Many Moonshines: Monstrous, Mathieu and (M)Umbral

Sam Fearn

Durham University

May 2nd, 2016
'The energy produced by the breaking down of the atom is a very poor kind of thing. Anyone who expects a source of power from the transformation of these atoms is talking *moonshine*.'

Ernest Rutherford (1937), The Wordsworth Book of Humorous Quotations
Outline

1. Introduction
2. Monstrous Moonshine
3. The Elliptic Genus of K3
4. G_{24} and M_{24}
5. Mathieu Moonshine
6. Niemeier Lattices
7. Umbral Moonshine
Outline

1. Introduction

2. Monstrous Moonshine

3. The Elliptic Genus of K3

4. G_{24} and M_{24}

5. Mathieu Moonshine

6. Niemeier Lattices

7. Umbral Moonshine
Here we present moonshine in the context of string theory, where the one-loop partition function has a world sheet with the topology of a torus.

\[Z(\tau) = \text{Tr}_{\text{CFT}} \left[q^{L_0 - \frac{c}{24}} \right] = e^{2\pi i \tau}. \]

The torus is described by a complex parameter \(\tau \) in the upper half plane. Two tori with moduli \(\tau, \tau' \) are conformally equivalent if their moduli are related by

\[\tau' = a\tau + b \quad \text{and} \quad c\tau + d, \quad ad - bc = 1. \]

Therefore,

\[Z(\gamma \tau) = Z(\tau), \quad \gamma \in \text{SL}_2(\mathbb{Z}). \]
Here we present moonshine in the context of string theory, where the one-loop partition function has a world sheet with the topology of a torus.
Here we present moonshine in the context of string theory, where the one-loop partition function has a world sheet with the topology of a torus.

\[Z(\tau) = \text{Tr}_{\mathcal{H}_{CFT}} [q^{L_0 - \frac{c}{24}}] \quad q := e^{2\pi i \tau}. \]
Here we present moonshine in the context of string theory, where the one-loop partition function has a world sheet with the topology of a torus.

$$Z(\tau) = \text{Tr}_{\mathcal{H}_{CFT}}[q^{L_0 - \frac{c}{24}}] \quad q := e^{2\pi i \tau}.$$

The torus is described by a complex parameter τ in the upper half plane.
Here we present moonshine in the context of string theory, where the one-loop partition function has a world sheet with the topology of a torus.

\[
Z(\tau) = \text{Tr}_{\mathcal{H}_{\text{CFT}}} [q^{L_0 - \frac{c}{24}}] \quad q := e^{2\pi i \tau}.
\]

The torus is described by a complex parameter \(\tau \) in the upper half plane. Two tori with moduli \(\tau, \tau' \) are conformally equivalent if their moduli are related by

\[
\tau' = \frac{a\tau + b}{c\tau + d} \quad ad - bc = 1
\]
Here we present moonshine in the context of string theory, where the one-loop partition function has a world sheet with the topology of a torus.

\[Z(\tau) = \text{Tr}_{\mathcal{H}_{\text{CFT}}} [q^{L_0 - \frac{c}{24}}] \quad q := e^{2\pi i \tau}. \]

The torus is described by a complex parameter \(\tau \) in the upper half plane. Two tori with moduli \(\tau, \tau' \) are conformally equivalent if their moduli are related by

\[\tau' = \frac{a\tau + b}{c\tau + d} \quad ad - bc = 1 \]

Therefore,

\[Z(\gamma \tau) = Z(\tau), \quad \gamma \in SL_2(\mathbb{Z}) \]
Outline

1. Introduction

2. Monstrous Moonshine

3. The Elliptic Genus of K3

4. G_{24} and M_{24}

5. Mathieu Moonshine

6. Niemeier Lattices

7. Umbral Moonshine
The moonshine story begins with a surprisingly simple and deep equation,
First Glimpse of the Monster

The moonshine story begins with a surprisingly simple and deep equation,

$$196884 = 196883 + 1$$

This function is known as the Hauptmodul for the 'genus 0' group $SL(2,\mathbb{Z})$; all modular functions for $SL(2,\mathbb{Z})$ are rational polynomials in $j(\tau)$. The numbers on the right are dimensions of irreducible representations of the Monster group M, the largest finite sporadic group of order $\approx 8 \times 10^{53}$.
First Glimpse of the Monster

The moonshine story begins with a surprisingly simple and deep equation,

\[
196884 = 196883 + 1 \\
21493760 = 21296876 + 196883 + 1 \\
864299970 = 842609326 + 21296876 + 2 \cdot 196883 + 2 \cdot 1
\]

(1)
First Glimpse of the Monster

The moonshine story begins with a surprisingly simple and deep equation,

\[196884 = 196883 + 1 \]
\[21493760 = 21296876 + 196883 + 1 \]
\[864299970 = 842609326 + 21296876 + 2 \cdot 196883 + 2 \cdot 1 \] (1)

The numbers of the left hand sides are coefficients of the j-invariant, a modular function (form of weight 0, where we allow meromorphicity) for \(SL(2, \mathbb{Z}) \) with \(q \equiv e^{2\pi i \tau} \) expansion

\[j(\tau) = q^{-1} + 744 + 196884q + 21493760q^2 + 864299970q^3 + \ldots \] (2)
First Glimpse of the Monster

The moonshine story begins with a surprisingly simple and deep equation,

\[
\begin{align*}
196884 &= 196883 + 1 \\
21493760 &= 21296876 + 196883 + 1 \\
864299970 &= 842609326 + 21296876 + 2 \cdot 196883 + 2 \cdot 1
\end{align*}
\] (1)

The numbers of the left hand sides are coefficients of the \(j \)-invariant, a modular function (form of weight 0, where we allow meromorphicity) for \(\text{SL}(2, \mathbb{Z}) \) with \(q \equiv e^{2\pi i \tau} \) expansion

\[
\begin{align*}
j(\tau) &= q^{-1} + 744 + 196884q + 21493760q^2 + 864299970q^3 + \ldots
\end{align*}
\] (2)

This function is known as the \textit{Hauptmodul} for the ‘genus 0’ group \(\text{SL}(2, \mathbb{Z}) \); all modular functions for \(\text{SL}(2, \mathbb{Z}) \) are rational polynomials in \(j(\tau) \).
The moonshine story begins with a surprisingly simple and deep equation,

\[196884 = 196883 + 1 \]
\[21493760 = 21296876 + 196883 + 1 \]
\[864299970 = 842609326 + 21296876 + 2 \cdot 196883 + 2 \cdot 1 \]

The numbers of the left hand sides are coefficients of the j-invariant, a modular function (form of weight 0, where we allow meromorhpicity) for \(SL(2, \mathbb{Z}) \) with \(q \equiv e^{2\pi i \tau} \) expansion

\[j(\tau) = q^{-1} + 744 + 196884q + 21493760q^2 + 864299970q^3 + \ldots \]

This function is known as the Hauptmodul for the ‘genus 0’ group \(SL(2, \mathbb{Z}) \); all modular functions for \(SL(2, \mathbb{Z}) \) are rational polynomials in \(j(\tau) \).

The numbers on the right are dimensions of irreducible representations of the Monster group \(\mathbb{M} \), the largest finite sporadic group of order \(\approx 8 \times 10^{53} \).
A Monster Module

The previous equalities suggest the existence of a graded Monster module V

$$V = V_{-1} \oplus V_1 \oplus V_2 \oplus \ldots$$

(3)

whose graded dimension gives $j(\tau)$.
A Monster Module

The previous equalities suggest the existence of a graded Monster module V

$$V = V_{-1} \oplus V_1 \oplus V_2 \oplus \ldots$$ \hspace{1cm} (3)

whose graded dimension gives $j(\tau)$. That is

$$j(\tau) - 744 = \dim(V_{-1})q^{-1} + \dim(V_1)q + \dim(V_2)q^2 + \ldots$$ \hspace{1cm} (4)
A Monster Module

The previous equalities suggest the existence of a graded Monster module \(V \)

\[
V = V_{-1} \oplus V_1 \oplus V_2 \oplus \ldots \tag{3}
\]

whose graded dimension gives \(j(\tau) \). That is

\[
j(\tau) - 744 = \dim(V_{-1})q^{-1} + \dim(V_1)q + \dim(V_2)q^2 + \ldots \tag{4}
\]

