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‘The energy produced by the breaking down of the atom is a very poor
kind of thing. Anyone who expects a source of power from the
transformation of these atoms is talking moonshine’

Ernest Rutherford (1937), The Wordsworth Book of Humorous Quotations
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Introduction

Moonshine
Algebraic
Objects

Modular
Objects

Here we present moonshine in the context of string theory, where the
one-loop partition function has a world sheet with the topology of a torus.

Z (τ) = TrHCFT [qL0− c
24 ] q := e2πiτ .

The torus is described by a complex parameter τ in the upper half plane.
Two tori with moduli τ, τ ′ are conformally equivalent if their moduli are
related by

τ ′ = aτ + b
cτ + d ad − bc = 1

Therefore,
Z (γτ) = Z (τ), γ ∈ SL2(Z)
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First Glimpse of the Monster
The moonshine story begins with a surprisingly simple and deep equation,

196884 = 196883 + 1
21493760 = 21296876 + 196883 + 1

864299970 = 842609326 + 21296876 + 2 · 196883 + 2 · 1
(1)

The numbers of the left hand sides are coefficients of the j-invariant, a
modular function (form of weight 0, where we allow meromorphicity) for
SL(2,Z) with q ≡ e2πiτ expansion

j(τ) = q−1 + 744 + 196884q + 21493760q2 + 864299970q3 + . . . (2)

This function is known as the Hauptmodul for the ‘genus 0’ group
SL(2,Z); all modular functions for SL(2,Z) are rational polynomials in
j(τ).
The numbers on the right are dimensions of irreducible representations of
the Monster group M, the largest finite sporadic group of order ≈ 8× 1053.
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A Monster Module
The previous equalities suggest the existence of a graded Monster module
V

V = V−1 ⊕ V1 ⊕ V2 ⊕ . . . (3)

whose graded dimension gives j(τ).

That is

j(τ)− 744 = dim(V−1)q−1 + dim(V1)q + dim(V2)q2 + . . . (4)

Since the dimension of a representation ρ is given by the character of the
identity, χρ(e) = Tr(ρ(e)) = dim(ρ), we may write this as

j(τ)− 744 = χV−1(eV−1)q−1 + χV1(eV1)q + χV2(eV2)q2 + . . . (5)

Written in this form it is natural to consider the McKay - Thompson series

Tg (τ) = χV−1(g)q−1 +
∞∑

i=1
χVi (g)qi (6)
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Monstrous Moonshine
Conway and Norton1 conjectured that the McKay-Thompson series Tg (τ)
were the Hauptmoduls for other genus 0 groups.

1John H Conway and Simon P Norton. “Monstrous moonshine”. In: Bull. London
Math. Soc 11.3 (1979), pp. 308–339.
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Frenkel, Lepowsky and Meurman (FLM)2 constructed the Moonshine
module V \.

1Conway and Norton, “Monstrous moonshine”.
2Igor B Frenkel, James Lepowsky, and Arne Meurman. “A natural representation of

the Fischer-Griess Monster with the modular function J as character”. In: Proceedings
of the National Academy of Sciences 81.10 (1984), pp. 3256–3260.
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Conway and Norton1 conjectured that the McKay-Thompson series Tg (τ)
were the Hauptmoduls for other genus 0 groups.

Frenkel, Lepowsky and Meurman (FLM)2 constructed the Moonshine
module V \.

In physical terms, they constructed a 2d chiral CFT (Monster CFT) from
bosonic strings on an orbifold of the Leech Lattice (even self-dual) torus.

They showed that this module has automorphism group M and graded
dimension j(τ)− 744. That is, the CFT has j(τ)− 744 as the partition
function and has M symmetry.

Borcherds3 showed that the graded characters of V \,Tg (τ) are the
Hauptmoduls identified by Conway and Norton.

1Conway and Norton, “Monstrous moonshine”.
2Frenkel, Lepowsky, and Meurman, “A natural representation of the Fischer-Griess

Monster with the modular function J as character”.
3Richard E Borcherds. “Monstrous moonshine and monstrous Lie superalgebras”.

