	4.2	1.5	0.68	0.35			
Cross section branch ratio @ LO								
Process	30 GeV	50 GeV	100 GeV	150 GeV	200 GeV			
$gg \rightarrow gH$	75.9%	69%	52.2%	36.7%	24.6%			
$qg \rightarrow qH$	23.3%	30.2%	47.2%	62.7%	74.9%			
$qq \rightarrow gH$	0.8%	0.8%	0.6%	0.6%	0.5%			

• Madgraph 5: fixed scale $\mu_R = \mu_F = M_H$, 0.1 million events, 13 TeV CME

- Vary jet cuts for the leading jet (30, 50, 100, 150, 200 GeV)
- gg and qg initiated channel dominant with qg the most important at high P_T

Higgs+jet building blocks

 Higgs production via gluon fusion through a quark loop. In the heavy Top mass limit, we have the effective interaction

• The effective interaction term in Lagrangian Wilczek, Shifman et al (70's)

$$\mathcal{L}_{H}^{int} = \frac{C}{2}H \operatorname{Tr} G_{\mu\nu} G^{\mu\nu}$$
$$C = \frac{\alpha_{s}}{6\pi V} (1 + \mathcal{O}(\alpha_{s}))$$

• Heavy Top quark mass limit gives less than 1% theoretical uncertainty Harlander, Mantler et al (10)

H

• Heavy Top mass limit approximation breaks down in high P_T region Harlander, Neumann et al (12)

Higgs+jet building blocks

- tree level 2→3+H amplitudes Del Duca, Frizzo, Maltoni; (use BCFW) Chen;
 Implicit divergency in P.S. (IR)
- 1-loop 2→2+H amplitudes Berger, Del Duca, Dixon; Badger, Glover, Mastrolia, Williams; Badger, Ellis
 - Implicit divergency in P.S. (IR) as well as explcit poles up to ϵ^{-2} (UV)
- 2-loop 2→1+H amplitudes Gehrmann, Jaquier, Glover, Koukoutsakis
 - Explicit poles up to ϵ^{-4} (UV)
- Analytic results with spinor-helicity formalism (stable check in unresolved P.S.)

Higgs+jet building blocks

tree level scattering amplitudes in QCD

- MHV amplitudes (certain helicity) Parke, Taylor (86)
- Twistor string theory (geometrical interpretation of MHV amplitudes) Witten (03)
- CSW amplitudes (all helicity off-shell recursion) Cachazo, Svrcek and Witten (04)
- BCFW amplitude (on-shell recursion) Britto, Cachazo, Feng and Witten (05)
- CHY formular (based on KLT Orthogonality, Yang-Mills and gravity theories in arbitrary spacetime dimensions) Cachazo,He, and Yuan (14)
- Ambitwistor string theory (high energy string scattering) Mason, Skinner (14)

• 1-loop scattering amplitudes in QCD

- Unitarity-based recursive method (on-shell cut for loop, recycle BCFW amplitudes) Berger, Bern, Dixon, Forde, Kosower (06)
- Use $\mathcal{N} = 4$ Super-Yang-Mills QCD properties.
- Rational piece in the finite contribution not fully recovered.

• 2-loop scattering amplitudes in QCD

• Currently still based on Feynman rules

Parton Level Cross Section Structure at NNLO

$$\begin{split} d\hat{\sigma}_{NNLO} &= \int [\langle \mathcal{M}^0 | \mathcal{M}^0 \rangle]_{H+5} d\Phi_{H+3} \\ &+ \int [\langle \mathcal{M}^0 | \mathcal{M}^1 \rangle + \langle \mathcal{M}^1 | \mathcal{M}^0 \rangle]_{H+4} d\Phi_{H+2} \\ &+ \int [\langle \mathcal{M}^1 | \mathcal{M}^1 \rangle + \langle \mathcal{M}^2 | \mathcal{M}^0 \rangle + \langle \mathcal{M}^0 | \mathcal{M}^2 \rangle]_{H+3} d\Phi_{H+1} \\ &= \int_{d\Phi_{H+3}} d\hat{\sigma}_{NNLO}^{RR} + \int_{d\Phi_{H+2}} d\hat{\sigma}_{NNLO}^{RV} + \int_{d\Phi_{H+1}} d\hat{\sigma}_{NNLO}^{VV} \end{split}$$