Since the dimension of a representation \(\rho \) is given by the character of the identity, \(\chi_\rho(e) = Tr(\rho(e)) = \dim(\rho) \), we may write this as

\[
j(\tau) - 744 = \chi_{V_{-1}}(e_{V_{-1}})q^{-1} + \chi_{V_1}(e_{V_1})q + \chi_{V_2}(e_{V_2})q^2 + \ldots \tag{5}
\]
A Monster Module

The previous equalities suggest the existence of a graded Monster module V

$$V = V_{-1} \oplus V_1 \oplus V_2 \oplus \ldots$$ \hspace{1cm} (3)

whose graded dimension gives $j(\tau)$. That is

$$j(\tau) - 744 = \dim(V_{-1})q^{-1} + \dim(V_1)q + \dim(V_2)q^2 + \ldots$$ \hspace{1cm} (4)

Since the dimension of a representation ρ is given by the character of the identity, $\chi(\rho(e)) = Tr(\rho(e)) = \dim(\rho)$, we may write this as

$$j(\tau) - 744 = \chi_{V_{-1}}(e_{V_{-1}})q^{-1} + \chi_{V_1}(e_{V_1})q + \chi_{V_2}(e_{V_2})q^2 + \ldots$$ \hspace{1cm} (5)

Written in this form it is natural to consider the \textit{McKay - Thompson series}

$$T_g(\tau) = \chi_{V_{-1}}(g)q^{-1} + \sum_{i=1}^{\infty} \chi_{V_i}(g)q^i$$ \hspace{1cm} (6)
Monstrous Moonshine

Conway and Norton1 conjectured that the McKay-Thompson series $T_g(\tau)$ were the Hauptmoduls for other genus 0 groups.

Monstrous Moonshine

Conway and Norton\(^1\) conjectured that the McKay-Thompson series \(T_g(\tau)\) were the Hauptmoduls for other genus 0 groups.

Frenkel, Lepowsky and Meurman (FLM)\(^2\) constructed the Moonshine module \(V^\Delta\).

\(^1\)Conway and Norton, “Monstrous moonshine”.

Monstrous Moonshine

Conway and Norton1 conjectured that the McKay-Thompson series $T_g(\tau)$ were the Hauptmoduls for other genus 0 groups.

Frenkel, Lepowsky and Meurman (FLM)2 constructed the Moonshine module V^\natural.

In physical terms, they constructed a 2d chiral CFT (Monster CFT) from bosonic strings on an orbifold of the Leech Lattice (even self-dual) torus.

1Conway and Norton, “Monstrous moonshine”.
2Frenkel, Lepowsky, and Meurman, “A natural representation of the Fischer-Griess Monster with the modular function J as character”.
Monstrous Moonshine

Conway and Norton1 conjectured that the McKay-Thompson series $T_g(\tau)$ were the Hauptmoduls for other genus 0 groups.

Frenkel, Lepowsky and Meurman (FLM)2 constructed the Moonshine module V^\sharp.

In physical terms, they constructed a 2d chiral CFT (Monster CFT) from bosonic strings on an orbifold of the Leech Lattice (even self-dual) torus.

They showed that this module has automorphism group \mathbb{M} and graded dimension $j(\tau) - 744$. That is, the CFT has $j(\tau) - 744$ as the partition function and has \mathbb{M} symmetry.

1Conway and Norton, “Monstrous moonshine”.

2Frenkel, Lepowsky, and Meurman, “A natural representation of the Fischer-Griess Monster with the modular function J as character”.
Monstrous Moonshine

Conway and Norton\(^1\) conjectured that the McKay-Thompson series \(T_g(\tau)\) were the Hauptmoduls for other genus 0 groups.

Frenkel, Lepowsky and Meurman (FLM)\(^2\) constructed the Moonshine module \(V^\natural\).

In physical terms, they constructed a 2d chiral CFT (Monster CFT) from bosonic strings on an orbifold of the Leech Lattice (even self-dual) torus.

They showed that this module has automorphism group \(\mathbb{M}\) and graded dimension \(j(\tau) - 744\). That is, the CFT has \(j(\tau) - 744\) as the partition function and has \(\mathbb{M}\) symmetry.

Borcherds\(^3\) showed that the graded characters of \(V^\natural, T_g(\tau)\) are the Hauptmoduls identified by Conway and Norton.

\(^1\)Conway and Norton, “Monstrous moonshine”.
\(^2\)Frenkel, Lepowsky, and Meurman, “A natural representation of the Fischer-Griess Monster with the modular function J as character”.
Outline

1. Introduction
2. Monstrous Moonshine
3. The Elliptic Genus of K3
4. G_{24} and M_{24}
5. Mathieu Moonshine
6. Niemeier Lattices
7. Umbral Moonshine
String Theory Reminder

String Theory gives us a quantum theory of gravity and is therefore a promising ‘Theory of Everything’.
String Theory Reminder

String Theory gives us a quantum theory of gravity and is therefore a promising ‘Theory of Everything’.

However, String Theory comes with its own complications, including requiring more than the three spatial dimensions that we are used to considering.
String Theory Reminder

String Theory gives us a quantum theory of gravity and is therefore a promising ‘Theory of Everything’.

However, String Theory comes with its own complications, including requiring more than the three spatial dimensions that we are used to considering.

- Superstring theory, containing both *bosons* and *fermions* is only consistent in ten dimensions.
String Theory Reminder

String Theory gives us a quantum theory of gravity and is therefore a promising ‘Theory of Everything’.

However, String Theory comes with its own complications, including requiring more than the three spatial dimensions that we are used to considering.

- Superstring theory, containing both *bosons* and *fermions* is only consistent in ten dimensions.
- In order to describe a phenomenologically realistic theory in less than ten dimensions we *compactify* on a Calabi-Yau manifold.
String Theory Reminder

String Theory gives us a quantum theory of gravity and is therefore a promising ‘Theory of Everything’.

However, String Theory comes with its own complications, including requiring more than the three spatial dimensions that we are used to considering.

- Superstring theory, containing both *bosons* and *fermions* is only consistent in ten dimensions.
- In order to describe a phenomenologically realistic theory in less than ten dimensions we *compactify* on a Calabi-Yau manifold.
- There are many different Calabi-Yau 3-folds, but the only Calabi-Yau two folds are complex tori and K3 surfaces.
String Theory Reminder

String Theory gives us a quantum theory of gravity and is therefore a promising ‘Theory of Everything’.

However, String Theory comes with its own complications, including requiring more than the three spatial dimensions that we are used to considering.

- Superstring theory, containing both bosons and fermions is only consistent in ten dimensions.
- In order to describe a phenomenologically realistic theory in less than ten dimensions we compactify on a Calabi-Yau manifold.
- There are many different Calabi-Yau 3-folds, but the only Calabi-Yau two folds are complex tori and K3 surfaces.
- Alvarez-Gaumé and Freedman\(^4\) showed that a sigma model on a hyperkähler manifold has \(\mathcal{N} = 4\) symmetry (\(K3\) is hyperkähler).

The Partition Function and the Elliptic Genus

Mathieu Moonshine appears when considering the 2d conformal field theory on the worldsheet describing strings propagating on $K3$.

The partition function is given by:

$$Z(\tau, z; \bar{\tau}, \bar{z}) = \text{Tr} \left[H q^L_0 - c/24 \bar{y}^2 J_3^0 \bar{y}^2 q \right] = e^{2\pi i \tau}, y = e^{2\pi iz}.$$ (7)

Although the partition function is an important quantity containing the information about all states, it depends on where we are in the (80-dimensional) moduli space of $K3$. Too complicated to calculate at generic points in M_{K3}. For some purposes it is convenient to consider a related quantity known as the Elliptic Genus. This is moduli space independent:

$$\varepsilon_M(\tau, z) := Z_{\tilde{R}}(\tau, z; \bar{\tau}, \bar{z} = 0)$$ (8)
The Partition Function and the Elliptic Genus

Mathieu Moonshine appears when considering the 2d conformal field theory on the worldsheet describing strings propagating on $K3$.

We begin by considering the partition function:

Definition

The partition function for an $\mathcal{N} = (4, 4)$ theory is given by

$$Z(\tau, z; \bar{\tau}, \bar{z}) = \text{Tr}_H q^{L_0 - \frac{c}{24}} \bar{q}^{\bar{L}_0 - \frac{c}{24}} y^{2J_0^3} \bar{y}^{2\bar{J}_0^3} q = e^{2\pi i \tau}, y = e^{2\pi iz}. \quad (7)$$
Mathieu Moonshine appears when considering the 2d conformal field theory on the worldsheet describing strings propagating on $K3$.

