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Standard Model Effective Field Theory

Standard Model

LSM =− 1

4
FµνFµν

+ iψ̄ /Dψ

+ ψ̄iYijHψj + h.c.

+ |DµH|2 − V (H)

SMEFT

LSMEFT = LSM + LD5 +

LD6 + LD7 + ...

where,

LDk =
∑
i

CkiQki

Qki are simply operators built from SM d.o.f of dimension k,
while i runs over all operators available at that dimension
which satisfy Lorentz and SU(3)× SU(2)× U(1) gauge
symmetry
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Standard Model Effective Field Theory

For this talk we’ll restrict ourselves to

LSMEFT = LSM + LD6

= LSM +

59∑
i=1

CiQi

Baryon number conserving operators only

80 Generated from Buchmuller & Wyler, but over complete
basis

Minimal basis of 59 operators in 1008.4884

The Wilson coefficients are dimensionful, Ci = C̃i
Λ2
NP

Choice of basis



“It is really amazing that no author of almost 600 papers that
quoted Ref. [3] over 24 years has ever decided to rederive the
operator basis from the outset to check its correctness. As the
current work shows, the exercise has been straightforward enough
for an M. Sc. thesis...”



Motivation for SMEFT

The rationale behind extending the standard model in this
manner stems from the idea that the SM is simply a low
energy effective field theory

If new physics exists at high energy, then the effects of
integrated out new particles should manifest itself as
non-renormalisable operators

Same idea as four-quark operators, Fermi-theory, Higgs EFT
(large mt limit) ...

In the abscence of direct hint of a particular model, this is a
general way to proceed



Example Operators

QHG = H†H GAµνG
Aµν

v2G ·G

vhG ·G

h2G ·G



Four Fermion operators

One needs to be careful when dealing with four-fermion operators

Different possible Dirac structures for the same vertex

Consider the operators
Qll = (l̄pγµlr)(l̄sγ

µlt),
Qle = (l̄pγµlr)(ēsγ

µet)

Qll = (ēγµνe)(ν̄µγ
µµ) gives the

same vertex as
Qle = (ν̄µγµνe)(ēγ

µµ), modulo
handedness of massive particles.



1 : X3

QG fABCGAνµ GBρν GCµρ

Q
G̃

fABCG̃Aνµ GBρν GCµρ

QW εIJKW Iν
µ WJρ

ν WKµ
ρ

Q
W̃

εIJKW̃ Iν
µ WJρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH� (H†H)�(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)
5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGAµνG
Aµν

Q
HG̃

H†H G̃AµνG
Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†HBµνB
µν

Q
HB̃

H†H B̃µνB
µν

QHWB H†τIHW I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσ
µνer)τIHW I

µν

QeB (l̄pσ
µνer)HBµν

QuG (q̄pσ
µνTAur)H̃ GAµν

QuW (q̄pσ
µνur)τIH̃ W I

µν

QuB (q̄pσ
µνur)H̃ Bµν

QdG (q̄pσ
µνTAdr)HGAµν

QdW (q̄pσ
µνdr)τIHW I

µν

QdB (q̄pσ
µνdr)HBµν



7 : ψ2H2D

Q
(1)
Hl

(H†i
←→
D µH)(l̄pγ

µlr)

Q
(3)
Hl

(H†i
←→
D I
µH)(l̄pτ

Iγµlr)

QHe (H†i
←→
D µH)(ēpγ

µer)

Q
(1)
Hq

(H†i
←→
D µH)(q̄pγ

µqr)

Q
(3)
Hq

(H†i
←→
D I
µH)(q̄pτ

Iγµqr)

QHu (H†i
←→
D µH)(ūpγ

µur)

QHd (H†i
←→
D µH)(d̄pγ

µdr)

QHud + h.c. i(H̃†DµH)(ūpγ
µdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγ
µlt)

Q
(1)
qq (q̄pγµqr)(q̄sγ

µqt)

Q
(3)
qq (q̄pγµτ

Iqr)(q̄sγ
µτIqt)

Q
(1)
lq

(l̄pγµlr)(q̄sγ
µqt)

Q
(3)
lq

(l̄pγµτ
I lr)(q̄sγ

µτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγ
µet)

Quu (ūpγµur)(ūsγ
µut)

Qdd (d̄pγµdr)(d̄sγ
µdt)

Qeu (ēpγµer)(ūsγ
µut)

Qed (ēpγµer)(d̄sγ
µdt)

Q
(1)
ud

(ūpγµur)(d̄sγ
µdt)

Q
(8)
ud

(ūpγµT
Aur)(d̄sγ

µTAdt)

....