- $d\hat{\sigma}$ renormalised factorized parton level cross section
- Analytical integration of P.S. transforms IR divergence into explicit poles
- Challenge to extract implicit IR divergence from RR and RV without P.S. integration
 - Calculate RR and RV in separate parton level Monte Carlos
 - Collect finite contributions from RR and RV for differential cross-section analysis

NNLO Subtraction

$$d\hat{\sigma}_{NNLO} = \int_{d\Phi_{H+3}} (d\hat{\sigma}_{NNLO}^{RR} - d\hat{\sigma}_{NNLO}^{S}) + \int_{d\Phi_{H+2}} (d\hat{\sigma}_{NNLO}^{RV} - d\hat{\sigma}_{NNLO}^{T}) + \int_{d\Phi_{H+1}} (d\hat{\sigma}_{NNLO}^{VV} - d\hat{\sigma}_{NNLO}^{U})$$

- Subtraction terms mimic the divergent behaviour of matrix elements
- Each bracket is finite
- Calculations in *d* dimension for explicit pole cancellation
- The construction of red terms and the treatment of P.S. depends on the subtraction method
 - Antenna Subtraction
 - Sector-Improved Decomposition Subtraction

Consistency requirement:

$$0 = \int_{d\Phi_{H+3}} d\hat{\sigma}_{NNLO}^S + \int_{d\Phi_{H+2}} d\hat{\sigma}_{NNLO}^T + \int_{d\Phi_{H+1}} d\hat{\sigma}_{NNLO}^U$$

Antenna Subtraction Method

Gehrmann-De Ridder, Gehrmann, Glover

- Subtraction terms constructed from antenna functions (from ME)
- Each antenna has two specified hard radiators + 1 or 2 unresolved patrons

$$\begin{split} X^0_3(i,j,k) \sim & \frac{|\mathcal{M}^0_{ijk}|^2}{|\mathcal{M}^0_{IL}|^2} \\ X^0_4(i,j,k,l) \sim & \frac{|\mathcal{M}^0_{ijkl}|^2}{|\mathcal{M}^0_{IL}|^2} \\ X^1_3(i,j,k) \sim & \frac{|\mathcal{M}^1_{ijk}|^2}{|\mathcal{M}^0_{IK}|^2} - X^0_{ijk} \frac{|\mathcal{M}^1_{IK}|^2}{|\mathcal{M}^0_{IK}|^2} \end{split}$$

• Momentum mappings give the P.S. for reduced ME

$$d\Phi_{H+3} \to d\Phi_{H+2} d\Phi_{H+3} \to d\Phi_{H+1} d\Phi_{H+2} \to d\Phi_{H+1}$$

- Integrated antenna functions all known and contain explicit poles
- Explicit pole cancellation between integrated antenna functions and loop calculations is analytical

Xuan Chen (IPPP, Durham)

Antenna Subtraction Method

• Antenna function form physical matrix elements

A, Ã, B, C ~ γ^{*} → qq̄ + partons (hard quark - antiquark pair)
D, E, Ẽ ~ X̃ → g̃ + partons (hard quark - gluon pair)
F. G. G̃, H ~ H → partons (hard gluon - gluon pair)

Gehrmann-De Ridder, Gehrmann, Glover, 05

• Complete set of Antenna tool box

phase config. \otimes type \otimes parton types [FF, IF, II] \otimes $[X_3^0, X_4^0, X_3^1] \otimes [A \sim H]$

- All antenna functions are analytically integrable
 - Final-Final \mathcal{X}_3^0 , \mathcal{X}_4^0 and \mathcal{X}_3^1 Gehrmann-De Ridder, Gehrmann, Glover (05)
 - Initial-Final \ddot{X}^0_3 , \ddot{X}^0_4 and \ddot{X}^1_3 Daleo, Gehrmann, Gehrmann-De Ridder, Luisoni, Maitre (06,09,12)
 - Initial-Initial \mathcal{X}_3^0 , \mathcal{X}_4^0 and \mathcal{X}_3^1 Boughezal, Daleo, Gehrmann-De Ridder, Gehrmann, Maitre, Monni, Ritzmann (10,11,12)

