

0vββ within the Left- Right Symmetric Model

Andres Olivares del Campo

2-11-2015 IPPP Student Seminar

Supervised by Prof. Allanach

Neutrino masses and seesaw mechanism

Neutrino masses and seesaw mechanism

Experimental signatures of 0vββ

- Neutrino masses and seesaw mechanism
- Experimental signatures of 0vββ
- Standard mechanism for 0vββ

- Neutrino masses and seesaw mechanism
- Experimental signatures of 0vββ
- Standard mechanism for 0vββ
- Minimal Left-Right Symmetric Model (LRSM)

- Neutrino masses and seesaw mechanism
- Experimental signatures of 0vββ
- Standard mechanism for 0vββ
- Minimal Left-Right Symmetric Model (LRSM)
- Extra contributions to 0vββ and limits on new physics parameters

• Why do they have mass?

• Why do they have mass?

• Why small?

• Why do they have mass?

• Why small?

Seesaw Mechanism

• Why do they have mass?

• Why small?

Seesaw Mechanism

- Type I: Adding heavy right handed neutrinos N
- Type II: Adding a scalar triplet Δ
- Type III: Adding a fermionic triplet

 Majorana or Dirac?

 Neutrinos are neutral so they could be their own antiparticles

 Neutrinos are neutral so they could be their own antiparticles

•
$$2\nu\beta\beta$$
: N(A,Z) \rightarrow N(A, Z+2) + $2e^{-}$ + $2\nu_{e}$

•
$$0\nu\beta\beta$$
: N(A,Z) \rightarrow N(A, Z+2) + 2e⁻

• $2\nu\beta\beta$: N(A,Z) \rightarrow N(A, Z+2) + $2e^{-}$ + $2\overline{\nu}_{e}$

- 4-body decay
- $0\nu\beta\beta$: N(A,Z) \rightarrow N(A, Z+2) + 2e⁻
 - 2-body decay

•
$$2\nu\beta\beta$$
: N(A,Z) \rightarrow N(A, Z+2) + $2e^{-}$ + $2\nu_{e}$

4-body decay

•
$$2\nu\beta\beta$$
: N(A,Z) \rightarrow N(A, Z+2) + $2e^{-}$ + $2\nu_{e}$

4-body decay

•
$$2\nu\beta\beta$$
: N(A,Z) \rightarrow N(A, Z+2) + $2e^{-}$ + $2\nu_{e}$

- 4-body decay
- $0\nu\beta\beta$: N(A,Z) \rightarrow N(A, Z+2) + 2e⁻
 - 2-body decay
 - $v = \overline{v} \rightarrow Majorana$
 - Decay of ⁷⁶Ge and ¹³⁶Xe

•
$$T_{1/2}$$
 for ⁷⁶Ge = 3.0 x 10²⁵ Yrs

•
$$T_{1/2}$$
 for ¹³⁶Xe = 1.9 x 10²⁵ Yrs

•
$$T_{1/2}$$
 for ⁷⁶Ge = 3.0 x 10²⁵ Yrs

•
$$T_{1/2}$$
 for ¹³⁶Xe = 1.9 x 10²⁵ Yrs

$$T_{1/2}^{-1} = G_x(Q,Z) |\mathcal{M}_x(A,Z)\eta_x|^2$$

•
$$T_{1/2}$$
 for ⁷⁶Ge = 3.0 x 10²⁵ Yrs

•
$$T_{1/2}$$
 for ¹³⁶Xe = 1.9 x 10²⁵ Yrs

•
$$T_{1/2}$$
 for ⁷⁶Ge = 3.0 x 10²⁵ Yrs

•
$$T_{1/2}$$
 for ¹³⁶Xe = 1.9 x 10²⁵ Yrs

 Many experiments looking at this process: Gerda, Heidelberg-Moscow, IGEX, Exo, KamLand-Zen

