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Standard Model Effective Field Theory

Standard Model
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Standard Model Effective Field Theory

Standard Model SMEFT
Loy = — iF‘“’F,W Lsmerr = Lsm + Lps +
by Lps + Lpr + ...
+ &iY%jHlﬁj + h.c. where,

+|D,H|> = V(H)
: Lok =Y CriQui

m (Q; are simply operators built from SM d.o.f of dimension £,
while % runs over all operators available at that dimension
which satisfy Lorentz and SU(3) x SU(2) x U(1) gauge
symmetry



Standard Model Effective Field Theory

For this talk we'll restrict ourselves to

Lsymert = Lsm + Lps

59
= Lsm + ZQ’Q@'

=1

Baryon number conserving operators only

80 Generated from Buchmuller & Wyler, but over complete
basis
m Minimal basis of 59 operators in 1008.4884

e

m The Wilson coefficients are dimensionful, C; = A7
NP

Choice of basis



“It is really amazing that no author of almost 600 papers that
quoted Ref. [3] over 24 years has ever decided to rederive the
operator basis from the outset to check its correctness. As the
current work shows, the exercise has been straightforward enough
for an M. Sc. thesis..."”



Motivation for SMEFT

m The rationale behind extending the standard model in this
manner stems from the idea that the SM is simply a low
energy effective field theory

m If new physics exists at high energy, then the effects of
integrated out new particles should manifest itself as
non-renormalisable operators

m Same idea as four-quark operators, Fermi-theory, Higgs EFT
(large my limit) ...

m In the abscence of direct hint of a particular model, this is a
general way to proceed
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Four Fermion operators

m One needs to be careful when dealing with four-fermion operators

m Different possible Dirac structures for the same vertex

m Consider the operators
Qu = (p'Yu #) sy,
Qe =(l p'Yul )(@sver)

m Qu = (eyuve) @y 1) gives the
same vertex as \\/
Qie = (Tuyuve)(@y* ), modulo
handedness of massive particles. /\
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Effect of Dimension-6 operators

Adding such operators alters the definition of the SM parameters
at tree level.



Effect of Dimension-6 operators

m Consider Qi = (HTH)3 which alters the shape of the Higgs
doublet potential (at order v?/A?).

V(H)=\H'H - %7})2 —Cy(H'H)?

which gives a new minimum,

2 2
ey _ O 3CHv"\ _
(H'H) 5 <1+ 5 >_

m We should thus use vy as our new vev: filters into masses,
Higgs interactions, ...



Effect of Dimension-6 operators

m Similarly we get effective mass and Yukawa matrices

v 1 N
7], = 22 (471 503C7)

rs ﬁ
1 3 2 vk
Vrl,s = NG [Yilrs [1+ Crxin] — gvTCng
= L M G — L
— vy flrs H kin \/§ fgf-l

m Can lead to flavour violating effects

m Impose MFV: essentially require that the mass and Yukawa
matrices are simultaneously diagonalisable



Effect of Dimension-6 operators

m We also need to redefine the gauge fields and couplings..
m Eg H'HG}, G

m The actual expressions for the new terms are not relevant to
the talk however

m We'll denote objects with a bar as those that appear in the
covariant derivative in the broken phase of the theory

w =0 +z\[[W+T++W T7] +igz [T5 — 8°Q] Z, + ieQA,

1 _
€= gosinf — 3 cos Gggv%CHWB



Input Parameters

m Before proceeding, it's necessary to specify the input
parameters. How do we want the answer expressed?

m Choose to work with the following independent, physical
parameters

L é,mH,MW,MZ,mf,Ci
m In practise, we'll choose to eliminate My in terms of the
Fermi-constant G. We'll come to this later.