In: Inventiones mathematicae 109.1 (1992), pp. 405–444.
Sam Fearn (Durham University) 9 / 36
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String Theory Reminder
String Theory gives us a quantum theory of gravity and is therefore a
promising ‘Theory of Everything’.

• In order to describe a phenomenologically realistic theory in less than
ten dimensions we compactify on a Calabi-Yau manifold.

• There are many different Calabi-Yau 3-folds, but the only Calabi-Yau
two folds are complex tori and K3 surfaces.
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consistent in ten dimensions.

• In order to describe a phenomenologically realistic theory in less than
ten dimensions we compactify on a Calabi-Yau manifold.

• There are many different Calabi-Yau 3-folds, but the only Calabi-Yau
two folds are complex tori and K3 surfaces.

• Alvarez-Gaumé and Freedman4 showed that a sigma model on a
hyperkähler manifold has N = 4 symmetry (K3 is hyperkähler).

4Luis Alvarez-Gaume and Daniel Z Freedman. “Geometrical structure and ultraviolet
finiteness in the supersymmetric σ-model”. In: Communications in Mathematical
Physics 80.3 (1981), pp. 443–451.
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The Partition Function and the Elliptic Genus
Mathieu Moonshine appears when considering the 2d conformal field
theory on the worldsheet describing strings propagating on K3.

We begin by considering the partition function:

Definition

The partition function for an N = (4, 4) theory is given by

Z (τ, z ; τ̄ , z̄) = TrHqL0− c
24 q̄L̄0− c

24 y2J3
0 ȳ2J̄3

0 q = e2πiτ , y = e2πiz . (7)

Although the partition function is an important quantity containing the
information about all states, it depends on where we are in the
(80-dimensional) moduli space of K3, MK3. Too complicated to calculate
at generic points in MK3.
For some purposes it is convenient to consider a related quantity known as
the Elliptic Genus. This is moduli space independent.

εM(τ, z) := ZR̃(τ, z ; τ̄ , z̄ = 0) (8)

Sam Fearn (Durham University) 12 / 36
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0 ȳ2J̄3

0 q = e2πiτ , y = e2πiz . (7)

Although the partition function is an important quantity containing the
information about all states, it depends on where we are in the
(80-dimensional) moduli space of K3, MK3. Too complicated to calculate
at generic points in MK3.
For some purposes it is convenient to consider a related quantity known as
the Elliptic Genus. This is moduli space independent.

εM(τ, z) := ZR̃(τ, z ; τ̄ , z̄ = 0) (8)

Sam Fearn (Durham University) 12 / 36



The Partition Function and the Elliptic Genus
Mathieu Moonshine appears when considering the 2d conformal field
theory on the worldsheet describing strings propagating on K3.
We begin by considering the partition function:

Definition

The partition function for an N = (4, 4) theory is given by

Z (τ, z ; τ̄ , z̄) = TrHqL0− c
24 q̄L̄0− c

24 y2J3
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0 ȳ2J̄3

0 q = e2πiτ , y = e2πiz . (7)

Although the partition function is an important quantity containing the
information about all states, it depends on where we are in the
(80-dimensional) moduli space of K3, MK3. Too complicated to calculate
at generic points in MK3.

For some purposes it is convenient to consider a related quantity known as
the Elliptic Genus. This is moduli space independent.

εM(τ, z) := ZR̃(τ, z ; τ̄ , z̄ = 0) (8)

Sam Fearn (Durham University) 12 / 36



The Partition Function and the Elliptic Genus
Mathieu Moonshine appears when considering the 2d conformal field
theory on the worldsheet describing strings propagating on K3.
We begin by considering the partition function:

Definition

The partition function for an N = (4, 4) theory is given by

Z (τ, z ; τ̄ , z̄) = TrHqL0− c
24 q̄L̄0− c

24 y2J3
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The Elliptic Genus Of K3

Definition
The Elliptic Genus of an N = (4, 4) conformal field theory describing
strings on K3 is defined as

εK3(τ, z) := TrHR

(
(−1)F qL0− c

24 q̄L̄0− c̄
24 y2J3

0
)

(9)
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εK3(τ, z) := TrHR

(
(−1)F qL0− c

24 q̄L̄0− c̄
24 y2J3

0
)

(9)

This is independent of q̄, becomes the Witten Index on the right5.