We begin by considering the *partition function*:

Definition

The partition function for an $\mathcal{N} = (4, 4)$ theory is given by

$$Z(\tau, z; \bar{\tau}, \bar{z}) = \text{Tr}_H q^{L_0 - \frac{c}{24}} \bar{q}^{\bar{L}_0 - \frac{c}{24}} y^{2J^3_0} \bar{y}^{2\bar{J}^3_0} q = e^{2\pi i \tau}, y = e^{2\pi i z}. \quad (7)$$

Although the partition function is an important quantity containing the information about all states, it depends on where we are in the (80-dimensional) moduli space of $K3$, \mathcal{M}_{K3}.
The Partition Function and the Elliptic Genus

Mathieu Moonshine appears when considering the 2d conformal field theory on the worldsheet describing strings propagating on $K3$.

We begin by considering the partition function:

Definition

The partition function for an $\mathcal{N} = (4, 4)$ theory is given by

$$Z(\tau, z; \bar{\tau}, \bar{z}) = \text{Tr}_{\mathbf{H}} q^{L_0 - \frac{c}{24}} \bar{q}^{\bar{L}_0 - \frac{c}{24}} y J_0^3 \bar{y} \bar{J}_0^3$$

$$q = e^{2\pi i \tau}, \ y = e^{2\pi i z}.$$ \hspace{1cm} (7)

Although the partition function is an important quantity containing the information about all states, it depends on where we are in the (80-dimensional) moduli space of $K3$, \mathcal{M}_{K3}. Too complicated to calculate at generic points in \mathcal{M}_{K3}.

For some purposes it is convenient to consider a related quantity known as the Elliptic Genus. This is moduli space independent.

$$\varepsilon(\tau, z) := Z_{\mathbf{R}}(\tau, z; \bar{\tau}, \bar{z}) = 0$$ \hspace{1cm} (8)
The Partition Function and the Elliptic Genus

Mathieu Moonshine appears when considering the 2d conformal field theory on the worldsheet describing strings propagating on \(K3 \).

We begin by considering the \textit{partition function}:

Definition

The partition function for an \(\mathcal{N} = (4, 4) \) theory is given by

\[
Z(\tau, z; \bar{\tau}, \bar{z}) = \text{Tr}_H q^{L_0 - \frac{c}{24}} \bar{q}^{\bar{L}_0 - \frac{c}{24}} y^{2J_0^3} \bar{y}^{2\bar{J}_0^3} q = e^{2\pi i \tau}, y = e^{2\pi i z}. \tag{7}
\]

Although the partition function is an important quantity containing the information about all states, it depends on where we are in the (80-dimensional) moduli space of \(K3, \mathcal{M}_{K3} \). Too complicated to calculate at generic points in \(\mathcal{M}_{K3} \).

For some purposes it is convenient to consider a related quantity known as the Elliptic Genus. This is moduli space independent.

\[
\varepsilon_{\mathcal{M}}(\tau, z) := Z_{\tilde{R}}(\tau, z; \bar{\tau}, \bar{z} = 0) \tag{8}
\]
The Elliptic Genus Of K3

Definition

The Elliptic Genus of an \(\mathcal{N} = (4, 4) \) conformal field theory describing strings on K3 is defined as

\[
\varepsilon_{K3}(\tau, z) := \text{Tr}_{\mathcal{H}^R} \left((-1)^F q^{L_0 - \frac{c}{24}} \bar{q}^{\bar{L}_0} - \frac{\bar{c}}{24} y^2 J_0^3 \right)
\] (9)
The Elliptic Genus Of K3

Definition

The Elliptic Genus of an $\mathcal{N} = (4, 4)$ conformal field theory describing strings on K3 is defined as

$$\varepsilon_{K3}(\tau, z) := \text{Tr}_{\mathcal{H}^R} \left((-1)^F q^{L_0 - \frac{c}{24}} \bar{q}^{\bar{L}_0 - \frac{\bar{c}}{24}} y^2 J_0^3 \right)$$ \hspace{1cm} (9)

This is independent of \bar{q}, becomes the Witten Index on the right5.

The Elliptic Genus Of K3

Definition

The Elliptic Genus of an $\mathcal{N} = (4, 4)$ conformal field theory describing strings on K3 is defined as

$$\varepsilon_{K3}(\tau, z) := \text{Tr}_{\mathcal{H}^R} \left((-1)^F q^{L_0 - \frac{c}{24}} \bar{q}^{\bar{L}_0 - \frac{\bar{c}}{24}} y^2 J^3_0 \right)$$ \hspace{1cm} (9)

This is independent of \bar{q}, becomes the Witten Index on the right5.

5Witten, “Constraints on supersymmetry breaking”.

Sam Fearn (Durham University)
The Elliptic Genus Of K3

Definition

The Elliptic Genus of an $\mathcal{N} = (4, 4)$ conformal field theory describing strings on $K3$ is defined as

$$
\varepsilon_{K3}(\tau, z) := \text{Tr}_{\mathcal{H}_R} \left((-1)^F q^{L_0 - \frac{c}{24}} \bar{q}^{\bar{L}_0 - \frac{\bar{c}}{24}} y^2 J^3_0 \right)
$$

(9)

This is independent of \bar{q}, becomes the Witten Index on the right.\(^5\)

The elliptic genus of $K3$ can be shown\(^6\) to be a weak Jacobi form of weight 0 and index 1.

\(^5\)Witten, “Constraints on supersymmetry breaking”.

The Elliptic Genus Of K3

Definition

The Elliptic Genus of an \(\mathcal{N} = (4, 4) \) conformal field theory describing strings on K3 is defined as

\[
\varepsilon_{K3}(\tau, z) := \text{Tr}_{\mathcal{H}} \left((-1)^F q^{L_0 - \frac{c}{24}} \tilde{q}^{\tilde{L}_0 - \frac{\tilde{c}}{24}} y^{2\tilde{j}_0} \right)
\]

This is independent of \(\tilde{q} \), becomes the Witten Index on the right\(^5\). The elliptic genus of K3 can be shown\(^6\) to be a weak Jacobi form of weight 0 and index 1. This space is one dimensional and so we have

\[
\varepsilon_{K3} = 8 \left[\frac{\theta_2(\tau, z)^2}{\theta_2(\tau)^2} + \frac{\theta_3(\tau, z)^2}{\theta_3(\tau)^2} + \frac{\theta_4(\tau, z)^2}{\theta_4(\tau)^2} \right]
\]

\(^5\)Witten, “Constraints on supersymmetry breaking”.

\(^6\)Wendland, “Snapshots of Conformal Field Theory”.

The Elliptic Genus Of K3

Definition

The Elliptic Genus of an $\mathcal{N} = (4, 4)$ conformal field theory describing strings on K3 is defined as

$$\varepsilon_{K3}(\tau, z) := \text{Tr}_{\mathcal{H}^R} \left((-1)^F q^{L_0 - \frac{c}{24}} \bar{q}^{\bar{L}_0 - \frac{\bar{c}}{24}} y^2 j^3_0 \right)$$ \hspace{1cm} (9)

This is independent of \bar{q}, becomes the Witten Index on the right5. The elliptic genus of K3 can be shown6 to be a weak Jacobi form of weight 0 and index 1. This space is one dimensional and so we have

$$\varepsilon_{K3} = 8 \left[\frac{\theta_2(\tau, z)^2}{\theta_2(\tau)^2} + \frac{\theta_3(\tau, z)^2}{\theta_3(\tau)^2} + \frac{\theta_4(\tau, z)^2}{\theta_4(\tau)^2} \right]$$ \hspace{1cm} (10)

ε is a topological invariant and can be related to other invariants,

$$\varepsilon_{K3}(\tau, z = 0) = \chi(K3) = 24$$ \hspace{1cm} (11)

5Witten, “Constraints on supersymmetry breaking”.

6Wendland, “Snapshots of Conformal Field Theory”.
The Elliptic Genus in $\mathcal{N} = 4$ Characters

Alvarez-Gaumé and Freedman7 showed that a sigma model on a hyperkähler manifold has $\mathcal{N} = 4$ symmetry.

\begin{equation}
\varepsilon_{K^3}(\tau, z) = 24 \text{ch} \sum_{l=0}^{\infty}(\tau, z) + \sum_{\tau} q^{1/8} \text{ch} \sum_{l=1}^{\infty}(\tau, z) (12)
\end{equation}

\begin{equation}
\sum(\tau) = q^{-1/8}(-2 + \sum_{n=1}^{\infty} A_n q^n) (13)
\end{equation}

\begin{equation}
\sum(\tau) = q^{-1/8}(-2 + 90q + 462q^2 + 1540q^3 + 4554q^4 + \ldots) (14)
\end{equation}

7Alvarez-Gaume and Freedman, “Geometrical structure and ultraviolet finiteness in the supersymmetric σ-model”.

