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Introduction

> System of interest: 4 dimensional ideal non-relativistic fluid.
> The respective relativistic system is well known.

> One can take a ‘non-relativistic’ limit (v < ¢) to get the non-relativistic
counterpart. [Kaminski et al.’14]

> In [Rangamani et a1.’08] an alternative approach — null reduction was suggested to
get ‘a’ Galilean fluid starting from a 5 dimensional relativistic fluid.

» The goal of this talk is to revisit and address some issues with this
construction — we want to find a relativistic system whose null reduction will
give the most generic Galilean fluid.

» If time permits, we will also discuss how null reduction can be used to study
anomalies in Galilean theories.
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Null Reduction

» Fact: 4 dimensional Galilean algebra is a sub-algebra of the 5 dimensional

Poincaré algebra, defined as the subset which leaves a null momenta invariant.

» Consider generators of a 5 dimensional Poincaré algebra,

Translations: Py, Rotations and Boosts: My, (1)
where M, N...=0,1,2,3,4. They have commutation relations,
[PM1 PN] =0,
[Muyn, Pr] = nurPy — 9nrPu,
(Muyn, Mgs] = nurMys — nusMyr — qveMus + vs Mug. (2)
» In null coordinates ™ = {z*, 27} such that 2+ = % (zo + a:d+1) and
ij...=1,2,3,
pP_, Py, P;, M_4, M_;, My, My (3)
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Null Reduction

» We want to pickup a subset of these generators which commute with null
momenta P_,
P,, P+, Pi, Bi = ]MZ‘,7 Mij. (4)

> This subset forms a 4 dimensional Galilean algebra with P_ as a Casimir,

[P—, Py] = [P-, Pi] =[P, Bi] = [P-, My] =0,
[P+, Pi] = [P+, Myj| = [Pi, Pj] = [Bi, Bj] = 0,
[Bi, P4] = Py, [Bi, Pj] = nii P—,
[Mij, Pr] = nix Py — njx Pi, [Mij, Bx] = nax Bj — nji. Bi,
[Mij, M) = mae My — nag M — njp Mg 4 nje Mg, (5)

» From here the generators of the Galilean algebra can be identified as,
Continuity: P_, Time Translation: P, Space Translations: P;,

Galilean Boosts: By, Rotations:  Mj;. (6)
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Null Backgrounds

» Consider a 5 dimensional relativistic spacetime M, equipped with a metric
ds? = GynydzMdzN. We describe a physical theory on M by a set of
dynamical fields ®(9.

» If M admits a covariantly constant null Killing vector V¥,

VMVN :0, VMVM :0, £VGMN:0, (7)

it can be interpreted as a 4 dimensional Galilean manifold. We call such a M
to be a null background.

» Similarly if V leaves dynamical fields ®(%) invariant,
£y00) = Vv, =, (8)

the physical theory defined on M can be realized as a Galilean theory.
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Null Backgrounds

» To get the ‘conventional’ representation of Galilean theories, we need to
choose a time field T, and pick up a basis ™ = {z~, ¢, 2} such that
V =0_ and T = 0:. t plays the role of Galilean time. Metric can be
decomposed as,

ds® = 2 (nedt + nida’) (—da™ + Bidt + Bidz') + gidz'da’. (9)

» Conditions of null background will then dictate that n, n;, B, By, gij are just
functions of Galilean time ¢ and spatial coordinates z*. Further the ‘time
metric is closed’,

Oin; — Oing = 0, Oinj — Ojn; = 0. (10)
» Finally for a theory on M to have a Galilean interpretation we would need to

demand, ] )
v_o =g o =o. (11)
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Reduction of Ward ldentities

» For simplicity lets consider spacetime to be flat.

» Consider a physical theory on M with an energy-momentum 7™V which
follows the Ward identity associated with diffeomorphism symmetry,

O TN = 0. (12)

> On performing null reduction, these Ward identities will become,

8T +0;, T =0, 8, T +8; T™ = 0, TV +0;T9=0. (13)

> They can be realized as energy, mass and momentum conservation equations
respectively if we identify,

Mass Density: p = T, Mass Current: p? = T,
Energy Density: e = T, Energy Current: €= Tfi,
Stress Tensor: p¥ = TY, (14)

» Respective conservation laws will look like,

e+ 9" =0, Bip+ 0ip' =0, Ap’ + 8ip¥ = 0. (15)
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Relativistic Ideal Hydrodynamics

v

A fluid is characterized by a set of conserved currents (e.g. T™V), with
dynamics given by Ward identities imposed as equations of motion.