5Edward Witten. “Constraints on supersymmetry breaking”. In: Nuclear Physics B
202.2 (1982), pp. 253–316.
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(
(−1)F qL0− c

24 q̄L̄0− c̄
24 y2J3

0
)

(9)

This is independent of q̄, becomes the Witten Index on the right5.
The elliptic genus of K3 can be shown6 to be a weak Jacobi form of
weight 0 and index 1.

5Witten, “Constraints on supersymmetry breaking”.
6Katrin Wendland. “Snapshots of Conformal Field Theory”. In: arXiv preprint

arXiv:1404.3108 (2014).
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The Elliptic Genus Of K3

Definition
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The Elliptic Genus in N = 4 Characters

Alvarez-Gaumé and Freedman7 showed that a sigma model on a
hyperkähler manifold has N = 4 symmetry.

In terms of N = 4 characters we can expand the elliptic genus as

εK3(τ, z) = 24chR̃
l=0(τ, z) + Σ(τ)q

1
8 ĉhR̃

l=1/2(τ, z) (12)

where
Σ(τ) = q−

1
8 (−2 +

∞∑
n=1

Anqn) (13)

Σ can be expanded as

Σ(τ) = q−
1
8 (−2 + 90q + 462q2 + 1540q3 + 4554q4 + . . .) (14)

7Alvarez-Gaume and Freedman, “Geometrical structure and ultraviolet finiteness in
the supersymmetric σ-model”.
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A sporadic group
Theorem
The Classification of Finite Simple Groups.
This theorem states that all finite simple groups fall into one of the following families:

1 Cyclic groups of order n for n prime.
2 Alternating groups of degree at least 5.
3 Simple Lie type groups.
4 The 26 sporadic simple groups.

M24 is one of the sporadic finite simple groups. It is a subgroup of the Monster group
M, as shown below.
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The Golay Code

Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique [24, 12, 8] code up to equivalency, G24. This code is
known as the Extended Binary Golay Code.

There are numerous ways to define G24.
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The Golay Code

Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique [24, 12, 8] code up to equivalency, G24. This code is
known as the Extended Binary Golay Code.

There are numerous ways to define G24.

Lexicographic Code

c0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
c1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1)
c2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1)
c3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1)

...
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The Golay Code

Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique [24, 12, 8] code up to equivalency, G24. This code is
known as the Extended Binary Golay Code.

There are numerous ways to define G24.

The Mathematical Game of Mogul

H H H H H H H H H H H H H H H H H H H H H H H H

H H T H H H T H H T H H H H H T H H H H H T H T
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The Golay Code
Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique [24, 12, 8] code up to equivalency, G24. This code is
known as the Extended Binary Golay Code.

There are numerous ways to define G24.

The Golay code was used to transmit photos back from the Voyager
spacecraft.

Sam Fearn (Durham University) 17 / 36



M24

We can define M24 in many different ways, however one that suits us is
the following.

Definition

M24 := Aut(G24) (15)

That is, M24 = {τ ∈ S24| τ(c) ∈ G24 ∀c ∈ G24}

M24 has order 210 · 33 · 5 · 7 · 11 · 23 = 244823040
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M24 Representation Theory
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Mathieu Moonshine
We showed that the elliptic genus of K3 can be written as

εK3(τ, z) = 24chR̃
l=0(τ, z) + ĉhR̃

l=1/2(τ, z)
· (−2 + 90q + 462q2 + 1540q3 + 4554q4 + . . .)

(16)
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We can now see that these coefficients are all sums of dimensions of
irreducible representations of M24.

