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Introduction

I System of interest: 4 dimensional ideal non-relativistic fluid.

I The respective relativistic system is well known.

I One can take a ‘non-relativistic’ limit (v � c) to get the non-relativistic
counterpart. [Kaminski et al.’14]

I In [Rangamani et al.’08] an alternative approach – null reduction was suggested to
get ‘a’ Galilean fluid starting from a 5 dimensional relativistic fluid.

I The goal of this talk is to revisit and address some issues with this
construction – we want to find a relativistic system whose null reduction will
give the most generic Galilean fluid.

I If time permits, we will also discuss how null reduction can be used to study
anomalies in Galilean theories.
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Null Reduction

I Fact: 4 dimensional Galilean algebra is a sub-algebra of the 5 dimensional
Poincaré algebra, defined as the subset which leaves a null momenta invariant.

I Consider generators of a 5 dimensional Poincaré algebra,

Translations: PM , Rotations and Boosts: MMN , (1)

where M,N . . . = 0, 1, 2, 3, 4. They have commutation relations,

[PM ,PN ] = 0,
[MMN ,PR] = ηMRPN − ηNRPM ,

[MMN ,MRS ] = ηMRMNS − ηMSMNR − ηNRMMS + ηNSMMR. (2)

I In null coordinates xM = {x±, xi} such that x± = 1√
2

(
x0 ± xd+1

)
and

i, j . . . = 1, 2, 3,

P−, P+, Pi , M−+, M−i , M+i , Mij . (3)
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Null Reduction

I We want to pickup a subset of these generators which commute with null
momenta P−,

P−, P+, Pi , Bi ≡ Mi−, Mij . (4)

I This subset forms a 4 dimensional Galilean algebra with P− as a Casimir,

[P−,P+] = [P−,Pi ] = [P−,Bi ] = [P−,Mij ] = 0,
[P+,Pi ] = [P+,Mij ] = [Pi ,Pj ] = [Bi ,Bj ] = 0,
[Bi ,P+] = Pi , [Bi ,Pj ] = ηijP−,
[Mij ,Pk ] = ηikPj − ηjkPi , [Mij ,Bk ] = ηikBj − ηjkBi ,

[Mij ,Mkl ] = ηikMjl − ηilMjk − ηjkMil + ηjlMik . (5)

I From here the generators of the Galilean algebra can be identified as,

Continuity: P−, Time Translation: P+, Space Translations: Pi ,

Galilean Boosts: Bi , Rotations: Mij . (6)
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Null Backgrounds

I Consider a 5 dimensional relativistic spacetimeM, equipped with a metric
ds2 = GMNdxMdxN . We describe a physical theory onM by a set of
dynamical fields Φ(i).

I IfM admits a covariantly constant null Killing vector VM ,

∇MVN = 0, VMVM = 0, £VGMN = 0
:::::::::

, (7)

it can be interpreted as a 4 dimensional Galilean manifold. We call such aM
to be a null background.

I Similarly if V leaves dynamical fields Φ(i) invariant,

£V Φ(i) = VM∇M Φ(i) = 0, (8)

the physical theory defined onM can be realized as a Galilean theory.
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Null Backgrounds

I To get the ‘conventional’ representation of Galilean theories, we need to
choose a time field TM , and pick up a basis xM = {x−, t, xi} such that
V = ∂− and T = ∂t . t plays the role of Galilean time. Metric can be
decomposed as,

ds2 = 2
(
ntdt + nidxi

) (
−dx− + Btdt + Bidxi

)
+ gijdxidxj . (9)

I Conditions of null background will then dictate that nt ,ni ,Bt ,Bi , gij are just
functions of Galilean time t and spatial coordinates xi . Further the ‘time
metric is closed’,

∂tni − ∂int = 0, ∂inj − ∂jni = 0. (10)

I Finally for a theory onM to have a Galilean interpretation we would need to
demand,

∇−Φ(i) = ∂−Φ(i) = 0. (11)
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Reduction of Ward Identities

I For simplicity lets consider spacetime to be flat.
I Consider a physical theory onM with an energy-momentum TMN , which

follows the Ward identity associated with diffeomorphism symmetry,

∂MTMN = 0. (12)

I On performing null reduction, these Ward identities will become,

∂tT t− + ∂iT i− = 0, ∂tT tt + ∂iT it = 0, ∂tT tj + ∂iT ij = 0. (13)

I They can be realized as energy, mass and momentum conservation equations
respectively if we identify,

Mass Density: ρ = T tt , Mass Current: ρi = T ti ,

Energy Density: ε = T−t , Energy Current: εi = T−i ,

Stress Tensor: pij = T ij . (14)

I Respective conservation laws will look like,

∂tε+ ∂iε
i = 0, ∂tρ+ ∂iρ

i = 0, ∂tρ
j + ∂ipij = 0. (15)
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Relativistic Ideal Hydrodynamics

I A fluid is characterized by a set of conserved currents (e.g. TMN ), with
dynamics given by Ward identities imposed as equations of motion.