» A fluid configuration is described by a set of fluid variables which can be
exactly solved for using the equations of motion,

. M M, N
Temperature: 9, Velocity: u,,, where w,.u, nuy = —1.

» In terms of fluid variables, the most generic expression of T"", known as
constitutive relations of the fluid, at ideal order is given by,

TMN — Erel(ﬂ'r'el)“%luzzl + Prel(ﬁrel) (TIMN + u%luﬁ?l) ’ (16)

where FE,.; is the energy density and P,.; is the pressure density.

> The fluid is required to follow the second law of thermodynamics, i.e. there
must exist an entropy current JM such that 9y JM > 0.

> JM = 8(9re)uM, does the job given the fluid satisfies,

rel
First Law of Thermodynamics:  dE,¢ = ¥e;dSyer,
Gibbs-Duhem Relation:  E,¢; + Prep = 9ye1Srels (17)

where S,.; is the entropy density.
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Null Reduction of Relativistic Hydrodynamics

» Using our dictionary of relativistic and Galilean Ward identities, we can read
out Galilean constitutive relations,

p=T" =R, pi = T% = R, p = T = Ruivd + Py,
1, i i1, i
e="1T :§Rv + E, =T iRv + E+ P ) v,

s=Ji=25, st =Jl= S, (18)

S
where we have identified,
t 2 ;U
R= (Erel + Prel)(urel) ) v’ = &7

t
Urel

1
E = §(E7‘el - Prel)7 P = P’rel7 S = S’relut (19)

rel”

Here we have used the velocity normalization: 2u£clurel

=1+ 7]’Eel'
» We have recovered the standard constitutive relations of a Galilean fluid.

> Note that these identifications also imply,
R =2(up,))*(E + P). (20)

AR
WP Durham

University 12 /24



Null Reduced Thermodynamics

» We finally proceed to reduce the thermodynamics. Using the mapping of
thermodynamic function, it trivially follows that,

1 ﬁrel 1 ﬁrel
dE = ————dR+ —%dS, E+P=—-———R+—%5  (21)
2(u7t“6l)2 urt“rzl Z(Mt)iel urt“rzl

> From here we can read out Galilean temperature ¥ = % and Galilean mass

rel

hemical potential =1
chemical potential fing 2(”:.65)2

> Con: Note that the thermodynamics is restricted,
E+ P+ Rum =0, (22)

due to identification R = 2(u!

ml)Q (E+ P).

» Con: Thermodynamic functions E, P, S are effectively arbitrary functions of
only one variable (as their relativistic parents are arbitrary functions of one
variable), however for a Galilean fluid we expect them to be arbitrary

functions of two variables 9, pi.

» Conclusion: Null reduction of a relativistic fluid does not give the most
generic Galilean fluid.
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Null Hydrodynamics

> Idea: Instead of starting with the relativistic fluid, we should construct a
theory of fluids on null backgrounds from scratch — null fluids.

» We choose fluid variables to be,
Temperature: 9, Mass Chemical Potential: i,

Null Velocity: v where u™uy =0, u™Vy=—1. (23)

v

Constitutive relations of a null fluid, at ideal order, are given as,

TN = R, pw) u™u + 2E(9, ) u™ VY
+ P9, ) (Y + VMUY 4 uM V) (0, ) VIV (24)
> Requiring null fluid to follow the second law of thermodynamics we find
JM = S(9, par)uM, provided the system follows,
dE = pydR +9dS,  E+ P = R+ 9S. (25)

Note that the thermodynamics already looks Galilean.
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Null Reduction of Null Hydrodynamics

> A straight away reduction of the constitutive relations will yield,
p=T% =R, pl= T" = Ru’, p¥ = TY = Rulv/ + Pn9,
—t_ Lo i —i L i
e=T :5Ru + E, e=T""= 5Ru +E+ P)u',
s=Jl=S, st =Jl = Su'. (26)

Here we have used the velocity normalization: ut =1, u~ = %11'2.

» Pro: There is no need of an identification; the constitutive relations are
already in their Galilean form.

» Pro: Thermodynamics is unrestricted, and is same as the null fluid,

» Pro: Thermodynamic variables are a function of two variables 9, pin.

> Conclusion: Null reduction of a null fluid gives the most generic Galilean
fluid, and the map between quantities in both the theories is trivial (at least
at ideal order).
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Null Fluids as an Embedding of Galilean Fluids

> Claim: Null fluid is an embedding of the Galilean fluid into a spacetime of
one higher dimension. It is merely a ‘nicer’ covariant boost-invariant language
for the same thing.

> There is a better known ‘covariant formulation’ of Galilean hydrodynamics in
terms of Newton-Cartan geometries rensen »141, which however is not explicitly
boost invariant.

