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‘The energy produced by the breaking down of the atom is a very poor
kind of thing. Anyone who expects a source of power from the
transformation of these atoms is talking moonshine’

Ernest Rutherford (1937), The Wordsworth Book of Humorous Quotations
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Algebraic Modular

Objects Objects

Here we present moonshine in the context of string theory, where the
one-loop partition function has a world sheet with the topology of a torus.

Z(T) = Tr’HCFT[qLO_i] q:= 627”'7—'

The torus is described by a complex parameter 7 in the upper half plane.
Two tori with moduli 7, 7" are conformally equivalent if their moduli are

related by
b
TI:aT+ ad —bc=1
ct+d

Therefore,
Z(yr) = Z(1), v € SLy(Z)
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First Glimpse of the Monster

The moonshine story begins with a surprisingly simple and deep equation,

196884 = 196883 + 1
21493760 = 21296876 + 196883 + 1 (1)
864299970 = 842609326 + 21296876 + 2 - 196883 + 2 - 1

The numbers of the left hand sides are coefficients of the j-invariant, a
modular function (form of weight 0, where we allow meromorphicity) for
SL(2,7Z) with g = €*™'™ expansion

J(7) = g1 + 744 + 1968849 + 21493760¢° + 864299970q° + ... (2)

This function is known as the Hauptmodul for the ‘genus 0’ group
SL(2,Z); all modular functions for SL(2,Z) are rational polynomials in
j(7).

The numbers on the right are dimensions of irreducible representations of
the Monster group M, the largest finite sporadic group of order ~ 8 x 10°3.
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The previous equalities suggest the existence of a graded Monster module
%

V=V ieVieoWo... (3)

whose graded dimension gives j(7). That is
J(7) = 744 = dim(V_1)qg ' + dim(V1)q + dim(Va)? + ... (4)

Since the dimension of a representation p is given by the character of the
identity, x,(e) = Tr(p(e)) = dim(p), we may write this as

() =144 = xv_,(ev,)g ' + xw(en)g +xvlew)a® +... (5)

Written in this form it is natural to consider the McKay - Thompson series

To() = v @a + 3 xule)d (6)
i=1
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Monstrous Moonshine

Conway and Norton! conjectured that the McKay-Thompson series Tg(7)
were the Hauptmoduls for other genus 0 groups.

! John H Conway and Simon P Norton. “Monstrous moonshine”. In: Bull. London
Math. Soc 11.3 (1979), pp. 308-339.
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Conway and Norton! conjectured that the McKay-Thompson series Tg(7)
were the Hauptmoduls for other genus 0 groups.

Frenkel, Lepowsky and Meurman (FLM)? constructed the Moonshine
module V&,

!Conway and Norton, “Monstrous moonshine”.

2lgor B Frenkel, James Lepowsky, and Arne Meurman. “A natural representation of
the Fischer-Griess Monster with the modular function J as character”
of the National Academy of Sciences 81.10 (1984), pp. 3256—3260.
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Monstrous Moonshine

Conway and Norton! conjectured that the McKay-Thompson series Tg(7)
were the Hauptmoduls for other genus 0 groups.

Frenkel, Lepowsky and Meurman (FLM)? constructed the Moonshine
module V&,

In physical terms, they constructed a 2d chiral CFT (Monster CFT) from
bosonic strings on an orbifold of the Leech Lattice (even self-dual) torus.

They showed that this module has automorphism group M and graded
dimension j(7) — 744. That is, the CFT has j(7) — 744 as the partition
function and has M symmetry.

Borcherds® showed that the graded characters of V?, Tg(T) are the
Hauptmoduls identified by Conway and Norton.

!Conway and Norton, “Monstrous moonshine”.
2Frenkel, Lepowsky, and Meurman, “A natural representation of the Fischer-Griess
Monster with the modular function J as character”.
3Richard E Borcherds. “Monstrous moonshine and monstrous Lie superalgebras”.
In: Inventiones mathematicae 109.1 (1992), pp. 405-444.
VT
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String Theory Reminder

String Theory gives us a quantum theory of gravity and is therefore a
promising ‘Theory of Everything’.
However, String Theory comes with its own complications, including
requiring more than the three spatial dimensions that we are used to
considering.
e Superstring theory, containing both bosons and fermions is only
consistent in ten dimensions.
o In order to describe a phenomenologically realistic theory in less than
ten dimensions we compactify on a Calabi-Yau manifold.
e There are many different Calabi-Yau 3-folds, but the only Calabi-Yau
two folds are complex tori and K3 surfaces.

e Alvarez-Gaumé and Freedman* showed that a sigma model on a
hyperkahler manifold has N = 4 symmetry (K3 is hyperkahler).