Sam Fearn (Durham University) 21 / 36



Mathieu Moonshine
We showed that the elliptic genus of K3 can be written as

εK3(τ, z) = 24chR̃
l=0(τ, z) + ĉhR̃
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(16)

We can now see that these coefficients are all sums of dimensions of
irreducible representations of M24.

The twining elliptic genera for g ∈ M24 have been studied (eg.8)

φg (τ, z) = chH00(g)chR
1
4 ,0

+
∞∑

n=0
chHn (g)chR

n+ 1
4 ,

1
2
(τ, z) (17)

8Matthias R Gaberdiel, Stefan Hohenegger, and Roberto Volpato. “Mathieu twining
characters for K3”. In: Journal of High Energy Physics 2010.9 (2010), pp. 1–20.
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irreducible representations of M24.

The twining elliptic genera for g ∈ M24 have been studied (eg.8)

φg (τ, z) = chH00(g)chR
1
4 ,0

+
∞∑

n=0
chHn (g)chR

n+ 1
4 ,

1
2
(τ, z) (17)

and Gannon9 proved that all* Hn are indeed representations of M24.

8Gaberdiel, Hohenegger, and Volpato, “Mathieu twining characters for K3”.
9Terry Gannon. “Much ado about Mathieu”. In: arXiv preprint arXiv:1211.5531

(2012).
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Lattices - First Definitions
Here we will be interested only in real lattices, that is subgroups of Rn.

Definition
• A lattice of dimension n is a free Z-module, Ln with a symmetric

bilinear form < ·, · >.

• A lattice is integral if < λ, µ >∈ Z, ∀ λ, µ ∈ Ln.

• A lattice is even if < λ, λ >∈ 2Z ∀λ ∈ Ln.
• For an even lattice L, we define the set of roots to be those elements

of norm 2.
• We call a matrix, M whose rows are a basis for Ln a generator matrix

for Ln. Then elements λ ∈ Ln may be written as λ = ξM, ξ ∈ Z≥n.
• The Gram matrix, A is given by M ·M>.
• The determinant of the Gram matrix is known as the determinant of

Ln, det(Ln) = det(A).
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Unimodular Lattices

Definition
We define the dual of a lattice, L∗n = {µ ∈ Rn|µ · Ln ⊆ Z}.

If M is the generating matrix for L then (M−1)> is a generating matrix for
L∗ and A−1 is the Gram matrix.

Clearly in an integral lattice we have Ln ⊆ L∗n, if we have Ln = L∗n we say
Ln is self-dual or unimodular.

For an integral lattice with generating matrix M we have, for µ ∈ L∗,
µ = ξ(M−1)> = ξ(M−1)>M−1M

= ξA−1M = det(A)−1ξadj(A)M
= det(L)−1ξ′M

hence we also have L∗n ⊆ det(L)−1Ln.
When det(L) = 1 then L is unimodular.
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The Niemeier Lattices
The Leech lattice is the unique even, unimodular (Type II) lattice of
dimension 24 without roots, vectors of norm 2.
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The Niemeier Lattices
The Leech lattice is the unique even, unimodular (Type II) lattice of
dimension 24 without roots, vectors of norm 2.
The only 16 dimensional Type II lattices are E8 × E8 and the weight lattice
of Spin(32)/Z2. Related to gauge groups for Heterotic string theory.
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The Niemeier Lattices
The Leech lattice is the unique even, unimodular (Type II) lattice of
dimension 24 without roots, vectors of norm 2.

It can be shown10 that an even, unimodular lattice either has no roots
(Leech) or its roots are given by the union of irreducible, simply-laced root
systems of the same Coxeter number. Verified by Mass Formula.

10John Horton Conway and Neil James Alexander Sloane. Sphere packings, lattices
and groups. Vol. 290. Springer Science and Business Media, 2013.
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(Leech) or its roots are given by the union of irreducible, simply-laced root
systems of the same Coxeter number. Verified by Mass Formula.

The Niemeier lattices can be constructed 10 by gluing the root lattices
using glue vectors whose components are given by elements of L∗/L. We
consider (A24

1 )+ and (A12
2 )+.
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(Leech) or its roots are given by the union of irreducible, simply-laced root
systems of the same Coxeter number. Verified by Mass Formula.