Antenna subtraction for double real emission (RR)

 $d\hat{\sigma}^S_{NNLO} \sim X^0_3 |\mathcal{M}^0_{n+1}|^2 + X^0_4 |\mathcal{M}^0_n|^2 + X^0_3 X^0_3 |\mathcal{M}^0_n|^2 + X^0_3 |\mathcal{M}^0_n|^2 soft$

• Three possible colour ordering of double unresolved particles

Antenna subtraction for double real emission (RR)

 $d\hat{\sigma}^S_{NNLO} \sim X^0_3 |\mathcal{M}^0_{n+1}|^2 + X^0_4 |\mathcal{M}^0_n|^2 + X^0_3 X^0_3 |\mathcal{M}^0_n|^2 + X^0_3 |\mathcal{M}^0_n|^2 soft$

Test structure

$$R = \frac{d\hat{\sigma}_{NNLO}^{RR}}{d\hat{\sigma}_{NNLO}^S}$$

- $R \sim$ horizontal axis (centre at one near the unresolved region)
- Number of P.S. points in each bin \sim vertical axis
- Controlling singular region to achieve spike plot

Antenna subtraction for real emission at loop level (RV)

$$d\hat{\sigma}_{NNLO}^T \sim J_2^{(1)} |\mathcal{M}_{n+1}^0|^2 + X_3^0 |\mathcal{M}_n^1|^2 + X_3^1 |\mathcal{M}_n^0|^2 + J_2^{(1)} X_3^0 |\mathcal{M}_n^0|^2$$

Currie, Glover, Wells (13)

Only single unresolved limit

Xuan Chen (IPPP, Durham)

Antenna subtraction for real emission at loop level (RV)

 $d\hat{\sigma}_{NNLO}^T \sim J_2^{(1)} |\mathcal{M}_{n+1}^0|^2 + X_3^0 |\mathcal{M}_n^1|^2 + X_3^1 |\mathcal{M}_n^0|^2 + J_2^{(1)} X_3^0 |\mathcal{M}_n^0|^2$

Single unresolved limits preserve both explicit and implicit pole cancellation

Xuan Chen (IPPP, Durham)

Antenna subtraction for two-loop level (VV)

- Double virtual level only have explicitly poles and no parton become unresolved
- Collect all leftover subtraction terms (integrated) in $d\hat{\sigma}^U_{NNLO}$

$$\begin{split} d\hat{\sigma}_{NNLO}^{U} &\sim J_{2}^{(1)} (|\mathcal{M}_{n}^{1}|^{2} - \frac{\beta_{0}}{\epsilon} |\mathcal{M}_{n}^{0}|^{2}) \\ &- \frac{1}{2} J_{2}^{(1)} \otimes J_{2}^{(1)} |\mathcal{M}_{n}^{0}|^{2} \\ &+ J_{2}^{(2)} |\mathcal{M}_{n}^{0}|^{2} \end{split}$$

Currie, Glover, Wells (13)

$$pole\{d\hat{\sigma}_{NNLO}^{VV}\} \sim pole\left\{I_{ij}^{(1)} \otimes |\mathcal{M}_{n}^{1}|^{2} - (\frac{1}{2}I_{ij}^{(1)} \otimes I_{ij}^{(1)} + \frac{\beta_{0}}{\epsilon} - I_{ij}^{(2)})|\mathcal{M}_{n}^{0}|^{2}\right\}$$

S. Catani (98)

- VV pole cancellation analytically checked with FORM
- Master code (.map) \rightarrow (.frm) (.f) (.tex)

Xuan Chen (IPPP, Durham)