The Elliptic Genus in $\mathcal{N} = 4$ Characters

Alvarez-Gaumé and Freedman\(^7\) showed that a sigma model on a hyperkähler manifold has $\mathcal{N} = 4$ symmetry.

In terms of $\mathcal{N} = 4$ characters we can expand the elliptic genus as

$$\varepsilon_{K3}(\tau, z) = 24\text{ch}_{l=0}(\tau, z) + \Sigma(\tau)q^{\frac{1}{8}}\hat{\text{ch}}_{l=1/2}(\tau, z)$$ \hspace{1cm} (12)

where

$$\Sigma(\tau) = q^{-\frac{1}{8}}(-2 + \sum_{n=1}^{\infty} A_n q^n)$$ \hspace{1cm} (13)

\(^7\)Alvarez-Gaume and Freedman, “Geometrical structure and ultraviolet finiteness in the supersymmetric σ-model”.
The Elliptic Genus in $\mathcal{N} = 4$ Characters

Alvarez-Gaumé and Freedman\(^7\) showed that a sigma model on a hyperkähler manifold has $\mathcal{N} = 4$ symmetry.

In terms of $\mathcal{N} = 4$ characters we can expand the elliptic genus as

$$
\varepsilon_{K3}(\tau, z) = 24 \text{ch}_{l=0}(\tau, z) + \sum(\tau) q^{\frac{1}{8}} \text{ch}_{l=1/2}(\tau, z)
$$

where

$$
\sum(\tau) = q^{-\frac{1}{8}} (-2 + \sum_{n=1}^{\infty} A_n q^n)
$$

Σ can be expanded as

$$
\Sigma(\tau) = q^{-\frac{1}{8}} (-2 + 90q + 462q^2 + 1540q^3 + 4554q^4 + \ldots)
$$

\(^7\)Alvarez-Gaume and Freedman, “Geometrical structure and ultraviolet finiteness in the supersymmetric σ-model”.
Outline

1. Introduction
2. Monstrous Moonshine
3. The Elliptic Genus of K3
4. G_{24} and M_{24}
5. Mathieu Moonshine
6. Niemeier Lattices
7. Umbral Moonshine
A sporadic group

Theorem

The Classification of Finite Simple Groups.
This theorem states that all finite simple groups fall into one of the following families:

1. Cyclic groups of order n for n prime.
2. Alternating groups of degree at least 5.
3. Simple Lie type groups.
4. The 26 sporadic simple groups.

M$_{24}$ is one of the sporadic finite simple groups. It is a subgroup of the Monster group M, as shown below.
A sporadic group

Theorem

The Classification of Finite Simple Groups.
This theorem states that all finite simple groups fall into one of the following families:

1. Cyclic groups of order n for n prime.
2. Alternating groups of degree at least 5.
3. Simple Lie type groups.
4. The 26 sporadic simple groups.

M\textsubscript{24} is one of the sporadic finite simple groups. It is a subgroup of the Monster group M, as shown below.

[Diagram of group relationships]
The Golay Code

Linear codes are linear subspaces of vector spaces over finite fields.
The Golay Code

Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique $[24, 12, 8]$ code up to equivalency, G_{24}. This code is known as the Extended Binary Golay Code.
The Golay Code

Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique $[24, 12, 8]$ code up to equivalency, G_{24}. This code is known as the Extended Binary Golay Code.

There are numerous ways to define G_{24}.
The Golay Code

Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique $[24, 12, 8]$ code up to equivalency, G_{24}. This code is known as the Extended Binary Golay Code.

There are numerous ways to define G_{24}.
The Golay Code

Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique $[24, 12, 8]$ code up to equivalency, G_{24}. This code is known as the Extended Binary Golay Code.

There are numerous ways to define G_{24}.

Lexicographic Code

$$c_0 = (0, 0)$$
$$c_1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)$$
$$c_2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1)$$
$$c_3 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1)$$
...
The Golay Code

Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique $[24, 12, 8]$ code up to equivalency, G_{24}. This code is known as the Extended Binary Golay Code.

There are numerous ways to define G_{24}.

The Mathematical Game of Mogul

H H

H H T H H T H T H T H T H T H T H
The Golay Code

Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique $[24, 12, 8]$ code up to equivalency, G_{24}. This code is known as the Extended Binary Golay Code.

There are numerous ways to define G_{24}.

The Golay code was used to transmit photos back from the Voyager spacecraft.
We can define M_{24} in many different ways, however one that suits us is the following.

Definition

\[
M_{24} := \text{Aut}(G_{24})
\]

That is, $M_{24} = \{ \tau \in S_{24} \mid \tau(c) \in G_{24} \quad \forall c \in G_{24} \}$
We can define M_{24} in many different ways, however one that suits us is the following.

Definition

\[M_{24} := \text{Aut}(G_{24}) \]

That is, $M_{24} = \{ \tau \in S_{24} | \tau(c) \in G_{24} \ \forall c \in G_{24} \}$

M_{24} has order $2^{10} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 23 = 244823040$
Outline

1. Introduction
2. Monstrous Moonshine
3. The Elliptic Genus of K3
4. G_{24} and M_{24}
5. Mathieu Moonshine
6. Niemeier Lattices
7. Umbral Moonshine
M_{24} Representation Theory

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ρ_1</td>
<td>23</td>
<td>7</td>
<td>-1</td>
<td>5</td>
<td>-1</td>
<td>3</td>
<td>-1</td>
<td>3</td>
<td>-1</td>
<td>3</td>
<td>-1</td>
<td>2</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ρ_2</td>
<td>45</td>
<td>-3</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>-3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>α_+^-</td>
<td>α_-^+</td>
<td>0</td>
<td>1</td>
<td>α_-^+</td>
<td>α_-^+</td>
<td>0</td>
<td>0</td>
<td>α_-^+</td>
<td>α_-^+</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>ρ_3</td>
<td>231</td>
<td>7</td>
<td>-9</td>
<td>-3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>β_-^+</td>
<td>0</td>
<td>β_-^+</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ρ_4</td>
<td>252</td>
<td>28</td>
<td>12</td>
<td>9</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>ρ_5</td>
<td>253</td>
<td>13</td>
<td>-11</td>
<td>10</td>
<td>1</td>
<td>-3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ρ_6</td>
<td>483</td>
<td>35</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ρ_7</td>
<td>770</td>
<td>-14</td>
<td>10</td>
<td>5</td>
<td>-7</td>
<td>2</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>γ_-^+</td>
<td>γ_-^+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ρ_8</td>
<td>990</td>
<td>-18</td>
<td>-10</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>α_-^+</td>
<td>α_-^+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>α_-^+</td>
<td>α_-^+</td>
<td>0</td>
<td>0</td>
<td>α_-^+</td>
<td>α_-^+</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ρ_9</td>
<td>990</td>
<td>-18</td>
<td>-10</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>α_-^+</td>
<td>α_-^+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>α_-^+</td>
<td>α_-^+</td>
<td>0</td>
<td>0</td>
<td>α_-^+</td>
<td>α_-^+</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ρ_9</td>
<td>1035</td>
<td>27</td>
<td>35</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>-1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ρ_10</td>
<td>1035</td>
<td>-21</td>
<td>-5</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$2\alpha_-^+$</td>
<td>$2\alpha_-^+$</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>α_-^+</td>
<td>α_-^+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ρ_10</td>
<td>1035</td>
<td>-21</td>
<td>-5</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$2\alpha_-^+$</td>
<td>$2\alpha_-^+$</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>α_-^+</td>
<td>α_-^+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ρ_11</td>
<td>1265</td>
<td>49</td>
<td>-15</td>
<td>5</td>
<td>8</td>
<td>-7</td>
<td>1</td>
<td>-3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-2</td>
<td>-2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ρ_{12}</td>
<td>1771</td>
<td>-21</td>
<td>11</td>
<td>16</td>
<td>7</td>
<td>3</td>
<td>-5</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ρ_{13}</td>
<td>2024</td>
<td>8</td>
<td>24</td>
<td>-1</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ρ_{14}</td>
<td>2277</td>
<td>21</td>
<td>-19</td>
<td>0</td>
<td>6</td>
<td>-3</td>
<td>1</td>
<td>-3</td>
<td>-3</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>ρ_{15}</td>
<td>3312</td>
<td>48</td>
<td>16</td>
<td>0</td>
<td>-6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-3</td>
<td>0</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ρ_{16}</td>
<td>3520</td>
<td>64</td>
<td>0</td>
<td>10</td>
<td>-8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ρ_{17}</td>
<td>5133</td>
<td>49</td>
<td>-15</td>
<td>0</td>
<td>1</td>
<td>-3</td>
<td>-3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ρ_{18}</td>
<td>5544</td>
<td>-56</td>
<td>24</td>
<td>9</td>
<td>0</td>
<td>-8</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ρ_{19}</td>
<td>5796</td>
<td>-28</td>
<td>38</td>
<td>-9</td>
<td>0</td>
<td>-4</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
| ρ_{20} | 10395| -21 | -45 | 0 | 0 | 3 | -1 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
Mathieu Moonshine