The Niemeier lattices can be constructed 10 by gluing the root lattices
using glue vectors whose components are given by elements of L∗/L. We
consider (A24

1 )+ and (A12
2 )+.

(A24
1 )+ is constructed using the

Extended binary Golay code,G24
as glue. The minimum weight of
G24 ensures this doesn’t add roots
and maintains evenness.

(A12
2 )+ is constructed using the

Extended ternary Golay code,G12.
G12 is a [12, 6, 6]3 code. Therefore
using this as glue doesn’t add
roots and maintains evenness.

10Conway and Sloane, Sphere packings, lattices and groups.
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The Umbral Forms
Cheng, Duncan and Harvey11 described a particular way to associate to
each Niemeier lattice a (vector-valued) mock modular form.

This construction, in the simplest cases of A24
1 and A12

2 may be
summarised as follows:

• Begin with a weight 0, index m − 1 (holo.) weak Jacobi form φ(τ, z).
• Form a weight 1, index m Jacobi form as

ψ(τ, z) = µ1,0(τ, z)φ(τ, z) (18)

where µ1,0 is a meromorphic Jacobi form of weight 1, index 1.
• We define the Polar part of ψ as

ψP(τ, z) = χµm,0 (19)

where χ = φ(τ, 0) is a weight 0 modular form and hence is constant.

11Miranda CN Cheng, John FR Duncan, and Jeffrey A Harvey. “Umbral moonshine”.
In: arXiv preprint arXiv:1204.2779 (2012); Miranda CN Cheng, John FR Duncan, and
Jeffrey A Harvey. “Umbral moonshine and the Niemeier lattices”. In: arXiv preprint
arXiv:1307.5793 (2013).
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• Form a weight 1, index m Jacobi form as

ψ(τ, z) = µ1,0(τ, z)φ(τ, z) (18)

where µ1,0 is a meromorphic Jacobi form of weight 1, index 1.
• We define the Polar part of ψ as

ψP(τ, z) = χµm,0 (19)

where χ = φ(τ, 0) is a weight 0 modular form and hence is constant.

11Cheng, Duncan, and Harvey, “Umbral moonshine”; Cheng, Duncan, and Harvey,
“Umbral moonshine and the Niemeier lattices”.
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Umbral Forms Continued

• Now form the finite part of ψ as

ψF (τ, z) = ψ(τ, z)− ψP(τ, z) (20)

ψF is known as a mock Jacobi form of weight 1 and index m.
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• Now form the finite part of ψ as

ψF (τ, z) = ψ(τ, z)− ψP(τ, z) (20)

ψF is known as a mock Jacobi form of weight 1 and index m.
• It can be shown12 that such a form has a theta expansion given by

ψF (τ, z) =
m−1∑
r=1

hr (τ)θ̂m,r (τ, z) (21)

the theta coefficients hr are the components of a vector-valued mock
modular form of weight 1

2 .

12Atish Dabholkar, Sameer Murthy, and Don Zagier. “Quantum black holes, wall
crossing, and mock modular forms”. In: arXiv preprint arXiv:1208.4074 (2012).
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The first few coefficients
The link to the Niemeier lattices A24

1 and A12
2 , comes by taking φ to be an

extremal Jacobi form of index the Coxeter number of the Niemeier root
system.

A weak Jacobi form of weight 0, index m is extremal if it admits a
particular decomposition into N = 4 characters.
The spaces of extremal Jacobi forms of index 2, and index 3, are both
known to be of dimension 1. We define

fi (τ, z) : = θi (τ, z)/θi (τ, 0) (22)
φ2

1 = 8(f 2
2 + f 2

3 + f 2
4 ), (23)

φ3
1 = 4(f 2

2 f 2
3 + f 2

3 f 2
4 + f 2

4 f 2
2 ). (24)

We find the Umbral Forms (Hr )

H2
1 = 2q−1/8(−1 + 45q + 231q2 + 770q3 + . . .) (25)

H3
1 = 2q−1/12(−1 + 16q + 55q2 + 144q3 + . . .) (26)

H3
2 = 2q2/3(10 + 44q + 110q2 + 280q3 + . . .) (27)
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The Umbral Groups
In terms of the Niemeier lattices, the Umbral groups are easily defined.