*Luis Alvarez-Gaume and Daniel Z Freedman. “Geometrical structure and ultraviolet
finiteness in the supersymmetric o-model”. In: Communications in Mathematical
Physics 80.3 (1981), pp. 443—-451.
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The Partition Function and the Elliptic Genus

Mathieu Moonshine appears when considering the 2d conformal field
theory on the worldsheet describing strings propagating on K3.

We begin by considering the partition function:
Definition
The partition function for an AN/ = (4, 4) theory is given by

2(7_7 z: 7—_’ Z) -I—quLo i qLo 24y2J y2J3 q= 27”7,)/ 27riz' (7)

Although the partition function is an important quantity containing the
information about all states, it depends on where we are in the
(80-dimensional) moduli space of K3, Mks. Too complicated to calculate
at generic points in Mgs.

For some purposes it is convenient to consider a related quantity known as
the Elliptic Genus. This is moduli space independent.

em(T,z) = Zg(1,2,7,2 = 0) (8)
12 /36



The Elliptic Genus Of K3

Definition
The Elliptic Genus of an N' = (4,4) conformal field theory describing
strings on K3 is defined as
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The Elliptic Genus Of K3

Definition
The Elliptic Genus of an N' = (4,4) conformal field theory describing
strings on K3 is defined as

exs(r,2) = Trye ((—1)F g~ sighomy2%) (9)

This is independent of §, becomes the Witten Index on the right®.

SEdward Witten. “Constraints on supersymmetry breaking”. In: Nuclear Physics B
202.2 (1982), pp. 253-316.
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The Elliptic Genus Of K3

Definition

The Elliptic Genus of an N' = (4,4) conformal field theory describing
strings on K3 is defined as

ek3(7,z) = Tryr ((

—1)Fglo~ gk

weight 0 and index 1.

This is independent of §, becomes the Witten Index on the right®.
The elliptic genus of K3 can be shown® to be a weak Jacobi form of

SWitten, “Constraints on supersymmetry breaking”.
arXiv:1404.3108 (2014).

5Katrin Wendland. “Snapshots of Conformal Field Theory”.

In: arXiv preprint

13 / 36



The Elliptic Genus Of K3

Definition
The Elliptic Genus of an N' = (4,4) conformal field theory describing
strings on K3 is defined as

€K3(T, Z) = Tr’HR ((_1)FqLo—§al__0_%y2Jg> (9)

This is independent of §, becomes the Witten Index on the right®.
The elliptic genus of K3 can be shown® to be a weak Jacobi form of
weight 0 and index 1. This space is one dimensional and so we have

92(7—72)2 n 93(7’, 2)2 i 94(7—7 2)2] (]_O)

O l R N B A C

*Witten, “Constraints on supersymmetry breaking”.
®Wendland, “Snapshots of Conformal Field Theory”.
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The Elliptic Genus Of K3

Definition
The Elliptic Genus of an N' = (4, 4) conformal field theory describing
strings on K3 is defined as

exs(r,2) = Tryr ((—1)F g~z glo—3y2%) (9)

This is independent of g, becomes the Witten Index on the right®.
The elliptic genus of K3 can be shown® to be a weak Jacobi form of
weight 0 and index 1. This space is one dimensional and so we have

92(7’, 2)2 93(7‘, 2)2 94(7’, 2)2
EK3 — 8
O2(r)>  O3(7)>  Oa(r)?
€ is a topological invariant and can be related to other invariants,
6K3(7’, zZ = O) = X(K?)) =24 (11)

*Witten, “Constraints on supersymmetry breaking”.
®Wendland, “Snapshots of Conformal Field Theory”.
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Alvarez-Gaumé and Freedman’ showed that a sigma model on a
hyperkahler manifold has N' = 4 symmetry.
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Alvarez-Gaumé and Freedman’ showed that a sigma model on a
hyperkahler manifold has N' = 4 symmetry.