We showed that the elliptic genus of $K3$ can be written as

$$
\varepsilon_{K3}(\tau, z) = 24 \text{ch}_{l=0}^\mathcal{R}(\tau, z) + \hat{\text{ch}}_{l=1/2}^\mathcal{R}(\tau, z)
\cdot (-2 + 90q + 462q^2 + 1540q^3 + 4554q^4 + \ldots)
$$

(16)
Mathieu Moonshine

We showed that the elliptic genus of $K3$ can be written as

$$\varepsilon_{K3}(\tau, z) = 24\text{ch}_{l=0}(\tau, z) + \hat{\text{ch}}_{l=1/2}(\tau, z)$$

$$\cdot (-2 + 90q + 462q^2 + 1540q^3 + 4554q^4 + \ldots)$$

(16)

We can now see that these coefficients are all sums of dimensions of irreducible representations of M_{24}.
Mathieu Moonshine

We showed that the elliptic genus of $K3$ can be written as

$$
\varepsilon_{K3}(\tau, z) = 24 \text{ch}_{l=0}(\tau, z) + \text{ch}_{l=1/2}(\tau, z)
\cdot (-2 + 90q + 462q^2 + 1540q^3 + 4554q^4 + \ldots)
$$

(16)

We can now see that these coefficients are all sums of dimensions of irreducible representations of M_{24}.

The twining elliptic genera for $g \in M_{24}$ have been studied (eg.8)

$$
\phi_g(\tau, z) = \text{ch}_{H_0}(g)\text{ch}_{1/4,0}^R + \sum_{n=0}^{\infty} \text{ch}_{H_n}(g)\text{ch}_{n+1/4,1/2}^R(\tau, z)
$$

(17)

Mathieu Moonshine

We showed that the elliptic genus of $K3$ can be written as

$$
\varepsilon_{K3}(\tau, z) = 24 \text{ch}_{l=0}(\tau, z) + \hat{\text{ch}}_{l=1/2}(\tau, z)
\cdot (-2 + 90q + 462q^2 + 1540q^3 + 4554q^4 + \ldots)
$$

We can now see that these coefficients are all sums of dimensions of irreducible representations of M_{24}.

The twining elliptic genera for $g \in M_{24}$ have been studied (eg.8)

$$
\phi_g(\tau, z) = \text{ch}_{H_{00}}(g)\text{ch}_R^{1/4,0} + \sum_{n=0}^{\infty} \text{ch}_{H_n}(g)\text{ch}_R^{n+1/4,1/2}(\tau, z)
$$

and Gannon9 proved that all* H_n are indeed representations of M_{24}.

8 Gaberdiel, Hohenegger, and Volpato, “Mathieu twining characters for K3”.

Outline

1. Introduction
2. Monstrous Moonshine
3. The Elliptic Genus of K3
4. G_{24} and M_{24}
5. Mathieu Moonshine
6. Niemeier Lattices
7. Umbral Moonshine
Lattices - First Definitions

Here we will be interested only in real lattices, that is subgroups of \mathbb{R}^n.

Definition

- A *lattice* of dimension n is a free \mathbb{Z}-module, L_n with a symmetric bilinear form $\langle \cdot, \cdot \rangle$.
Lattices - First Definitions

Here we will be interested only in real lattices, that is subgroups of \mathbb{R}^n.

Definition

- A *lattice* of dimension n is a free \mathbb{Z}-module, L_n with a symmetric bilinear form $\langle \cdot, \cdot \rangle$.
- A lattice is *integral* if $\langle \lambda, \mu \rangle \in \mathbb{Z}$, $\forall \lambda, \mu \in L_n$.
- A lattice is *even* if $\langle \lambda, \lambda \rangle \in 2\mathbb{Z}$ $\forall \lambda \in L_n$.
- For an even lattice L_n, we define the set of roots to be those elements of norm 2.
- We call a matrix, M whose rows are a basis for L_n a generator matrix for L_n. Then elements $\lambda \in L_n$ may be written as $\lambda = \xi M$, $\xi \in \mathbb{Z} \geq n$.
- The Gram matrix, A is given by $M \cdot M^\top$.
- The determinant of the Gram matrix is known as the determinant of L_n, $\text{det}(L_n) = \text{det}(A)$.
Lattices - First Definitions

Here we will be interested only in real lattices, that is subgroups of \mathbb{R}^n.

Definition

- A *lattice* of dimension n is a free \mathbb{Z}-module, L_n with a symmetric bilinear form $\langle \cdot, \cdot \rangle$.
- A lattice is *integral* if $\langle \lambda, \mu \rangle \in \mathbb{Z}$, $\forall \lambda, \mu \in L_n$.
- A lattice is *even* if $\langle \lambda, \lambda \rangle \in 2\mathbb{Z}$, $\forall \lambda \in L_n$.
Lattices - First Definitions

Here we will be interested only in real lattices, that is subgroups of \(\mathbb{R}^n \).

Definition

- A *lattice* of dimension \(n \) is a free \(\mathbb{Z} \)-module, \(L_n \) with a symmetric bilinear form \(\langle \cdot, \cdot \rangle \).
- A lattice is *integral* if \(\langle \lambda, \mu \rangle \in \mathbb{Z} \), \(\forall \lambda, \mu \in L_n \).
- A lattice is *even* if \(\langle \lambda, \lambda \rangle \in 2\mathbb{Z} \), \(\forall \lambda \in L_n \).
- For an even lattice \(L \), we define the set of *roots* to be those elements of norm 2.
Here we will be interested only in real lattices, that is subgroups of \mathbb{R}^n.

Definition

- A *lattice* of dimension n is a free \mathbb{Z}-module, L_n with a symmetric bilinear form $\langle \cdot , \cdot \rangle$.
- A lattice is *integral* if $\langle \lambda, \mu \rangle \in \mathbb{Z}$, $\forall \lambda, \mu \in L_n$.
- A lattice is *even* if $\langle \lambda, \lambda \rangle \in 2\mathbb{Z}$, $\forall \lambda \in L_n$.
- For an even lattice L, we define the set of *roots* to be those elements of norm 2.
- We call a matrix, M whose rows are a basis for L_n a *generator matrix* for L_n. Then elements $\lambda \in L_n$ may be written as $\lambda = \xi M$, $\xi \in \mathbb{Z}_{\geq n}$.
Lattices - First Definitions

Here we will be interested only in real lattices, that is subgroups of \(\mathbb{R}^n \).

Definition

- A lattice of dimension \(n \) is a free \(\mathbb{Z} \)-module, \(L_n \) with a symmetric bilinear form \(\langle \cdot, \cdot \rangle \).
- A lattice is integral if \(\langle \lambda, \mu \rangle \in \mathbb{Z}, \ \forall \lambda, \mu \in L_n \).
- A lattice is even if \(\langle \lambda, \lambda \rangle \in 2\mathbb{Z} \ \forall \lambda \in L_n \).
- For an even lattice \(L \), we define the set of roots to be those elements of norm 2.
- We call a matrix, \(M \) whose rows are a basis for \(L_n \) a generator matrix for \(L_n \). Then elements \(\lambda \in L_n \) may be written as \(\lambda = \xi M, \ \xi \in \mathbb{Z}^{\geq n} \).
- The Gram matrix, \(A \) is given by \(M \cdot M^\top \).
Lattices - First Definitions

Here we will be interested only in real lattices, that is subgroups of \mathbb{R}^n.