I A fluid configuration is described by a set of fluid variables which can be
exactly solved for using the equations of motion,

Temperature: ϑrel , Velocity: uM
rel where uM

relu
N
relηMN = −1.

I In terms of fluid variables, the most generic expression of TMN , known as
constitutive relations of the fluid, at ideal order is given by,

TMN = Erel(ϑrel)uM
relu

N
rel + Prel(ϑrel)

(
ηMN + uM

relu
N
rel

)
, (16)

where Erel is the energy density and Prel is the pressure density.
I The fluid is required to follow the second law of thermodynamics, i.e. there

must exist an entropy current JM
s such that ∂MJM

s ≥ 0.
I JM

s = Srel(ϑrel)uM
rel does the job given the fluid satisfies,

First Law of Thermodynamics: dErel = ϑreldSrel ,

Gibbs-Duhem Relation: Erel + Prel = ϑrelSrel , (17)

where Srel is the entropy density.
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Null Reduction of Relativistic Hydrodynamics

I Using our dictionary of relativistic and Galilean Ward identities, we can read
out Galilean constitutive relations,

ρ = T tt = R, ρi = T ti = Rvi , pij = T ij = Rvivj + Pηij ,

ε = T−t =
1
2
R~v2 + E, εi = T−i

(1
2
R~v2 + E + P

)
vi ,

s = J t
s = S , si = J i

s = Svi , (18)

where we have identified,

R = (Erel + Prel)(ut
rel)

2, vi =
ui

rel
ut

rel
,

E =
1
2

(Erel − Prel), P = Prel , S = Srelut
rel . (19)

Here we have used the velocity normalization: 2ut
relu
−
rel = 1 + ~u2

rel .
I We have recovered the standard constitutive relations of a Galilean fluid.
I Note that these identifications also imply,

R = 2(ut
rel)

2(E + P). (20)
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Null Reduced Thermodynamics

I We finally proceed to reduce the thermodynamics. Using the mapping of
thermodynamic function, it trivially follows that,

dE = −
1

2(ut
rel)2 dR +

ϑrel
ut

rel
dS , E + P = −

1
2(ut)2

rel
R +

ϑrel
ut

rel
S . (21)

I From here we can read out Galilean temperature ϑ = ϑrel
ut

rel
and Galilean mass

chemical potential µM = − 1
2(ut

rel)
2 .

I Con: Note that the thermodynamics is restricted,

E + P + RµM = 0, (22)

due to identification R = 2(ut
rel)

2(E + P).
I Con: Thermodynamic functions E,P,S are effectively arbitrary functions of

only one variable (as their relativistic parents are arbitrary functions of one
variable), however for a Galilean fluid we expect them to be arbitrary
functions of two variables ϑ, µM.

I Conclusion: Null reduction of a relativistic fluid does not give the most
generic Galilean fluid.
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Null Hydrodynamics

I Idea: Instead of starting with the relativistic fluid, we should construct a
theory of fluids on null backgrounds from scratch – null fluids.

I We choose fluid variables to be,

Temperature: ϑ, Mass Chemical Potential: µM,

Null Velocity: uM where uMuM = 0, uMVM = −1. (23)

I Constitutive relations of a null fluid, at ideal order, are given as,

TMN = R(ϑ, µM)uMuN + 2E(ϑ, µM)uMVN

+ P(ϑ, µM)
(
ηMN + VMuN + uMVN

)
+ #(ϑ, µM)VMVN . (24)

I Requiring null fluid to follow the second law of thermodynamics we find
JM

s = S(ϑ, µM)uM , provided the system follows,

dE = µMdR + ϑdS , E + P = µMR + ϑS . (25)

Note that the thermodynamics already looks Galilean.
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Null Reduction of Null Hydrodynamics

I A straight away reduction of the constitutive relations will yield,

ρ = T tt = R, ρi = T ti = Rui , pij = T ij = Ruiuj + Pηij ,

ε = T−t =
1
2
R~u2 + E, εi = T−i =

(1
2
R~u2 + E + P

)
ui ,

s = J t
s = S , si = J i

s = Sui . (26)

Here we have used the velocity normalization: ut = 1, u− = 1
2~u

2.

I Pro: There is no need of an identification; the constitutive relations are
already in their Galilean form.

I Pro: Thermodynamics is unrestricted, and is same as the null fluid,

dE = µMdR + ϑdS , E + P = µMR + ϑS . (27)

I Pro: Thermodynamic variables are a function of two variables ϑ, µM.

I Conclusion: Null reduction of a null fluid gives the most generic Galilean
fluid, and the map between quantities in both the theories is trivial (at least
at ideal order).
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Null Fluids as an Embedding of Galilean Fluids

I Claim: Null fluid is an embedding of the Galilean fluid into a spacetime of
one higher dimension. It is merely a ‘nicer’ covariant boost-invariant language
for the same thing.