•
$$T_{1/2}$$
 for ⁷⁶Ge = 3.0 x 10²⁵ Yrs

•
$$T_{1/2}$$
 for ¹³⁶Xe = 1.9 x 10²⁵ Yrs

• $\eta_x \propto Amplitude$ of different processes

Standard $0\nu\beta\beta$

Light neutrino exchange

arXiv:1204.2527

Standard 0vββ

Light neutrino exchange

Standard 0vββ

Light neutrino exchange

For $q \approx 100 \text{ MeV} \gg m_i$

Heavy neutrino exchange

arXiv:1204.2527

Heavy neutrino exchange

Experimental: Predicts new particles that can be found at colliders

Experimental: Predicts new particles that can be found at colliders

Theoretical: Can be embedded in GUT models like SO(10)

Experimental: Predicts new particles that can be found at colliders

Theoretical: Can be embedded in GUT models like SO(10)

• Will introduce new channels that contribute to $0\nu\beta\beta$

Left-Right Symmetric Model

$SU(2)_L \times U(1)_Y \to SU(2)_L \times SU(2)_R \times U(1)_{B-L}$
$SU(2)_L \times U(1)_Y \to SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ • Discrete Symmetry so that $g_I = g_R$

$SU(2)_L \times U(1)_Y \rightarrow SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ • Discrete Symmetry so that $g_L = g_R$

Field	Form	${\bf SU(2)_L}$	${\bf SU(2)_R}$	$\mathbf{U}(1)_{\mathbf{B}-\mathbf{L}}$
Q_L	$\left(\begin{array}{c} u \\ d \end{array} \right)_L$	2	1	$\frac{1}{3}$
Q_R	$\left(\begin{array}{c} u\\ d\end{array}\right)_R$	1	2	$\frac{1}{3}$
ψ_L	$\left(\begin{array}{c} \nu \\ l \end{array} \right)_L$	2	1	-1
ψ_R	$\left(\begin{array}{c}\nu\\l\end{array}\right)_R$	1	2	-1
ϕ	$\left(\begin{array}{cc} \phi_1^0 & \phi_1^+ \\ \phi_2^- & \phi_2^0 \end{array} \right)$	2	2	0
Δ_L	$ \begin{pmatrix} \frac{\Delta_L^+}{\sqrt{2}} & \Delta_L^{++} \\ \Delta_L^0 & \frac{-\Delta_L^+}{\sqrt{2}} \end{pmatrix} $	3	1	2
Δ_R	$ \begin{pmatrix} \frac{\Delta_R^+}{\sqrt{2}} & \Delta_R^{++} \\ \Delta_R^0 & \frac{-\Delta_R^+}{\sqrt{2}} \end{pmatrix} $	1	3	2

$SU(2)_L \times U(1)_Y \rightarrow SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ • Discrete Symmetry so that $g_L = g_R$

Field	Form	${\bf SU(2)_L}$	${\bf SU(2)_R}$	$\mathbf{U}(1)_{\mathbf{B}-\mathbf{L}}$
Q_L	$\left(\begin{array}{c} u \\ d \end{array} \right)_L$	2	1	$\frac{1}{3}$
Q_R	$\left(\begin{array}{c} u\\ d\end{array}\right)_R$	1	2	$\frac{1}{3}$
ψ_L	$\left(\begin{array}{c} \nu \\ l \end{array} \right)_L$	2	1	-1
ψ_R	$\left(\begin{array}{c}\nu\\l\end{array}\right)_R$	1	2	-1
ϕ	$\left(\begin{array}{cc}\phi_1^0&\phi_1^+\\\phi_2^-&\phi_2^0\end{array}\right)$	2	2	0
Δ_L	$ \begin{pmatrix} \frac{\Delta_L^+}{\sqrt{2}} & \Delta_L^{++} \\ \Delta_L^0 & \frac{-\Delta_L^+}{\sqrt{2}} \end{pmatrix} $	3	1	2
Δ_R	$ \begin{pmatrix} \frac{\Delta_R^+}{\sqrt{2}} & \Delta_R^{++} \\ \Delta_R^0 & \frac{-\Delta_R^+}{\sqrt{2}} \end{pmatrix} $	1	3	2

$SU(2)_L \times U(1)_Y \rightarrow SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ • Discrete Symmetry so that $g_L = g_R$