Definition

- A *lattice* of dimension n is a free \mathbb{Z}-module, L_n with a symmetric bilinear form $\langle \cdot, \cdot \rangle$.
- A lattice is *integral* if $\langle \lambda, \mu \rangle \in \mathbb{Z}$, $\forall \lambda, \mu \in L_n$.
- A lattice is *even* if $\langle \lambda, \lambda \rangle \in 2\mathbb{Z}$ $\forall \lambda \in L_n$.
- For an even lattice L, we define the set of *roots* to be those elements of norm 2.
- We call a matrix, M whose rows are a basis for L_n a *generator matrix* for L_n. Then elements $\lambda \in L_n$ may be written as $\lambda = \xi M$, $\xi \in \mathbb{Z}^\geq n$.
- The *Gram matrix*, A is given by $M \cdot M^\top$.
- The determinant of the Gram matrix is known as the *determinant* of L_n, $\det(L_n) = \det(A)$.
Unimodular Lattices

Definition

We define the dual of a lattice, $L^*_n = \{ \mu \in \mathbb{R}^n \mid \mu \cdot L_n \subseteq \mathbb{Z} \}$.

If M is the generating matrix for L then $(M^{-1})^\top$ is a generating matrix for L^* and A^{-1} is the Gram matrix.

Clearly in an integral lattice we have $L_n \subseteq L^*_n$, if we have $L_n = L^*_n$ we say L_n is self-dual or unimodular.

For an integral lattice with generating matrix M we have, for $\mu \in L^*$,

$\mu = \xi (M^{-1})^\top = \xi (M^{-1})^\top M = \det(A^{-1}) \xi \text{adj}(A) M = \det(L) \xi \text{adj}(L) M$

hence we also have $L^*_n \subseteq \det(L) L_n$.

When $\det(L) = 1$ then L is unimodular.
Unimodular Lattices

Definition

We define the *dual* of a lattice, \(L_n^* = \{ \mu \in \mathbb{R}^n | \mu \cdot L_n \subseteq \mathbb{Z} \} \).

If \(M \) is the generating matrix for \(L \) then \((M^{-1})^\top\) is a generating matrix for \(L^* \) and \(A^{-1} \) is the Gram matrix.
We define the dual of a lattice, \(L_n^* = \{ \mu \in \mathbb{R}^n | \mu \cdot L_n \subseteq \mathbb{Z} \} \).

If \(M \) is the generating matrix for \(L \) then \((M^{-1})^\top\) is a generating matrix for \(L^* \) and \(A^{-1} \) is the Gram matrix.

Clearly in an integral lattice we have \(L_n \subseteq L_n^* \), if we have \(L_n = L_n^* \) we say \(L_n \) is self-dual or unimodular.
Unimodular Lattices

Definition

We define the *dual* of a lattice, \(L_n^* = \{ \mu \in \mathbb{R}^n | \mu \cdot L_n \subseteq \mathbb{Z} \} \).

If \(M \) is the generating matrix for \(L \) then \((M^{-1})^\top\) is a generating matrix for \(L^* \) and \(A^{-1} \) is the Gram matrix.

Clearly in an integral lattice we have \(L_n \subseteq L_n^* \), if we have \(L_n = L_n^* \) we say \(L_n \) is *self-dual* or *unimodular*.

For an integral lattice with generating matrix \(M \) we have, for \(\mu \in L^* \),

\[
\mu = \xi (M^{-1})^\top = \xi (M^{-1})^\top M^{-1} M \\
= \xi A^{-1} M = det(A)^{-1} \xi adj(A) M \\
= det(L)^{-1} \xi' M
\]
Unimodular Lattices

Definition
We define the dual of a lattice, \(L_n^* = \{ \mu \in \mathbb{R}^n | \mu \cdot L_n \subseteq \mathbb{Z} \} \).

If \(M \) is the generating matrix for \(L \) then \((M^{-1})^\top \) is a generating matrix for \(L^* \) and \(A^{-1} \) is the Gram matrix.

Clearly in an integral lattice we have \(L_n \subseteq L_n^* \), if we have \(L_n = L_n^* \) we say \(L_n \) is self-dual or unimodular.

For an integral lattice with generating matrix \(M \) we have, for \(\mu \in L^* \),
\[
\mu = \xi (M^{-1})^\top = \xi (M^{-1})^\top M^{-1} M = \xi A^{-1} M = \det(A)^{-1} \xi \text{adj}(A) M = \det(L)^{-1} \xi' M
\]
hence we also have \(L_n^* \subseteq \det(L)^{-1} L_n \).
When \(\det(L) = 1 \) then \(L \) is unimodular.
The Niemeier Lattices

The Leech lattice is the unique even, unimodular (Type II) lattice of dimension 24 without roots, vectors of norm 2.
The Niemeier Lattices

The Leech lattice is the unique even, unimodular (Type II) lattice of dimension 24 without roots, vectors of norm 2. The only 16 dimensional Type II lattices are $E_8 \times E_8$ and the weight lattice of $\text{Spin}(32)/\mathbb{Z}_2$. Related to gauge groups for Heterotic string theory.
The Niemeier Lattices

The Leech lattice is the unique even, unimodular (Type II) lattice of dimension 24 without roots, vectors of norm 2.

It can be shown\(^\text{10}\) that an even, unimodular lattice either has no roots (Leech) or its roots are given by the union of irreducible, simply-laced root systems of the same Coxeter number. Verified by Mass Formula.

The Niemeier Lattices

The Leech lattice is the unique even, unimodular (Type II) lattice of dimension 24 without *roots*, vectors of norm 2.

It can be shown\(^\text{10}\) that an even, unimodular lattice either has no roots (Leech) or its roots are given by the union of irreducible, simply-laced root systems of the same Coxeter number. Verified by Mass Formula.

The Niemeier lattices can be constructed\(^\text{10}\) by *gluing* the root lattices using *glue vectors* whose components are given by elements of \(L^*/L\). We consider \((A^2_{24})^+\) and \((A^1_{12})^+\).

\(^{10}\text{Conway and Sloane, *Sphere packings, lattices and groups.*}\)
The Niemeier Lattices

The Leech lattice is the unique even, unimodular (Type II) lattice of dimension 24 without roots, vectors of norm 2.

It can be shown\(^{10}\) that an even, unimodular lattice either has no roots (Leech) or its roots are given by the union of irreducible, simply-laced root systems of the same Coxeter number. Verified by Mass Formula.

The Niemeier lattices can be constructed\(^ {10}\) by gluing the root lattices using glue vectors whose components are given by elements of \(L^*/L\). We consider \((A_{24}^+)^+\) and \((A_{12}^+)^+\).

\((A_{24}^+)^+\) is constructed using the Extended binary Golay code, \(G_{24}\) as glue. The minimum weight of \(G_{24}\) ensures this doesn’t add roots and maintains evenness.

\((A_{12}^+)^+\) is constructed using the Extended ternary Golay code, \(G_{12}\). \(G_{12}\) is a \([12, 6, 6]_3\) code. Therefore using this as glue doesn’t add roots and maintains evenness.

\(^{10}\)Conway and Sloane, *Sphere packings, lattices and groups*.
Outline

1. Introduction
2. Monstrous Moonshine
3. The Elliptic Genus of K3
4. G_{24} and M_{24}
5. Mathieu Moonshine
6. Niemeier Lattices
7. Umbral Moonshine
The Umbral Forms

Cheng, Duncan and Harvey11 described a particular way to associate to each Niemeier lattice a (vector-valued) mock modular form.

\begin{itemize}
 \item Begin with a weight 0, index \(m-1\) (holo.) weak Jacobi form \(\phi(\tau, z)\).
 \item Form a weight 1, index \(m\) Jacobi form as \(\psi(\tau, z) = \mu_{1, 0}(\tau, z) \phi(\tau, z)\) (18)
 \item Define the Polar part of \(\psi\) as \(\psi_P(\tau, z) = \chi_{m, 0}(19)\) where \(\chi = \phi(\tau, 0)\) is a weight 0 modular form and hence is constant.
\end{itemize}

The Umbral Forms

Cheng, Duncan and Harvey11 described a particular way to associate to each Niemeier lattice a (vector-valued) mock modular form.