> Attempts were made by (Geracie et.a1.15] to make this formulation boost
invariant by embedding the fluid into a spacetime of one higher dimension —
the extended space representation.

> It can be showed that the extended space representation is just the
bottom-up approach to the null fluid (sain »1s3.
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Further Developments on Null Backgrounds/Null Fluids

» The nice trivial mapping between constitutive relations of a null fluid and a
Galilean fluid also works for dissipative fluids.

> The entire null background story can be extended to include a slowly varying
curved torsional spacetime.

» The null background construction can also be extended to include a U(1)
gauge field, and with a corresponding anomalous U(1) current.

> Null backgrounds can also describe a Galilean system with a non-abelian and
spin anomaly (equivalent of relativistic gravitational anomaly).
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Charged Null Backgrounds

> Consider a relativistic theory coupled to a 5 dim spacetime M, equipped with
a metric Gy, a U(1) gauge field Ay (with associated field strength Faw).

> We define M as a null background by introduction of a covariantly constant
compatible null Killing vector VM,

VuV¥=0, AuVY=0 VyV"=0, £yGunv=LyAu=0. (28)

» Coming back to flat space, Ward identities corresponding to diffeomorphisms
and gauge invariance are given as,

Ou TYN = FNF Jp, ouJM =0, (29)
where TM" is the energy-momentum tensor and J" is the charge current.
> Null reduction of these Ward identities will yield,
O, Tt + 8; T = —J19, At — J9; A,
O T' ™ + 0, T = J 0, A" — (8 Ai + 0,47 T,
0T +0; T = —J A" — (9, A1+ DA™ J' + (074, — 0:47) T,
It +0;J=0. (30)
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Reduction of Charged Ward ldentities

> These can be identified as mass, energy, momentum and charge conservation
equations of a Galilean theory if we identify,

p=TH pi=TH =Tt & =71 pi="Ti
Charge Density: ¢ = J?, Charge Current: j° = J?,
Electric Field: e; = —0; A~ — 0¢A;, Dual Magnetic Field: B;j = 0;A; — 0;A;.

» Having done the identification, the corresponding Ward identities look like,
O+ 9ip’ = —qd At — ji9; A,
Ore + 8i6i = J_atAt +ji€i,
(9tpi + 6Z‘pi]‘ = 7J7(9jAt + qe; + [jX jj,
8tq+81-ji 0, (31)

where b¢ = %eijkﬁjk is the magnetic field and e = —¢— ik,

» We see that A? serves as a source of mass. For physically realizable theories
we need to get rid of these mass sources, which is indeed done by our
compatibility condition: Ay VM = —At = 0.

AR
WP Durham

University



Reduction of U(1) Anomaly

> Finally we want to make some comments on obtaining anomalies via null
reduction.

> 5 dimensional relativistic theories do not have U(1) anomaly, so the 4
Galilean theory gained via null reduction is non-anomalous.

> 4 dimensional relativistic theories do have a U(1) anomaly,

oI = gc“)eMNRSFMNFRS, (32)
but it vanishes upon null reduction,
dia+0:' = 3CY (—e"80,A" + 267 ei0;4") =0, (33)
where €% = —¢~ ", Hence 3 dimensional Galilean theories gained via null

reduction are non-anomalous.

» Conclusion: Galilean theories gained via null reduction are non-anomalous (at
least for U(1) anomalies).

AR
WP Durham

University

N
N}
N
=



Modified U(1) Anomaly on Null Backgrounds

» Do Galilean systems exhibit anomalies? Yes, (pakas et a1.’111 computed U(1)
anomaly for a Galilean system (Lifshitz fermions), using path integral
methods.

> Idea: We can introduce a ‘modified U(1) anomaly’ on null backgrounds which
gives the correct Galilean anomalies upon null reduction.

» Consider a modified U(1) anomaly,
3 —
8MJM = 10(4)6MNHST ‘/1\4}71\/1.1}7‘51"7 (34)
such that Vy VM = —1.
» It does not matter what Vj; we choose; upon reduction it gives rise to,
g+ 055" = =30 ek ey = —6C™ e;b". (35)
This is the correct U(1) anomaly as found by (saxas et a1.’111.
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Conclusions

> There exists a well defined relativistic system — null fluid, whose null
reduction gives the most generic Galilean fluid.

» Null backgrounds can be seen as a nicer representation of Galilean
backgrounds, which is covariant, boost invariant, and is easier to handle.

> Null backgrounds can be used to translate various exotic relativistic
phenomenon (like anomalies) to Galilean theories.
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