	Field	Form	${\bf SU(2)_L}$	$\mathbf{SU}(2)_{\mathbf{R}}$	$\mathbf{U}(1)_{\mathbf{B}-\mathbf{L}}$
	Q_L	$\left(\begin{array}{c} u \\ d \end{array} \right)_L$	2	1	$\frac{1}{3}$
	Q_R	$\left(\begin{array}{c} u\\ d\end{array}\right)_R$	1	2	$\frac{1}{3}$
	ψ_L	$\left(\begin{array}{c} \nu \\ l \end{array} \right)_L$	2	1	-1
Type I	ψ_R	$\left(\begin{array}{c} \nu \\ l \end{array} \right)_R$	1	2	-1
	ϕ	$\left(\begin{array}{cc}\phi_1^0 & \phi_1^+ \\ \phi_2^- & \phi_2^0\end{array}\right)$	2	2	0
	Δ_L	$ \begin{pmatrix} \frac{\Delta_L^+}{\sqrt{2}} & \Delta_L^{++} \\ \Delta_L^0 & \frac{-\Delta_L^+}{\sqrt{2}} \end{pmatrix} $	3	1	2
	Δ_R	$ \begin{pmatrix} \frac{\Delta_R^+}{\sqrt{2}} & \Delta_R^{++} \\ \Delta_R^0 & \frac{-\Delta_R^+}{\sqrt{2}} \end{pmatrix} $	1	3	2

SU(2)_L × U(1)_Y → SU(2)_L × SU(2)_R × U(1)_{B-L} • Discrete Symmetry so that $g_L=g_R$

SU(2)_L × U(1)_Y → SU(2)_L × SU(2)_R × U(1)_{B-L} • Discrete Symmetry so that $g_L=g_R$

 $\mathcal{L}_Y = h_1 \bar{\psi}_L \phi \psi_R + h_2 \bar{\psi}_L \tilde{\phi} \psi_R + h_3 \bar{Q}_L \phi Q_R + h_4 \bar{Q}_L \tilde{\phi} Q_R + h_4 \bar{Q}_L \bar{\phi} Q$ $+ih_5\psi_L^T C\sigma_2\Delta_L\psi_L + ih_6\psi_R^T C\sigma_2\Delta_R\psi_R + h.c.$

$$\mathcal{L}_Y = h_1 \bar{\psi}_L \phi \psi_R + h_2 \bar{\psi}_L \phi \psi_R + h_3 \bar{Q}_L \phi Q_R + h_4 \bar{Q}_L \phi Q_R + i h_5 \psi_L^T C \sigma_2 \Delta_L \psi_L + i h_6 \psi_R^T C \sigma_2 \Delta_R \psi_R + h.c.$$

$$\phi = \left(egin{array}{cc} k_1 & 0 \ 0 & k_2 \end{array}
ight), \ \Delta_{L,R} = \left(egin{array}{cc} 0 & 0 \ \kappa_{L,R} & 0 \end{array}
ight)$$

$$\mathcal{L}_Y = h_1 \bar{\psi}_L \phi \psi_R + h_2 \bar{\psi}_L \phi \psi_R + h_3 \bar{Q}_L \phi Q_R + h_4 \bar{Q}_L \phi Q_R + i h_5 \psi_L^T C \sigma_2 \Delta_L \psi_L + i h_6 \psi_R^T C \sigma_2 \Delta_R \psi_R + h.c.$$

$$\phi = \left(egin{array}{cc} k_1 & 0 \ 0 & k_2 \end{array}
ight), \ \Delta_{L,R} = \left(egin{array}{cc} 0 & 0 \ \kappa_{L,R} & 0 \end{array}
ight)$$

$$\mathcal{L}_{\phi,\Delta_{L,R}}^{\nu} = (h_1 k_1 + h_2 k_2) \nu_L^T C \nu_R^c + h_5 \kappa_L \nu_L^T C \nu_L + h_6 \kappa_R (\nu_R^c)^T C \nu_R^c + h.c$$

$$\mathcal{L}_{Y} = h_{1} \bar{\psi}_{L} \phi \psi_{R} + h_{2} \bar{\psi}_{L} \phi \psi_{R} + h_{3} \bar{Q}_{L} \phi Q_{R} + h_{4} \bar{Q}_{L} \phi Q_{R} + i h_{5} \psi_{L}^{T} C \sigma_{2} \Delta_{L} \psi_{L} + i h_{6} \psi_{R}^{T} C \sigma_{2} \Delta_{R} \psi_{R} + h.c.$$