This construction, in the simplest cases of A_{1}^{24} and A_{2}^{12} may be summarised as follows:

\begin{itemize}
 \item Begin with a weight 0, index $m - 1$ (holo.) weak Jacobi form $\phi(\tau, z)$.
 \item Form a weight 1, index m Jacobi form as $\psi(\tau, z) = \mu_{1,0}(\tau, z) \phi(\tau, z)$ (18)
 \item We define the Polar part of ψ as $\psi_{P}(\tau, z) = \chi_{\mu}(19)$ where $\chi = \phi(\tau, 0)$ is a weight 0 modular form and hence is constant.
\end{itemize}

\footnote{Cheng, Duncan, and Harvey, “Umbral moonshine”; Cheng, Duncan, and Harvey, “Umbral moonshine and the Niemeier lattices”.}
The Umbral Forms

Cheng, Duncan and Harvey11 described a particular way to associate to each Niemeier lattice a (vector-valued) mock modular form. This construction, in the simplest cases of A_{1}^{24} and A_{2}^{12} may be summarised as follows:

- Begin with a weight 0, index $m - 1$ (holo.) weak Jacobi form $\phi(\tau, z)$.

11Cheng, Duncan, and Harvey, “Umbral moonshine”; Cheng, Duncan, and Harvey, “Umbral moonshine and the Niemeier lattices”.
The Umbral Forms

Cheng, Duncan and Harvey11 described a particular way to associate to each Niemeier lattice a (vector-valued) mock modular form.

This construction, in the simplest cases of A_{12}^{24} and A_{22}^{12} may be summarised as follows:

• Begin with a weight 0, index $m-1$ (holo.) weak Jacobi form $\phi(\tau, z)$.
• Form a weight 1, index m Jacobi form as

$$\psi(\tau, z) = \mu_{1,0}(\tau, z)\phi(\tau, z)$$ \hspace{1cm} (18)

where $\mu_{1,0}$ is a meromorphic Jacobi form of weight 1, index 1.

11Cheng, Duncan, and Harvey, “Umbral moonshine”; Cheng, Duncan, and Harvey, “Umbral moonshine and the Niemeier lattices”.

The Umbral Forms

Cheng, Duncan and Harvey11 described a particular way to associate to each Niemeier lattice a (vector-valued) mock modular form.

This construction, in the simplest cases of A_{24}^1 and A_{12}^2 may be summarised as follows:

- Begin with a weight 0, index $m - 1$ (holo.) weak Jacobi form $\phi(\tau, z)$.
- Form a weight 1, index m Jacobi form as
 \[
 \psi(\tau, z) = \mu_{1,0}(\tau, z)\phi(\tau, z)
 \]
 where $\mu_{1,0}$ is a meromorphic Jacobi form of weight 1, index 1.
- We define the Polar part of ψ as
 \[
 \psi^P(\tau, z) = \chi \mu_{m,0}
 \]
 where $\chi = \phi(\tau, 0)$ is a weight 0 modular form and hence is constant.

11Cheng, Duncan, and Harvey, “Umbral moonshine”; Cheng, Duncan, and Harvey, “Umbral moonshine and the Niemeier lattices”.
Umbral Forms Continued

- Now form the finite part of ψ as

$$\psi^F(\tau, z) = \psi(\tau, z) - \psi^P(\tau, z)$$ \hspace{1cm} (20)

ψ^F is known as a mock Jacobi form of weight 1 and index m.
Umbral Forms Continued

• Now form the finite part of ψ as

$$\psi^F(\tau, z) = \psi(\tau, z) - \psi^P(\tau, z)$$ \hspace{1cm} (20)

ψ^F is known as a mock Jacobi form of weight 1 and index m.

• It can be shown\(^{12}\) that such a form has a theta expansion given by

$$\psi^F(\tau, z) = \sum_{r=1}^{m-1} h_r(\tau) \hat{\theta}_{m,r}(\tau, z)$$ \hspace{1cm} (21)

the theta coefficients h_r are the components of a vector-valued mock modular form of weight $\frac{1}{2}$.

The first few coefficients

The link to the Niemeier lattices A_1^{24} and A_2^{12}, comes by taking ϕ to be an extremal Jacobi form of index the Coxeter number of the Niemeier root system.

We define $f_i(\tau, z) := \frac{\theta_i(\tau, z)}{\theta_i(\tau, 0)}$ (22)

$\phi_1^{24} = 8(f_2^2 + f_2^3 + f_2^4), \quad (23)$

$\phi_1^{12} = 4(f_2^2 f_2^3 + f_2^3 f_2^4 + f_2^4 f_2^2). \quad (24)$

We find the Umbral Forms (H_r)

$H_2^1 = 2q^{-1}/8(-1 + 45q + 231q^2 + 770q^3 + \ldots) \quad (25)$

$H_3^1 = 2q^{-1}/12(-1 + 16q + 55q^2 + 144q^3 + \ldots) \quad (26)$

$H_3^2 = 2q^2/3(10 + 44q + 110q^2 + 280q^3 + \ldots) \quad (27)$
The first few coefficients

The link to the Niemeier lattices A_{12}^{24} and A_{22}^{12}, comes by taking ϕ to be an extremal Jacobi form of index the Coxeter number of the Niemeier root system. A weak Jacobi form of weight 0, index m is extremal if it admits a particular decomposition into $N = 4$ characters.
The first few coefficients

The link to the Niemeier lattices A_1^{24} and A_2^{12}, comes by taking ϕ to be an extremal Jacobi form of index the Coxeter number of the Niemeier root system. A weak Jacobi form of weight 0, index m is extremal if it admits a particular decomposition into $N = 4$ characters.

The spaces of extremal Jacobi forms of index 2, and index 3, are both known to be of dimension 1. We define

$$f_i(\tau, z) := \theta_i(\tau, z)/\theta_i(\tau, 0)$$ (22)

$$\phi_1^2 = 8(f_2^2 + f_3^2 + f_4^2),$$ (23)

$$\phi_1^3 = 4(f_2^2 f_3^2 + f_3^2 f_4^2 + f_4^2 f_2^2).$$ (24)

We find the Umbral Forms (H_r)

$$H_1^2 = 2q^{-1/8}(-1 + 45q + 231q^2 + 770q^3 + \ldots)$$ (25)

$$H_1^3 = 2q^{-1/12}(-1 + 16q + 55q^2 + 144q^3 + \ldots)$$ (26)

$$H_2^3 = 2q^{2/3}(10 + 44q + 110q^2 + 280q^3 + \ldots)$$ (27)
The Umbral Groups

In terms of the Niemeier lattices, the *Umbral groups* are easily defined.
The Umbral Groups

In terms of the Niemeier lattices, the *Umbral groups* are easily defined. For a root system X and corresponding Niemeier lattice L^X, we may consider the automorphism group $\text{Aut}(L^X)$.

For the Niemeier lattices the Automorphism group is given by the product $\bar{G}_X W X G_1$, where \bar{G}_X is the group of permutations of the components of X induced by automorphisms of L^X, and G_1 is given by $\hat{W}_X / W X$ where \hat{W}_X is automorphisms of L^X that stabilise the components of X. In the cases A_{24} and A_{12} we find $G_{A_{24}} = M_{24}$ (29) $G_{A_{12}} = 2^4 M_{12}$ (30).
The Umbral Groups

In terms of the Niemeier lattices, the *Umbral groups* are easily defined. For a root system X and corresponding Niemeier lattice L^X, we may consider the automorphism group $\text{Aut}(L^X)$. The reflections in the roots generates a normal subgroup called the *Weyl group* W^X.
In terms of the Niemeier lattices, the Umbral groups are easily defined.

For a root system X and corresponding Niemeier lattice L^X, we may consider the automorphism group $\text{Aut}(L^X)$. The reflections in the roots generates a normal subgroup called the Weyl group W^X.

We define the Umbral group G^X to be the corresponding quotient

$$G^X := \text{Aut}(L^X)/W^X \quad (28)$$
The Umbral Groups

In terms of the Niemeier lattices, the *Umbral groups* are easily defined.

For a root system X and corresponding Niemeier lattice L^X, we may consider the automorphism group $\text{Aut}(L^X)$. The reflections in the roots generates a normal subgroup called the *Weyl group* W^X.

We define the Umbral group G^X to be the corresponding quotient

$$G^X := \text{Aut}(L^X)/W^X$$

(28)

For the Niemeier lattices the Automorphism group is given by the product $\tilde{G}^X W^X G_1$, where \tilde{G}^X is the group of permutations of the components of X induced by automorphisms of L^X, and G_1 is given by \hat{W}^X/ W^X where \hat{W}^X is automorphisms of L^X that stabilise the components of X.

Sam Fearn (Durham University)
The Umbral Groups

In terms of the Niemeier lattices, the *Umbral groups* are easily defined. For a root system X and corresponding Niemeier lattice L^X, we may consider the automorphism group $\text{Aut}(L^X)$. The reflections in the roots generates a normal subgroup called the *Weyl group* W^X.