I There is a better known ‘covariant formulation’ of Galilean hydrodynamics in
terms of Newton-Cartan geometries [Jensen ’14], which however is not explicitly
boost invariant.

I Attempts were made by [Geracie et.al.’15] to make this formulation boost
invariant by embedding the fluid into a spacetime of one higher dimension –
the extended space representation.

I It can be showed that the extended space representation is just the
bottom-up approach to the null fluid [Jain ’15].
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Further Developments on Null Backgrounds/Null Fluids

I The nice trivial mapping between constitutive relations of a null fluid and a
Galilean fluid also works for dissipative fluids.

I The entire null background story can be extended to include a slowly varying
curved torsional spacetime.

I The null background construction can also be extended to include a U(1)
gauge field, and with a corresponding anomalous U(1) current.

I Null backgrounds can also describe a Galilean system with a non-abelian and
spin anomaly (equivalent of relativistic gravitational anomaly).
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Charged Null Backgrounds

I Consider a relativistic theory coupled to a 5 dim spacetimeM, equipped with
a metric GMN , a U(1) gauge field AM (with associated field strength FMN ).

I We defineM as a null background by introduction of a covariantly constant
compatible null Killing vector VM ,

∇MVN = 0, AMVM = 0, VMVM = 0, £VGMN
::::::

= £VAM = 0. (28)

I Coming back to flat space, Ward identities corresponding to diffeomorphisms
and gauge invariance are given as,

∂MTMN = FNRJR, ∂MJM = 0, (29)

where TMN is the energy-momentum tensor and JM is the charge current.
I Null reduction of these Ward identities will yield,

∂tT tt + ∂iT it = −J t∂tAt − J i∂iAt ,

∂tT t− + ∂iT i− = J−∂tAt −
(
∂tAi + ∂iA−

)
J i ,

∂tT tj + ∂iT ij = −J−∂jAt −
(
∂tAj + ∂jA−

)
J t +

(
∂jAi − ∂iAj

)
J i ,

∂tJ t + ∂iJ i = 0. (30)
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Reduction of Charged Ward Identities

I These can be identified as mass, energy, momentum and charge conservation
equations of a Galilean theory if we identify,

ρ = T tt , ρi = T ti , ε = T−t , εi = T−i , pij = T ij ,

Charge Density: q = J t , Charge Current: ji = J i ,

Electric Field: ei = −∂iA− − ∂tAi , Dual Magnetic Field: βij = ∂iAj − ∂jAi .

I Having done the identification, the corresponding Ward identities look like,

∂tρ+ ∂iρ
i = −q∂tAt − ji∂iAt ,

∂tε+ ∂iε
i = J−∂tAt + jiei ,

∂tρ
j + ∂ipi

j = −J−∂jAt + qej + [~j ×~b]j ,

∂tq + ∂i ji = 0, (31)

where bi = 1
2 ε

ijkβjk is the magnetic field and εijk = −ε−tijk .

I We see that At serves as a source of mass. For physically realizable theories
we need to get rid of these mass sources, which is indeed done by our
compatibility condition: AMVM = −At = 0.

21 / 24



Reduction of U(1) Anomaly

I Finally we want to make some comments on obtaining anomalies via null
reduction.

I 5 dimensional relativistic theories do not have U(1) anomaly, so the 4
Galilean theory gained via null reduction is non-anomalous.

I 4 dimensional relativistic theories do have a U(1) anomaly,

∂M JM =
3
4

C(4)
ε

MNRS FMN FRS , (32)

but it vanishes upon null reduction,

∂tq + ∂iji = 3C(4)
(

−εij
βij∂tAt + 2εijei∂jAt

)
= 0, (33)

where εij = −ε−tij . Hence 3 dimensional Galilean theories gained via null
reduction are non-anomalous.

I Conclusion: Galilean theories gained via null reduction are non-anomalous (at
least for U(1) anomalies).
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Modified U(1) Anomaly on Null Backgrounds

I Do Galilean systems exhibit anomalies? Yes, [Bakas et al.’11] computed U(1)
anomaly for a Galilean system (Lifshitz fermions), using path integral
methods.

I Idea: We can introduce a ‘modified U(1) anomaly’ on null backgrounds which
gives the correct Galilean anomalies upon null reduction.

I Consider a modified U(1) anomaly,

∂MJM =
3
4
C (4)εMNRST V̄MFNRFST , (34)

such that V̄MVM = −1.

I It does not matter what V̄M we choose; upon reduction it gives rise to,

∂tq + ∂i ji = −3C (4)εijkeiβjk = −6C (4)eibi . (35)

This is the correct U(1) anomaly as found by [Bakas et al.’11].
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Conclusions

I There exists a well defined relativistic system – null fluid, whose null
reduction gives the most generic Galilean fluid.

I Null backgrounds can be seen as a nicer representation of Galilean
backgrounds, which is covariant, boost invariant, and is easier to handle.

I Null backgrounds can be used to translate various exotic relativistic
phenomenon (like anomalies) to Galilean theories.
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