$$\phi = \left(egin{array}{cc} k_1 & 0 \ 0 & k_2 \end{array}
ight), \ \Delta_{L,R} = \left(egin{array}{cc} 0 & 0 \ \kappa_{L,R} & 0 \end{array}
ight)$$

$$\mathcal{L}_{\phi,\Delta_{L,R}}^{\nu} = (h_1 k_1 + h_2 k_2) \nu_L^T C \nu_R^c + h_5 \kappa_L \nu_L^T C \nu_L + h_6 \kappa_R (\nu_R^c)^T C \nu_R^c + h.c m_{\nu} = h_5 \kappa_L - \frac{k_1^2}{4\kappa_R} h_1^T h_6^{-1} h_1 m_N = h_6 \kappa_R$$

$$\mathcal{L}_Y = h_1 \bar{\psi}_L \phi \psi_R + h_2 \bar{\psi}_L \phi \psi_R + h_3 \bar{Q}_L \phi Q_R + h_4 \bar{Q}_L \phi Q_R + i h_5 \psi_L^T C \sigma_2 \Delta_L \psi_L + i h_6 \psi_R^T C \sigma_2 \Delta_R \psi_R + h.c.$$

$$\phi = \left(egin{array}{cc} k_1 & 0 \ 0 & k_2 \end{array}
ight), \ \Delta_{L,R} = \left(egin{array}{cc} 0 & 0 \ \kappa_{L,R} & 0 \end{array}
ight)$$

$$\begin{aligned} \mathcal{L}_{\phi,\Delta_{L,R}}^{\nu} = & (h_1 k_1 + h_2 k_2) \nu_L^T C \nu_R^c \\ &+ h_5 \kappa_L \nu_L^T C \nu_L + h_6 \kappa_R (\nu_R^c)^T C \nu_R^c + h.c \\ \kappa_R \gg k_1 \gg \kappa_L \\ &h_1 k_1 \gg h_2 k_2 \end{aligned} \qquad \qquad \begin{aligned} m_\nu = & h_5 \kappa_L - \frac{k_1^2}{4\kappa_R} h_1^T h_6^{-1} h_1 \\ m_N = & h_6 \kappa_R \end{aligned}$$

$$\mathcal{L}_Y = h_1 \bar{\psi}_L \phi \psi_R + h_2 \bar{\psi}_L \phi \psi_R + h_3 \bar{Q}_L \phi Q_R + h_4 \bar{Q}_L \phi Q_R + i h_5 \psi_L^T C \sigma_2 \Delta_L \psi_L + i h_6 \psi_R^T C \sigma_2 \Delta_R \psi_R + h.c.$$

$$\phi = \left(egin{array}{cc} k_1 & 0 \ 0 & k_2 \end{array}
ight), \ \Delta_{L,R} = \left(egin{array}{cc} 0 & 0 \ \kappa_{L,R} & 0 \end{array}
ight)$$

$$\mathcal{L}_{\phi,\Delta_{L,R}}^{\nu} = (h_{1}k_{1} + h_{2}k_{2})\nu_{L}^{T}C\nu_{R}^{c} + h_{5}\kappa_{L}\nu_{L}^{T}C\nu_{L} + h_{6}\kappa_{R}(\nu_{R}^{c})^{T}C\nu_{R}^{c} + h.c$$

$$\kappa_{R} \gg k_{1} \gg \kappa_{L} h_{1}k_{1} \gg h_{2}k_{2}$$

$$m_{\nu} = h_{5}\kappa_{L} - \frac{k_{1}^{2}}{4\kappa_{R}}h_{1}^{T}h_{6}^{-1}h_{1}$$

$$m_N = h_6 \kappa_R$$

Light and heavy neutrino exchange with two W_R bosons

Light and heavy neutrino exchange with two W_R bosons

• Light and heavy neutrino exchange with a mix of $W_{\rm L}$ and $W_{\rm R}$ bosons

Light and heavy neutrino exchange with two W_R bosons

- Light and heavy neutrino exchange with a mix of $W_{\rm L}$ and $W_{\rm R}$ bosons
- Δ^{--}_{L} Higgs triplet decay