Effect of Dimension-6 operators

Adding such operators alters the definition of the SM parameters
at tree level.



Effect of Dimension-6 operators

Consider QH = (H†H)3 which alters the shape of the Higgs
doublet potential (at order v2/Λ2).

V (H) = λ(H†H − 1

2
v2)2 − CH(H†H)3

which gives a new minimum,

〈H†H〉 =
v2

2

(
1 +

3CHv
2

4λ

)
≡ 1

2
v2
T

We should thus use vT as our new vev: filters into masses,
Higgs interactions, ...



Effect of Dimension-6 operators

Similarly we get effective mass and Yukawa matrices

[Mf ]rs =
vT√

2

(
[Yf ]rs −

1

2
v2
TC
∗
fH
sr

)
[Yf ]rs =

1√
2

(
[Yf ]rs [1 + CH,kin]− 3

2
v2
TC
∗
fH
sr

)
=

1

vT
[Mf ]rs [1 + CH,kin]− v2

T√
2
C∗fH
sr

Can lead to flavour violating effects

Impose MFV: essentially require that the mass and Yukawa
matrices are simultaneously diagonalisable



Effect of Dimension-6 operators

We also need to redefine the gauge fields and couplings..
E.g. H†HGAµνG

Aµν

The actual expressions for the new terms are not relevant to
the talk however

We’ll denote objects with a bar as those that appear in the
covariant derivative in the broken phase of the theory

Dµ = ∂µ + i
ḡ2√

2

[
W+
µ T

+ +W−µ T
−]+ iḡZ

[
T3 − s̄2Q

]
Zµ + iēQAµ

ē = ḡ2 sin θ̄ − 1

2
cos θ̄ḡ2v

2
TCHWB



Input Parameters

Before proceeding, it’s necessary to specify the input
parameters. How do we want the answer expressed?

Choose to work with the following independent, physical
parameters

ē,mH ,MW ,MZ ,mf , Ci

In practise, we’ll choose to eliminate MW in terms of the
Fermi-constant GF . We’ll come to this later.



Tree-level Higgs decay: SMEFT style

With the SMEFT framework now in place, it is possible to study
the decay of the Higgs in this context. The tree-level decay
amplitude for the Higgs to fermions is straight forward. Simply the
effective Yukawa coupling from earlier dressed with external
spinors.

iM(0)(h→ ff̄) = −iū(pf )
(
M(0)

f,LPL +M(0)∗
f,L PR

)
v(pf̄ )

where

M(0)
f,L =

mf

vT
[1 + CH,kin]− v2

T√
2
C∗fH

h
f

f̄



Renormalisation Proceedure

One-loop calculation proceeds in two parts:

Bare one-loop matrix elements
UV counter-terms

Renormalise masses and electric charge in the on-shell scheme

Renormalise Wilson coefficients in the MS scheme

Standard for EFT calculations



Renormalisation

Wavefunction, mass, and electric charge renormalisation

Defining the renormalised fields in terms of bare ones,
indicated with the superscript (0)

h(0) =
√
Zhh =

(
1 +

1

2
δZh

)
h

f
(0)
L =

√
ZLf fL =

(
1 +

1

2
δZLf

)
fL

f
(0)
R =

√
ZRf fR =

(
1 +

1

2
δZRf

)
fR (1)

M (0) = M + δM ē0 = ē+ δē (2)



Renormalisation

The on-shell scheme gives us our renormalisation conditions

δZLf =− R̃e ΣLf (m2
f ) + ΣSf (m2

f )− ΣS∗f (m2
f )

−m2
f

∂

∂p2
R̃e

ΣLf (p2) + ΣRf (p2) + ΣSf (p2) + ΣS∗f (p2)︸ ︷︷ ︸
Two-point functions

 ∣∣∣∣
p2=m2

f

δZRf = −R̃e Σf,R(m2
f )

−m2
f

∂

∂p2
R̃e
[
ΣLf (p2) + ΣRf (p2) + ΣSf (p2) + ΣS∗f (p2)