For a root system X and corresponding Niemeier lattice LX , we may
consider the automorphism group Aut(LX ). The reflections in the roots
generates a normal subgroup called the Weyl group W X .
We define the Umbral group GX to be the corresponding quotient

Gx := Aut(LX )/W X (28)

For the Niemeier lattices the Automorphism group is given by the product
ḠX W X G1, where ḠX is the group of permutations of the components of
X induced by automorphisms of LX , and G1 is given by Ŵ X/W X where
Ŵ X is automorphisms of LX that stabilise the components of X .
In the cases A24

1 and A12
2 we find

GA24
1 = M24 (29)

GA12
2 = 2.M12 (30)
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(M)Umbral Moonshine
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(M)Umbral Moonshine

We see that the coefficients of the forms H2
1 , H3

1 and H3
2 are given by

dimensions of representations of the Umbral groups M24 and 2.M12
respectively.

A similar procedure can be used to find vector-valued mock modular forms
associated to each of the 23 Niemeier lattices, each of which is found to
have coefficients encoding dimensions of representations of the 23 Umbral
groups as defined above.

Umbral Moonshine conjectures that there exists a graded module K X

associated to each Niemeier lattice LX such that the characters associated
to elements g ∈ GX give the umbral forms HX

g
13.

13Cheng, Duncan, and Harvey, “Umbral moonshine and the Niemeier lattices”.
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Hidden Physics?
Recall:

• Monstrous Moonshine was hidden in the partition function of a
particular CFT

• The Elliptic Genus of K3, which revealed Mathieu Moonshine when
written in terms of N = 4 characters, described the right-moving
ground states of the theory.
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Hidden Physics?
Recall:

• Monstrous Moonshine was hidden in the partition function of a
particular CFT

• The Elliptic Genus of K3, which revealed Mathieu Moonshine when
written in terms of N = 4 characters, described the right-moving
ground states of the theory.

Umbral moonshine can also be seen in terms of the elliptic genus of K3:
Recall that we split the elliptic genus into massless and massive characters
of N = 4. We can instead split the elliptic genus into a part corresponding
to some surface singularities of the K3 and the remaining ‘Moonshine’
part which encodes the moonshine form14.

14Miranda CN Cheng and Sarah Harrison. “Umbral Moonshine and K3 Surfaces”. In:
arXiv preprint arXiv:1406.0619 (2014).
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Hidden Physics
Kachru et al.15 consider 3d gravity theories by for instance compactifying
the Type II string on K3xT 3. The moduli space of such theories can be
thought of as the space of 32-dimensional even unimodular lattices of
signature (8,24). In a neighbourhood of some particular points in this
moduli space the theory has Umbral symmetry.

15Shamit Kachru, Natalie M Paquette, and Roberto Volpato. “3D String Theory and
Umbral Moonshine”. In: arXiv preprint arXiv:1603.07330 (2016).
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Questions?



Mathieu and Monstrous Moonshine
• Both moonshines involve the representation theory of finite simple

groups and objects with particular modular transformations.

• In both cases we have been able to learn more about the
representations involved by twisting the functions involved.

• We can explain Monstrous Moonshine in terms of a Vertex Operator
Algebra and we expect to be able to explain Mathieu Moonshine in
terms of a Vertex Operator Superalgebra

• Monstrous Moonshine involved modular functions (in fact
Hauptmodul) but Mathieu Moonshine (and Umbral Moonshine)
involves mock-modular forms.

• Monstrous moonshine can be explained in terms of a string
propagating on an orbifold of the ‘Leech Torus’ R24/Λ where the
j-invariant describes the partition functions for the theory. In Mathieu
Moonshine we don’t consider the full partition function but the
elliptic genus which only counts half BPS states (right moving ground
states).
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