Light and heavy neutrino exchange with two W_R bosons

- Light and heavy neutrino exchange with a mix of W_L and W_R bosons
- Δ^{--}_{L} Higgs triplet decay
- Δ_{R}^{--} Higgs triplet decay

• W_R exchange

Amplitudes I

• W_R exchange

 $n \qquad W_R \qquad p \qquad e_R \qquad \nu_i \qquad e_R \qquad W_R \qquad \mu_i \qquad e_R \qquad \mu_i \qquad e_R \qquad \mu_i \qquad \mu_$

Amplitudes I

• W_R exchange

arXiv:1204.2527

$$A_{\nu}^{RR} \propto G_F^2 \frac{M_{W_L}^4}{M_{W_R}^4} \sum_i^3 \frac{(S^*)_{ei}^2 m_i}{q^2}$$

Amplitudes I

W_R exchange

$$A_{\nu}^{RR} \propto G_F^2 \frac{M_{W_L}^4}{M_{W_R}^4} \sum_i^3 \frac{(S^*)_{ei}^2 m_i}{q^2}$$

arXiv:1204.2527

 $\mathcal{A}_{N}^{RR} \propto G_{F}^{2} \frac{M_{W_{L}}^{4}}{M_{W_{R}}^{4}} \sum_{i}^{3} \frac{(U_{R}^{*})_{ei}^{2}}{M_{i}}$

Amplitudes II

• W_L and W_R exchange

Amplitudes II

• W_L and W_R exchange

$$A_{\nu}^{LR} \propto G_F^2 \frac{M_{W_L}^2}{M_{W_R}^2} \sum_i^3 \frac{(U_L)_{ei}(S^*)_{ei}}{q}$$

arXiv:1204.2527

Amplitudes II

• W_L and W_R exchange

arXiv:1204.2527

 $\mathcal{A}_{N}^{LR} \propto G_{F}^{2} \frac{M_{W_{L}}^{2}}{M_{W_{R}}^{2}} \sum_{i}^{3} \frac{(T)_{ei}(U_{R}^{*})_{ei}q}{M_{i}^{2}}$

Amplitudes III

• Δ^{--}_{L} and Δ^{--}_{R} exchange

Amplitudes III

• Δ^{--}_{L} and Δ^{--}_{R} exchange

Amplitudes III

• Δ^{--}_{L} and Δ^{--}_{R} exchange

New Physics Parameters

$$T_{1/2}^{-1} = G_x(Q, Z) |\mathcal{M}_x(A, Z)\eta_x|^2$$

NME and Phase Factors can be found in the literature

New Physics Parameters

$$T_{1/2}^{-1} = G_x(Q, Z) |\mathcal{M}_x(A, Z)\eta_x|^2$$

NME and Phase Factors can be found in the literature

Define η_x:

$$\eta_{\nu}^{LL} = \sum_{i}^{3} \frac{(U_{L})_{ei}^{2} m_{i}}{m_{e}} = \frac{m_{\nu}^{ee}}{m_{e}}$$
$$\eta_{N}^{LL} = \sum_{i}^{3} \frac{(T)_{ei}^{2} m_{p}}{M_{i}} = \frac{m_{p}}{m_{N}^{ee}}$$

New Physics Parameters

$$T_{1/2}^{-1} = G_x(Q, Z) |\mathcal{M}_x(A, Z)\eta_x|^2$$

• NME and Phase Factors can be found in the literature

• Define η_{x} : $\eta_{\nu}^{LL} = \sum_{i}^{3} \frac{(U_{L})_{ei}^{2} m_{i}}{m_{e}} = \frac{m_{\nu}^{ee}}{m_{e}}$ $\eta_{N}^{LL} = \sum_{i}^{3} \frac{(T)_{ei}^{2} m_{p}}{M_{i}} = \frac{m_{p}}{m_{N}^{ee}}$

From limits in T_{1/2} can find limits in m^{ee} and m^{ee}

For standard mechanism

Isotope	Half-life $T_{1/2}^{0\nu\beta\beta}(Yrs)$	$\mathbf{m}_{\nu}^{\mathbf{ee}}\left(\mathbf{eV}\right)$	$\frac{1}{\mathbf{m}_{\mathbf{N}}^{ee}}\left(\mathbf{GeV^{-1}}\right)$
$^{76}Ge_{^{136}Xe}$	3.0×10^{25} 1.9×10^{25}	$\begin{array}{c} 0.29 - 0.74 \\ 0.25 - 0.62 \end{array}$	$(0.97 - 1.72) \times 10^{-8}$ $(1.18 - 1.24) \times 10^{-8}$