] ∣∣∣∣
p2=m2

f

δZh = −Re
∂ΣH(k2)

∂k2

∣∣∣∣
k2=m2

H



Renormalisation

The mass counterterms are computed as

δmf =
mf

2
R̃e
(
ΣLf (m2

f ) + ΣRf (m2
f ) + ΣSf (m2

f ) + ΣS∗f (m2
f )
)

δMW

MW
= R̃e

ΣWT (M2
W )

2M2
W

The electric charge renormalisation can also be computed
from two-point functions

δē

ē
=

1

2

∂ΣAAT (k2)

∂k2

∣∣∣∣
k2=0

+
(vf − af )

Qf

ΣAZT (0)

M2
Z︸ ︷︷ ︸

Subleading in a limit we’ll consider



Wilson Coefficient renormalisation

We use the MS scheme for the renormalisation of the Wilson
coefficients. To one-loop order, we can write

C
(0)
i = Ci(µ) +

δCi(µ)

16π2
= Ci(µ) +

1

2ε̂

1

16π2
Ċi(µ)

Ċi(µ) ≡ 16π2

(
µ
d

dµ
Ci(µ)

)
But the anomalous dimension mixes the operators µ d

dµCi(µ) = ΓijCj(µ).

These were recently fully worked out in a set of three papers by Alonso,
Manohar, Jenkins & Trott.



Counter-term Construction

The counterterm for the h→ ff̄ decay amplitude can now be
written as

iMC.T.(h→ ff̄) = −iū(pf ) (δMLPL + δM∗LPR) v(pf̄ )

where we distinguish SM and dimension-6 contributions through
the notation

δML =
1

16π2

(
δM(4)

L + δM(6)
L

)
+ . . .



Counter-term Construction

Form of the counter-terms

δM(4)
L =

mf

vT

(
δm

(4)
f

mf
− δv

(4)
T

vT
+

1

2
δZ

(4)
h +

1

2
δZ

(4),L
f +

1

2
δZ

(4),R∗
f

)

δM(6)
L =

(
mf

vT
CH,kin

)(
δm

(4)
f

mf
− δv

(4)
T

vT
+

1

2
δZ

(4)
h +

1

2
δZ

(4),L
f +

1

2
δZ

(4),R∗
f

)

− v2
T√
2
C∗bH

(
2
δv

(4)
T

vT
+

1

2
δZ

(4)
h +

1

2
δZ

(4),L
f +

1

2
δZ

(4),R∗
f

)

+
mf

vT

(
δm

(6)
f

mf
− δv

(6)
T

vT
+

1

2
δZ

(6)
h +

1

2
δZ

(6),L
f +

1

2
δZ

(6),R∗
f

)

+
mf

vT
δCH,kin −

v2
T√
2
δC∗fH



Recap

Right, where do we stand...

Chosen input parameters

ē,mH ,MW ,MZ ,mf , Ci

Calculated tree-level decay iM(0)(h→ ff̄)

Chosen renormalisation proceedure

Masses & electric charge in on-shell scheme
Wilson coefficients in MS scheme
These gave prescriptions for how to construct the
counter-terms

We have expressions for the counter-terms iMC.T.(h→ ff̄)

We now have the ingredients to calculate the one-loop corrections...

M(1)(h→ ff̄) =M(1),bare +MC.T.

We will do this calculation in the limit of vanishing gauge couplings and
further, only keep the log dependence or pieces proportional to mt in the
finite part.



Sample Diagrams

The dimension-6
contributions are
inserted onto the
relevant vertices,
and contributions
to O(1/Λ2

NP ) are
kept.

Note the presence
of Diagrams
15-17 which are
generated solely
by Class 5
operators.
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h
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h

b

b
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h
b
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h
b

b
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h
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b

φ
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h

b

b

h

h
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h

b

b

φ0

φ0
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h

b

b

φ

φ
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h

b

b

b
h
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h

b

b
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h
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Bare one-loop Matrix Elements

Contents

νµ

µ

t

b

W
e

νe

νµ

µ

b

t

W

e

νe

h

b

b

t

t

bb

t

– 1 –

We’ll discuss the contribution from four-fermion operators.