We define the Umbral group G^X to be the corresponding quotient

$$G^X := \text{Aut}(L^X)/W^X$$

(28)

For the Niemeier lattices the Automorphism group is given by the product $\tilde{G}^X W^X G_1$, where \tilde{G}^X is the group of permutations of the components of X induced by automorphisms of L^X, and G_1 is given by \hat{W}^X/W^X where \hat{W}^X is automorphisms of L^X that stabilise the components of X.

In the cases A^2_{14} and A^1_{12} we find

$$G^{A^2_{14}} = M_{24}$$

(29)

$$G^{A^1_{12}} = 2M_{12}$$

(30)
Umbral Moonshine

\[\{g\} \]

<table>
<thead>
<tr>
<th>[g^2]</th>
<th>FS</th>
<th>1A 2A 4A 2B 2C 3A 6A 3B 6B 4B 4C 5A 10A 12A 6C 6D 8A 8B 8C 8D 20A 20B 11A 22A 11B 22B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3A</td>
<td>1A 2A 4A 2B 2C 3A 6A 3B 6B 4B 4C 1A 2A 12A 6C 6D 8B 8A 8D 8C 4A 4A 11A 22A 11B 22B</td>
<td></td>
</tr>
<tr>
<td>6A</td>
<td>1A 2A 4A 2B 2C 3A 6A 3B 6B 4B 4C 5A 10A 12A 6C 6D 8A 8B 8C 8D 20B 20A 1A 2A 1A 2A</td>
<td></td>
</tr>
</tbody>
</table>

\[\{g^3\} \]

\[\{g^5\} \]

\[\{g^{11}\} \]

\[\chi_1 \]

\[\chi_2 \]

\[\chi_3 \]

\[\chi_4 \]

\[\chi_5 \]

\[\chi_6 \]

\[\chi_7 \]

\[\chi_8 \]

\[\chi_9 \]

\[\chi_{10} \]

\[\chi_{11} \]

\[\chi_{12} \]

\[\chi_{13} \]

\[\chi_{14} \]

\[\chi_{15} \]

\[\chi_{16} \]

\[\chi_{17} \]

\[\chi_{18} \]

\[\chi_{19} \]

\[\chi_{20} \]

\[\chi_{21} \]

\[\chi_{22} \]

\[\chi_{23} \]

\[\chi_{24} \]

\[\chi_{25} \]

\[\chi_{26} \]
(M)Umbral Moonshine

We see that the coefficients of the forms H_1^2, H_1^3 and H_2^3 are given by dimensions of representations of the Umbral groups M_{24} and $2.M_{12}$ respectively.

13 Cheng, Duncan, and Harvey, “Umbral moonshine and the Niemeier lattices”.

Sam Fearn (Durham University)
(M)Umbral Moonshine

We see that the coefficients of the forms H_1^2, H_1^3 and H_2^3 are given by dimensions of representations of the Umbral groups M_{24} and $2.M_{12}$ respectively.

A similar procedure can be used to find vector-valued mock modular forms associated to each of the 23 Niemeier lattices, each of which is found to have coefficients encoding dimensions of representations of the 23 Umbral groups as defined above.

13 Cheng, Duncan, and Harvey, “Umbral moonshine and the Niemeier lattices”.
Umbral Moonshine

We see that the coefficients of the forms H_1^2, H_1^3 and H_1^3 are given by dimensions of representations of the Umbral groups M_{24} and $2.M_{12}$ respectively.

A similar procedure can be used to find vector-valued mock modular forms associated to each of the 23 Niemeier lattices, each of which is found to have coefficients encoding dimensions of representations of the 23 Umbral groups as defined above.

Umbral Moonshine conjectures that there exists a graded module K^X associated to each Niemeier lattice L^X such that the characters associated to elements $g \in G^X$ give the umbral forms H_g^{X13}.

13 Cheng, Duncan, and Harvey, “Umbral moonshine and the Niemeier lattices”.
Sam Fearn (Durham University)
Hidden Physics?

Recall:

- Monstrous Moonshine was hidden in the partition function of a particular CFT
Hidden Physics?

Recall:

- Monstrous Moonshine was hidden in the partition function of a particular CFT
- The Elliptic Genus of $K3$, which revealed Mathieu Moonshine when written in terms of $\mathcal{N} = 4$ characters, described the right-moving ground states of the theory.
Hidden Physics?

Recall:

- Monstrous Moonshine was hidden in the partition function of a particular CFT
- The Elliptic Genus of $K3$, which revealed Mathieu Moonshine when written in terms of $\mathcal{N} = 4$ characters, described the right-moving ground states of the theory.

Umbral moonshine can also be seen in terms of the elliptic genus of $K3$: Recall that we split the elliptic genus into massless and massive characters of $\mathcal{N} = 4$. We can instead split the elliptic genus into a part corresponding to some surface singularities of the $K3$ and the remaining ‘Moonshine’ part which encodes the moonshine form\(^\text{14}\).

Hidden Physics

Kachru et al.15 consider 3d gravity theories by for instance compactifying the Type II string on $K3 \times T^3$. The moduli space of such theories can be thought of as the space of 32-dimensional even unimodular lattices of signature (8,24). In a neighbourhood of some particular points in this moduli space the theory has Umbral symmetry.

Questions?
Mathieu and Monstrous Moonshine

- Both moonshines involve the representation theory of finite simple groups and objects with particular modular transformations.

- Monstrous Moonshine involved modular functions (in fact Hauptmodul) but Mathieu Moonshine (and Umbral Moonshine) involves mock-modular forms.

- Monstrous moonshine can be explained in terms of a string propagating on an orbifold of the 'Leech Torus' \mathbb{R}^{24}/Λ where the j-invariant describes the partition functions for the theory. In Mathieu Moonshine we don’t consider the full partition function but the elliptic genus which only counts half BPS states (right moving ground states).
Mathieu and Monstrous Moonshine

- Both moonshines involve the representation theory of finite simple groups and objects with particular modular transformations.
- In both cases we have been able to learn more about the representations involved by twisting the functions involved.

Monstrous Moonshine involved modular functions (in fact Hauptmodul) but Mathieu Moonshine (and Umbral Moonshine) involves mock-modular forms.

Monstrous moonshine can be explained in terms of a string propagating on an orbifold of the 'Leech Torus' R^{24}/Λ where the j-invariant describes the partition functions for the theory. In Mathieu Moonshine we don't consider the full partition function but the elliptic genus which only counts half BPS states (right moving ground states).
Mathieu and Monstrous Moonshine

- Both moonshines involve the representation theory of finite simple groups and objects with particular modular transformations.
- In both cases we have been able to learn more about the representations involved by twisting the functions involved.
- We can explain Monstrous Moonshine in terms of a Vertex Operator Algebra and we expect to be able to explain Mathieu Moonshine in terms of a Vertex Operator Superalgebra.

Monstrous moonshine can be explained in terms of a string propagating on an orbifold of the 'Leech Torus' R^{24}/Λ where the j-invariant describes the partition functions for the theory. In Mathieu Moonshine we don't consider the full partition function but the elliptic genus which only counts half BPS states (right moving ground states).
Mathieu and Monstrous Moonshine

- Both moonshines involve the representation theory of finite simple groups and objects with particular modular transformations.
- In both cases we have been able to learn more about the representations involved by twisting the functions involved.
- We can explain Monstrous Moonshine in terms of a Vertex Operator Algebra and we expect to be able to explain Mathieu Moonshine in terms of a Vertex Operator Superalgebra.
- Monstrous Moonshine involved modular functions (in fact Hauptmodul) but Mathieu Moonshine (and Umbral Moonshine) involves mock-modular forms.
Mathieu and Monstrous Moonshine

- Both moonshines involve the representation theory of finite simple groups and objects with particular modular transformations.
- In both cases we have been able to learn more about the representations involved by twisting the functions involved.
- We can explain Monstrous Moonshine in terms of a Vertex Operator Algebra and we expect to be able to explain Mathieu Moonshine in terms of a Vertex Operator Superalgebra.
- Monstrous Moonshine involved modular functions (in fact Hauptmodul) but Mathieu Moonshine (and Umbral Moonshine) involves mock-modular forms.
- Monstrous moonshine can be explained in terms of a string propagating on an orbifold of the ‘Leech Torus’ \mathbb{R}^{24}/Λ where the j-invariant describes the partition functions for the theory. In Mathieu Moonshine we don’t consider the full partition function but the elliptic genus which only counts half BPS states (right moving ground states).