For standard mechanism

Isotope	Half-life $T_{1/2}^{0\nu\beta\beta}(Yrs)$	$\mathbf{m}_{\nu}^{\mathbf{ee}}\left(\mathbf{eV}\right)$	$\frac{1}{m_N^{ee}}\left(\mathbf{GeV^{-1}}\right)$
$^{76}Ge_{^{136}Xe}$	3.0×10^{25} 1.9×10^{25}	$\begin{array}{c} 0.29 - 0.74 \\ 0.25 - 0.62 \end{array}$	$(0.97 - 1.72) \times 10^{-8}$ $(1.18 - 1.24) \times 10^{-8}$

• Very heavy Right handed neutrinos $M_N^{ee} \sim 10^8 \text{ GeV}$

For standard mechanism

Isotope	Half-life $T_{1/2}^{0\nu\beta\beta}(Yrs)$	$\mathbf{m}_{\nu}^{\mathbf{ee}}\left(\mathbf{eV}\right)$	$\frac{1}{m_{N}^{ee}}\left(\mathbf{GeV^{-1}}\right)$
$^{76}Ge_{^{136}Xe}$	3.0×10^{25} 1.9×10^{25}	$\begin{array}{c} 0.29 - 0.74 \\ 0.25 - 0.62 \end{array}$	$(0.97 - 1.72) \times 10^{-8}$ $(1.18 - 1.24) \times 10^{-8}$

- Very heavy Right handed neutrinos $M_N^{ee} \sim 10^8 \text{ GeV}$
- Range due to uncertainties in NME's → Main limitation

For standard mechanism

Isotope	Half-life $T_{1/2}^{0\nu\beta\beta}(Yrs)$	$\mathbf{m}_{\nu}^{\mathbf{ee}}\left(\mathbf{eV}\right)$	$rac{1}{m_N^{ee}}\left(\mathbf{GeV^{-1}} ight)$
$^{76}Ge_{^{136}Xe}$	3.0×10^{25} 1.9×10^{25}	$\begin{array}{c} 0.29 - 0.74 \\ 0.25 - 0.62 \end{array}$	$(0.97 - 1.72) \times 10^{-8}$ $(1.18 - 1.24) \times 10^{-8}$

- Very heavy Right handed neutrinos $M_N^{ee} \sim 10^8 \text{ GeV}$
- Range due to uncertainties in NME's → Main limitation
- Limits assume contribution for only one mechanism at a time

Limits LRSM

For LRSM

$$\begin{split} \eta_{\nu}^{RR} = & \frac{M_{W_L}^4}{M_{W_R}^4} \sum_i^3 \frac{(S^*)_{ei}^2 m_i}{m_e} \,, \\ \eta_{\nu}^{LR} = & \frac{M_{W_L}^2}{M_{W_R}^2} \sum_i^3 (U_L)_{ei} (S^*)_{ei} \\ \eta_{\Delta_L}^{LL} = & \sum_i^3 \frac{(U_L)_{ei}^2 m_i m_e}{M_{\Delta_L}^2} \,, \end{split}$$

,

$$\eta_N^{RR} = \frac{M_{W_L}^4}{M_{W_R}^4} \sum_i^3 \frac{(U_R^*)_{ei}^2 m_p}{M_i}$$
$$\eta_N^{LR} = \frac{M_{W_L}^2}{M_{W_R}^2} \sum_i^3 \frac{(T)_{ei}(U_R^*)_{ei} m_p^2}{M_i^2}$$
$$\eta_{\Delta_R}^{RR} = \frac{M_{W_L}^4}{M_{W_R}^4} \sum_i^3 \frac{(U_R^*)_{ei}^2 M_i m_p}{M_{\Delta_R}^2}$$