Four-Fermion operators

We denote the non-vanishing contribution for the sum of all four-fermion
diagrams to the bare matrix element by

iM(1),bare
8 (h→ ff̄) = −i 1

16π2
ū(pf )

(
C
L,(1),bare
8,f PL + C

R,(1),bare
8,f PR

)
v(pf̄ )

It is found that

C
L,(1),bare
8,b =

1

vT

1

ε

[
4mb

(
3m2

b −
m2
H

2

)(
C

(1)
qb + cF,3C

(8)
qb

)
+ 2mτ

(
3m2

τ −
m2
H

2

)
C∗lτbq

−mt

(
3m2

t −
m2
H

2

)(
(1 + 2Nc)C

(1)∗
qtqb + cF,3C

(8)∗
qtqb

)]
+ C

L,(1),fin
8,b

C
L,(1),fin
8,b =

1

vT

[
mb

(
4Îb8 − 6m2

b +m2
H

)(
C

(1)
qb + cF,3C

(8)
qb

)
+ 2mτ Î

τ
8C
∗
lτbq

−mtÎt8
(

(2Nc + 1)C
(1)∗
qtqb + cF,3C

(8)∗
qtqb

)]



Four-Fermion operators

To renormalise we need to find all the four-fermion contributions
from the expression for the counter term. Mass renormalisation as
an example.

Recall: M(6)
L =

(
mf
vT

CH,kin

)( δm(4)
f

mf
− δv

(4)
T
vT

+ ...

)
+
mf
vT

δCH,kin −
v2T√

2
δC∗fH

δm
(6)
b =

1

ε

[
m3
t

2

(
(2Nc + 1)

(
C

(1)
qtqb + C

(1)∗
qtqb

)
+ cF,3

(
C

(8)
qtqb + C

(8)∗
qtqb

))
− 4m3

b

(
C

(1)
qb + cF,3C

(8)
qb

)
+m3

τ

(
Clτbq + C∗lτbq

)]
+ δmfin

b (µ) ,

δmfin
b (µ) =

mt

2
Â0(m2

t )
(

(2Nc + 1)
(
C

(1)
qtqb + C

(1)∗
qtqb

)
+ cF,3

(
C

(8)
qtqb + C

(8)∗
qtqb

))

Contents

νµ

µ

t

b

W
e

νe

νµ

µ

b

t

W

e

νe

h

b

b

t

t

bb

t

– 1 –



Four-fermion Operators

After cancelling the divergences, we find

vTC
L,(1)
8,b = mb(m

2
H − 4m2

b)
(

1− 2b̂0(m2
H ,m

2
b ,m

2
b)
)(

C
(1)
qb + cF,3C

(8)
qb

)
+mτ (m2

H − 4m2
τ )b̂0(m2

H ,m
2
τ ,m

2
τ )Clτbq

+
mt

2
(m2

H − 4m2
t )b̂0(m2

H ,m
2
t ,m

2
t )
(

(2Nc + 1)C
(1)∗
qtqb + cF,3C

(8)∗
qtqb

)
− 1

2

v2
T√
2
Ċ

(4f)∗
bH ln

(
m2
H

µ2

)

In principle, this is it

Substitute for each counter-term as needed

But we want to express our answer in terms of GF , not MW ...



Fermi Constant: GF

We said before we’d like to replace MW with the Fermi constant
GF as one of our input parameters

Defined and extracted from muon decay

µ−

νµ

e−

ν̄e

W−p1

p2

p3

p4

µ−
νµ

e−

ν̄e

p1

p2

p3

p4

1√
2

1

v2
T

= GF −
1√
2

(
C

(3)
Hl
ee

+ C
(3)
Hl
µµ

)
+

1

2
√

2

(
C ll
µeeµ

+ C ll
eµµe

)
,



Fermi constant at one-loop

Necessary to work out GF to one-loop also

1√
2

1

v2
T

(1 + ∆r︸︷︷︸
1-loop

non-QED
corrections

) = GF +

Finite
SMEFT

contribution︷ ︸︸ ︷
∆R(6,0)︸ ︷︷ ︸
Obtained by
matching with

tree-level
from
before

+∆R(6,1)

In the limit of vanishing gauge couplings

∆r =2

(
δMW

MW
− δvT

vT

)