Tree-level Higgs decay: SMEFT style

With the SMEFT framework now in place, it is possible to study
the decay of the Higgs in this context. The tree-level decay
amplitude for the Higgs to fermions is straight forward. Simply the
effective Yukawa coupling from earlier dressed with external
spinors.

iMO(h £7) = iu(ps) (M, Pr+ MP) Py vlpy)

where f

0) _

M) = TTf [+ Crrgin] — —=Chy

—



Renormalisation Proceedure

m One-loop calculation proceeds in two parts:

m Bare one-loop matrix elements

m UV counter-terms
m Renormalise masses and electric charge in the on-shell scheme
m Renormalise Wilson coefficients in the MS scheme

m Standard for EFT calculations



Renormalisation

m Wavefunction, mass, and electric charge renormalisation

m Defining the renormalised fields in terms of bare ones,
indicated with the superscript (0)

RO = \/Z,h = <1 + ;52h> h
f(o) = /2 =1+ 15ZL f
L f L 9 f L

1R =2} fm= (1 + ;azj?> fr (1)

MO =M+6M  ey=é+de (2)



Renormalisation

m The on-shell scheme gives us our renormalisation conditions

s2f =~ e ) + 55 ) = 55

0 — .
—m?aprRe 0% + SF07) + 35 (07) + 37 (%) L
Two-point functions P
§Zf = —Re X/ (m?)
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B P
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7 =
02, = —Re—————= 952 -



Renormalisation

m The mass counterterms are computed as

Smy = %ﬁé (SE(m2) + SBm2) + £§(m?) + £§*(m3))

0My _ o= Ep (Myy)
Mw 2M32,

m The electric charge renormalisation can also be computed
from two-point functions

be 15|, (b —ay) TH(0)
e 2 0k |, Qf M?2

Subleading in a limit we'll consider



Wilson Coefficient renormalisation

We use the M S scheme for the renormalisation of the Wilson
coefficients. To one-loop order, we can write

P — i+

CfY = Ci(w) +

1672

: d
Cy(p) = 167 <udu0i(u)>
But the anomalous dimension mixes the operators ud Ci(p) =T4;C5 ().

These were recently fully worked out in a set of three papers by Alonso,
Manohar, Jenkins & Trott.



Counter-term Construction

The counterterm for the h — ff decay amplitude can now be
written as

iMOT (= fF) = —itu(ps) (SM Py, + SM Pr) v(p7)

where we distinguish SM and dimension-6 contributions through
the notation

1
1672

oMp = = (OMP +oMmP ) +



Counter-term Construction

Form of the counter-terms
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Recap

Right, where do we stand...
m Chosen input parameters
me,my, Mw,Mz,mys,C;
m Calculated tree-level decay i M) (h — ff)
m Chosen renormalisation proceedure

m Masses & electric charge in on-shell scheme
m Wilson coefficients in M .S scheme

m These gave prescriptions for how to construct the
counter-terms

m We have expressions for the counter-terms iM<"(h — ff)
We now have the ingredients to calculate the one-loop corrections...
M(l)(h%ffi) :M(l),bare_kMCAT.

We will do this calculation in the limit of vanishing gauge couplings and
further, only keep the log dependence or pieces proportional to m in the
finite part.



Sample Diagrams
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Bare one-loop Matrix Elements

We'll discuss the contribution from four-fermion operators.



Four-Fermion operators

We denote the non-vanishing contribution for the sum of all four-fermion
diagrams to the bare matrix element by

,L.Mgl)ybare(h N ffT) _ (pf) (CL ,(1), bareP + CR ,(1), barePR) U(pf_)

1
16
It is found that

. 11 m2, m?2
CgLy,b(l),ba e_ © - |:4mb <3mb _ 2) (C(l) JrCF?)C( )) + 2m, <3m — 2H> Cl*'rbq

vT €
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Four-Fermion operators

To renormalise we need to find all the four-fermion contributions
from the expression for the counter term. Mass renormalisation as

an example.
(4) (4) 2
6 dm 5
Recall: M(L) = (TT{CH,kin) ( Ty Zi + ) + %50H,kin - %50;11