Limits LRSM

Mechanism	New physics parameters	⁷⁶ Ge Limit	¹³⁶ Xe Limit
${\cal A}_{ u}^{RR}$	$\sum_{i}^{3} \frac{(S^{*})_{ei}^{2} m_{i}}{M_{W_{R}}^{4}}$	$(0.70 - 1.77) \times 10^{-17} GeV^{-3}$	$(0.60 - 1.49) \times 10^{-17} GeV^{-3}$
\mathcal{A}_N^{RR}	$\sum_{i}^{3} \frac{(U_{R}^{*})_{ei}^{2}}{M_{W_{R}}^{4}M_{i}}$	$(2.32 - 4.12) \times 10^{-16} GeV^{-5}$	$(2.83 - 2.97) \times 10^{-16} GeV^{-5}$
${\cal A}_{ u}^{LR}$	$\sum_{i}^{3} \frac{(U_L)_{ei}(S^*)_{ei}}{M_{W_R}^2}$	$(1.54 - 3.32) \times 10^{-10} GeV^{-2}$	$(1.18 - 1.50) \times 10^{-10} GeV^{-2}$
\mathcal{A}_N^{LR}	$\sum_{i}^{3} \frac{(T)_{ei}(U_{R}^{*})_{ei}}{M_{W_{R}}^{2}M_{i}^{2}}$	$(1.95 - 2.04) \times 10^{-12} GeV^{-4}$	$(1.60 - 2.83) \times 10^{-12} GeV^{-4}$
$\mathcal{A}^{LL}_{\Delta_L}$	$\sum_{i}^{3} \frac{(U_{L})_{ei}^{2} m_{i}}{M_{\Delta_{L}}^{2}}$	$\sim 10^{-8}GeV^{-1}$	$\sim 10^{-8}GeV^{-1}$
$\mathcal{A}^{RR}_{\Delta_R}$	$\sum_{i}^{3} \frac{(U_{R}^{*})_{ei}^{2} M_{i}}{M_{\Delta_{R}}^{2} M_{W_{R}}^{4}}$	$\sim (10^{-16} - 10^{-15}) GeV^{-5}$	$\sim (10^{-16} - 10^{-15}) GeV^{-5}$

Limits LRSM

Mechanism	New physics parameters	⁷⁶ Ge Limit	¹³⁶ Xe Limit
$\mathcal{A}_{ u}^{RR}$	$\sum_{i}^{3} \frac{(S^{*})_{ei}^{2} m_{i}}{M_{W_{R}}^{4}}$	$(0.70 - 1.77) \times 10^{-17} GeV^{-3}$	$(0.60 - 1.49) \times 10^{-17} GeV^{-3}$
\mathcal{A}_N^{RR}	$\sum_{i}^{3} \frac{(U_{R}^{*})_{ei}^{2}}{M_{W_{R}}^{4}M_{i}}$	$(2.32 - 4.12) \times 10^{-16} GeV^{-5}$	$(2.83 - 2.97) \times 10^{-16} GeV^{-5}$
${\cal A}_{ u}^{LR}$	$\sum_{i}^{3} \frac{(U_L)_{ei}(S^*)_{ei}}{M_{W_R}^2}$	$(1.54 - 3.32) \times 10^{-10} GeV^{-2}$	$(1.18 - 1.50) \times 10^{-10} GeV^{-2}$
\mathcal{A}_N^{LR}	$\sum_{i}^{3} \frac{(T)_{ei}(U_{R}^{*})_{ei}}{M_{W_{R}}^{2} M_{i}^{2}}$	$(1.95-2.04)\times 10^{-12}GeV^{-4}$	$(1.60 - 2.83) \times 10^{-12} GeV^{-4}$
$\mathcal{A}^{LL}_{\Delta_L}$	$\sum_{i}^{3} \frac{(U_L)_{ei}^2 m_i}{M_{\Delta_L}^2}$	$\sim 10^{-8}GeV^{-1}$	$\sim 10^{-8}GeV^{-1}$
$\mathcal{A}^{RR}_{\Delta_R}$	$\sum_{i}^{3} \frac{(U_{R}^{*})_{ei}^{2} M_{i}}{M_{\Delta_{R}}^{2} M_{W_{R}}^{4}}$	$\sim (10^{-16} - 10^{-15}) GeV^{-5}$	$\sim (10^{-16} - 10^{-15}) GeV^{-5}$
Limits LRSM