This will have SM and dimension-6 contributions



Fermi constant at one-loop

∆R(6,1) Obtained from the following diagrams

Contents

νµ

µ

t

b

W
e

νe

νµ

µ

b

t

W

e

νe

h

b

b

t

t

bb

t

– 1 –

Contents

νµ

µ

t

b

W
e

νe

νµ

µ

b

t

W

e

νe

h

b

b

t

t

bb

t

– 1 –

∆R
(6,1)

=
Ncm

2
t√

2v2
T

C(3)
lq

µµ33

+ C
(3)
lq
ee33

− 1

2
√

2

Ċ(3)
Hl
ee

+ Ċ
(3)
Hl
µµ

−
1

2

(
Ċ ll
µeeµ

+ Ċ ll
eµµe

) ln

(
m2
t

µ2

)
.

It is noteworthy that the counter-terms take on a much simpler
form when vT is written in terms of GF .



Noteworthy Points: Electric Charge renormalisation

Recall:

δē

ē
=

1

2

∂ΣAAT (k2)

∂k2

∣∣∣∣
k2=0

+ Subleading...

Even in the limit of vanishing gauge couplings, we find it necessary
to renormalise the charge.

δē(4)

ē
= 0

δē(6)

ē
= −Cε

ε
m2
H ĉwŝwCHWB

Cε =
(
µ

m2
t

)ε



Noteworthy Points: Large cancelations

Potentially dominant non-logarithmic contributions ∼ m3
t in

the final answers are cancelled by those in the mass
renormalisation counter-terms δm(6)

Scheme dependent

This would not happen if we’d renormalised the masses in MS



Implications for Phenomenology

It is possible to make some näıve estimates for the impact on SM
phenomenology when also considering dimension-6 operators in
fixed order.

The decay rate can be written as:

Γ(h→ ff̄) = Bf︸︷︷︸
Phase-space

factor

[ Tree-level︷ ︸︸ ︷
Γ

(4,0)
f︸ ︷︷ ︸

O(1/Λ0)

+ Γ
(6,0)
f︸ ︷︷ ︸

O(1/Λ2)

+

One-loop︷ ︸︸ ︷
Γ

(4,1)
f︸ ︷︷ ︸

O(1/Λ0)

+ Γ
(6,1)
f︸ ︷︷ ︸

O(1/Λ2)

]

Γ
(4,0)
f =

[
A

(4,0)
f ·A(4,0)

f

]
, Γ

(4,1)
f =

1

16π2

[
2A

(4,0)
f ·A(4,1)

f

]
,

Γ
(6,0)
f =

[
2A

(4,0)
f ·A(6,0)

f

]
, Γ

(6,1)
f =

1

16π2

[
2
(
A

(6,0)
f ·A(4,1)

f +A
(4,0)
f ·A(6,1)

f

)]



Implications for Phenomenology: Tree-level

Consider a tree-level comparison of dimension-6 and SM contributions.
Numerically, at a scale of ΛNP = 1 TeV, for h→ bb̄ this amounts to

Γ
(6,0)
b

Γ
(4,0)
b

= −4.44C̃bH + 0.03

(
4C̃H� − C̃HD − 2

(
C̃

(3)
Hl
ee

+ C̃
(3)
Hl
µµ

)

+

(
C̃ ll
µeeµ

+ C̃ ll
eµµe

))

For C̃bH ∼ yb:

Γ
(6,0)
b

Γ
(4,0)
b

= −0.12
C̃bH
yb

+ ...



Implications for Phenomenology: One-loop

Γ
(4,1)
b

Γ
(4,0)
b

=
GFm

2
t

8π2

(−18 + 7Nc

3
√

2

)
= 0.003 ,

Γ
(6,1)
b

Γ
(6,0)
CbH

' −0.12 + 0.03
C̃Htb

C̃bH
+ 0.13

C̃
(1)
qtqb

C̃bH
+ 0.03

C̃
(8)
qtqb

C̃bH
+ ... .



Conclusion and Summary

SMEFT is a model independent way to account for possible
decoupled BSM effects

Calculated Higgs decays to b quarks at one-loop:

Select renormalisation scheme
Calculate Feynman diagrams
Cancelation of divergences
Rough Pheno implications

Next step is to complete the calculation without vanishing
gauge couplings...

Can use renormalisation group running to resum higher order
logs....

Work in progress..
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