Higgs+jet @ NNLO in gluon fusion

- \bullet Independent computation of $gg \to H + J$ at NNLO in HEFT using Antenna Subtraction method
 - Computation for 8TeV LHC
 - Fully differential cross section
 - VEGAS integration coded up in FORTRAN
 - Dedicated phasespace generator
 - k_T with R=0.5, P_T cut at 30GeV
 - Use NNPDF23 set
 - Fixed central scale $\mu_R = \mu_F = M_H$
- One of the first NNLO processes done with two different subtraction formalisms

 - gg \rightarrow H + J Antenna subtraction. Chen, Gehrmann, Glover and Jaquier 1408.5325 [hep-ph] (differential distribution)
 - Important crosscheck

Higgs P_T distribution

- NLO changes normalisation + shape compare to LO
- NNLO changes normalisation (\sim 1.4), but changes shape less compared to NLO
- Sizeable NNLO corrections throughout whole P_{TH} range
- Real radiation gives contribution to P_{TH} at $P_{TH} < P_T^{cut}$
- Bands show the scale variation between $M_{H}/2$ and $2M_{H}$
- Error bars are the numerical integration errors

Chen, Gehrmann, Glover and Jaquier 1408.5325 [hep-ph]

Jet P_T distribution

- NLO changes normalisation + shape compare to LO
- NNLO changes normalisation, but changes shape less compare to NLO
- Sizeable NNLO corrections throughout whole P_{TH} range
- At $p_T > m_t$, effective theory for Hgg vertex breaks down. NLO study in 1206.0157 [hep-ph]
- Larger NNLO corrections in higher P_T region
 - Observed cancellation between gg and qg channel in NLO (not complete yet)
 - Illustrate the integrator is well-behaved also at high ${\cal P}_{{\cal T}}$
- Dynamic scale choice will further improve the current fixed scale result

Chen, Gehrmann, Glover and Jaquier 1408.5325 [hep-ph]

Higgs pseudorapidity distribution

- NLO changes normalisation + shape compare to LO
- NNLO changes normalisation, but changes shape less compare to NLO
- Largest NLO corrections at central rapidity, while becoming moderate at larger rapidities
- Jet cut at high rapidity → large momentum flow (testing the applicability of effective theory approximation)
- The residual theory uncertainty at NNLO is quasi constant for about 9%

Chen, Gehrmann, Glover and Jaquier 1408.5325 [hep-ph]

Jet pseudorapidity distribution

- NLO changes normalisation + shape compare to LO
- NNLO changes normalisation, but changes shape less compare to NLO
- Largest NLO corrections at central rapidity, while becoming moderate at larger rapidities
- Jet cut at high rapidity \rightarrow large momentum flow (testing the applicability of effective theory approximation)
- The residual theory uncertainty at NNLO is quasi constant for about 9%

Chen, Gehrmann, Glover and Jaquier 1408.5325 [hep-ph]

Summary

- gg channel Higgs + jet @ NNLO
 - Fully differential Higgs + jet cross section at hardon colliders @ NNLO
 - Substantial NNLO corrections in the transverse momentum and rapidity distributions of the Higgs
 - Bring Higgs + jet production to the same level of theory accuracy as inclusive Higgs production
- Future work
 - Prority to compare with ATLAS $H + J \rightarrow \gamma \gamma + J$ results (and other possible decay channel)
 - Implement multi-scale $(\mu_R \neq \mu_F)$ and dynamic scale $(\mu = \sqrt{m_H^2 + P_{TH}^2})$
 - Differential cross section for centre of mass energies.
 - qg and qq initiated channels (qg channel dominant in high P_T)

Back up slides

Computation Performance

channel	cross section [pb]	approx. processor time	core	events
Born	1.9424 ± 0.0004	1 min	2	2M
Virt	2.8857 ± 0.0003	30 min	2	2M
Real	-0.5720 ± 0.0022	3 h	10	20M
VV	3.1032 ± 0.0010	2 min	2	20M
RV	-1.1616 ± 0.0077	350 h $+$ 1 day warmup	20	40M
RRA	0.0941 ± 0.0241	1400 h $+$ 5 day warmup	100	500M
RRB	0.0505 ± 0.0161	1200 h $+$ 5 day warmup	100	250M