Mechanism	New physics parameters	⁷⁶ Ge Limit	¹³⁶ Xe Limit
${\cal A}_{ u}^{RR}$	$\sum_{i}^{3} \frac{(S^{*})_{ei}^{2} m_{i}}{M_{W_{R}}^{4}}$	$(0.70 - 1.77) \times 10^{-17} GeV^{-3}$	$(0.60 - 1.49) \times 10^{-17} GeV^{-3}$
\mathcal{A}_N^{RR}	$\sum_{i}^{3} \frac{(U_{R}^{*})_{ei}^{2}}{M_{W_{R}}^{4}M_{i}}$	$(2.32 - 4.12) \times 10^{-16} GeV^{-5}$	$(2.83 - 2.97) \times 10^{-16} GeV^{-5}$
${\cal A}^{LR}_{ u}$	$\sum_{i}^{3} \frac{(U_L)_{ei}(S^*)_{ei}}{M_{W_R}^2}$	$(1.54 - 3.32) \times 10^{-10} GeV^{-2}$	$(1.18 - 1.50) \times 10^{-10} GeV^{-2}$
\mathcal{A}_N^{LR}	$\sum_{i}^{3} \frac{(T)_{ei}(U_{R}^{*})_{ei}}{M_{W_{R}}^{2}M_{i}^{2}}$	$(1.95 - 2.04) \times 10^{-12} GeV^{-4}$	$(1.60 - 2.83) \times 10^{-12} GeV^{-4}$
$\mathcal{A}^{LL}_{\Delta_L}$	$\sum_{i}^{3} \frac{(U_L)_{ei}^2 m_i}{M_{\Delta_L}^2}$	$\sim 10^{-8}GeV^{-1}$	$\sim 10^{-8}GeV^{-1}$
$\mathcal{A}^{RR}_{\Delta_R}$	$\sum_{i}^{3} \frac{(U_{R}^{*})_{ei}^{2} M_{i}}{M_{\Delta_{R}}^{2} M_{W_{R}}^{4}}$	$\sim (10^{-16} - 10^{-15}) GeV^{-5}$	$\sim (10^{-16} - 10^{-15}) GeV^{-5}$

Can set bounds on masses and mixing of new particles

 This is only a qualitative analysis which sets limits in new physics parameters

- This is only a qualitative analysis which sets limits in new physics parameters
- Some mechanisms are highly suppressed and it is important to consider relative magnitude of the different mechanisms

- This is only a qualitative analysis which sets limits in new physics parameters
- Some mechanisms are highly suppressed and it is important to consider relative magnitude of the different mechanisms
- Interference and cancellation between different mechanisms might occur

- This is only a qualitative analysis which sets limits in new physics parameters
- Some mechanisms are highly suppressed and it is important to consider relative magnitude of the different mechanisms
- Interference and cancellation between different mechanisms might occur
- There are many other possible contributions to 0vββ. Real challenge is to identify the underlying mechanism that drives the decay

• Katrin \rightarrow Half live of 6 x 10²⁷ Years

- Katrin \rightarrow Half live of 6 x 10²⁷ Years
- Improvement of NME's uncertainties

- Katrin \rightarrow Half live of 6 x 10²⁷ Years
- Improvement of NME's uncertainties
- Study of 0vββ for different isotopes

- Katrin \rightarrow Half live of 6 x 10²⁷ Years
- Improvement of NME's uncertainties
- Study of 0vββ for different isotopes
- Study of e⁻ angular distribution at SuperNEMO

- Katrin \rightarrow Half live of 6 x 10²⁷ Years
- Improvement of NME's uncertainties
- Study of 0vββ for different isotopes
- Study of e⁻ angular distribution at SuperNEMO
- Study of Lepton Number Violation processes and search for new gauge bosons at colliders

Conclusion

0vββ will confirm the Majorana nature of neutrinos

0vββ will confirm the Majorana nature of neutrinos

 Can shine some light into BSM physics models and set bounds in new physics parameters

Ονββ will confirm the Majorana nature of neutrinos

 Can shine some light into BSM physics models and set bounds in new physics parameters

 The LRSM is an attractive extension of the SM which could be falsified at the LHC and has a clear signature in 0vββ experiments

Questions

Questions??