3
(6) _ 1[my (1) (1)* (8) (8)*
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Four-fermion Operators

After cancelling the divergences, we find

'UTC;;)(I) = mb(m%[ — 4m? (1 - 250(m§{,m§,mg)) (C;;) + CF,3C(§§))

)
+ mT(mH - 4m72') O(m%ﬁ m?’7 mi)Clqu
)

m 2 * *
+ %(mi] — 4m})bo(mi3;, mi, m3) ((ZNC + 1)015217 + cF,ng(f;b)

107 s (Wﬁz)

2v2 p

m In principle, this is it
m Substitute for each counter-term as needed

m But we want to express our answer in terms of G, not My ...



Fermi Constant: Gg

m We said before we'd like to replace My, with the Fermi constant
G as one of our input parameters

m Defined and extracted from muon decay

m W ¢ " P



Fermi constant at one-loop

m Necessary to work out G to one-loop also

Finite
SMEFT
contribution

1 1
— 1+ Ar )=Gp+ AR®Y LARGD
\/ﬁ ’U% ( ~—~— ) _—
1-loop Obtained by
non-QED matching with
corrections tree-level
from
before

® In the limit of vanishing gauge couplings

5MW (57)T
Ar =2 — - —
" ( My wvr )

m This will have SM and dimension-6 contributions



Fermi constant at one-loop

m AR®G:D Obtained from the following diagrams

Vu

2 lq
\/EUT L33 ee33

N, 2
AR _ Nemy <C<3> +o® ),

m It is noteworthy that the counter-terms take on a much simpler
form when vp is written in terms of G .



Noteworthy Points: Electric Charge renormalisation

Recall:
ée 162?‘4(1412) .
T3 o ey + Subleading

m Even in the limit of vanishing gauge couplings, we find it necessary
to renormalise the charge.




Noteworthy Points: Large cancelations

m Potentially dominant non-logarithmic contributions ~ m3} in

the final answers are cancelled by those in the mass
renormalisation counter-terms dm %)

m Scheme dependent

m This would not happen if we'd renormalised the masses in MS



Implications for Phenomenology

It is possible to make some naive estimates for the impact on SM
phenomenology when also considering dimension-6 operators in
fixed order.

The decay rate can be written as:

Tree-level One-loop

Mhofh= B [TPD 4 1P L TP P ]
~~ ~— ~—— ~—— ~——
Phase-space O(1/A%  O(1/A2) O(1/A%) O(1/A2)

factor

F504,0) _ [A%,o) ~A}4’0)] : 1q§£4,1) A(4 0) A(4 1)]

e 2

(6,0) __ (4,0) (6,0) (6,1) __ 1 (6,0) (4,1) (4,0) (6,1)
PO = [2409 . APO] TP = — [2 (AP AP 4 AR AP



Implications for Phenomenology: Tree-level

Consider a tree-level comparison of dimension-6 and SM contributions.
Numerically, at a scale of Axp = 1 TeV, for h — bb this amounts to

F(6 0) -
b = —444Cy +0.03( 4Cy0 — Crrp —2 (Cﬁl) +C) >
F ee 12252
+ (é u + C 1 ) >
peep eppe
For C’bH ~ Yp:
F(G’O) ~
~ _012%0H

r§,4 0) Yo



Implications for Phenomenology: One-loop

rY Gpm?2 (—18 4+ 7N,
. = 0.003,
r," us 3v2
(6,1) ~ ~(1) ~(8)
r C c
b = =012+ 0.03 8L | q3Zatab o gg aad
ry bH Con Con

Cvr



Conclusion and Summary

SMEFT is a model independent way to account for possible
decoupled BSM effects

m Calculated Higgs decays to b quarks at one-loop:

m Select renormalisation scheme

m Calculate Feynman diagrams

m Cancelation of divergences

® Rough Pheno implications

Next step is to complete the calculation without vanishing
gauge couplings...

m Can use renormalisation group running to resum higher order
logs....

Work in progress..
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