In terms of A/ = 4 characters we can expand the elliptic genus as

5 AR
ek3(r, 2) = 24chR (7, 2) + £(r)gich_y (7, 2)
where
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"Alvarez-Gaume and Freedman, “Geometrical structure and ultraviolet finiteness in
Sam Fearn (Durham University)

14 / 36



The Elliptic Genus in N' = 4 Characters

Alvarez-Gaumé and Freedman’ showed that a sigma model on a
hyperkahler manifold has N' = 4 symmetry.

In terms of A/ = 4 characters we can expand the elliptic genus as

s, 2) = 24chR (7, 2) + £(7)qEchy 1 ol 2) (12)

where

S() = g2+ Ang?) (13)
n=1

2 can be expanded as

>(r) =

_1 2 3 4
5(—2 4 90q + 46247 + 1540q° + 4554¢" + .. )

(14)

"Alvarez-Gaume and Freedman, “Geometrical structure and ultraviolet finiteness in
the supersymmetric o-model”.
Sam Fearn (Durham University) 14 / 36
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A sporadic group

Theorem

The Classification of Finite Simple Groups.
This theorem states that all finite simple groups fall into one of the following families:

@ Cyclic groups of order n for n prime.
@ Alternating groups of degree at least 5.
© Simple Lie type groups.

@ The 26 sporadic simple groups.
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A sporadic group

Theorem

The Classification of Finite Simple Groups.
This theorem states that all finite simple groups fall into one of the following families:

@ Cyclic groups of order n for n prime.
@ Alternating groups of degree at least 5.
© Simple Lie type groups.

@ The 26 sporadic simple groups.

Mas is one of the sporadic finite simple groups. It is a subgroup of the Monster group
M, as shown below.
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The Golay Code

Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique [24,12, 8] code up to equivalency, Gas. This code is
known as the Extended Binary Golay Code.

There are numerous ways to define Gog4.

Lexicographic Code
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1)
« = (0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1)
« =(0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1)

C =
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The Golay Code

Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique [24,12, 8] code up to equivalency, Gos4. This code is
known as the Extended Binary Golay Code.

There are numerous ways to define Gog.

The Mathematical Game of Mogul

@@@@@@@@@@@@@@@@@@@@@@@@
HEOHHEEOEHHEDHEEEHEHOEEEEEDHED
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The Golay Code

Linear codes are linear subspaces of vector spaces over finite fields.

There is a unique [24,12, 8] code up to equivalency, Goa. This code is
known as the Extended Binary Golay Code.

There are numerous ways to define Gog.

The Golay code was used to transmit photos back from the Voyager
spacecraft.

Sam Fearn (Durham University)



Mos

We can define M4 in many different ways, however one that suits us is
the following.

Definition

Moy = Aut(gz4) (15)
That is, Moy = {7 € Sp4| 7(c) € Gos Ve € Gy}
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Mos

We can define M4 in many different ways, however one that suits us is

the following.
Definition

Moy := Aut(Gaa)
That is, Moy = {7 € Sp4| 7(c) € Gos Ve € Gy}

(15)

Mos has order 210.33.5.7.11 .23 = 244823040

Sam Fearn (Durham University) 18 / 36
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Mathieu Moonshine

We showed that the elliptic genus of K3 can be written as

5 ~ R
ek3(T,2) = 24ch (7, 2) + chi_y jo(T, 2)

(=24 90q + 4624° + 1540¢> + 45544" + ...
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irreducible representations of Mog.
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Mathieu Moonshine

We showed that the elliptic genus of K3 can be written as

5 ~ R
ek3(T,2) = 24ch (7, 2) + chi_y jo(T, 2)

(16)
-(—2+90qg + 4624¢% + 1540¢° + 4554q* + .. )
We can now see that these coefficients are all sums of dimensions of
irreducible representations of Mog.
The twining elliptic genera for g € M4 have been studied (eg.?)
bg(T,2) = chpy(g )ch1 o™t Z chy,(g chR %(’T,Z) (17)

+1
4
n=0

8Matthias R Gaberdiel, Stefan Hohenegger, and Roberto Volpato. “Mathieu twining
characters for K3". In: Journal of High Energy Physics 2010.9 (2010), pp. 1-20.
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Mathieu Moonshine

We showed that the elliptic genus of K3 can be written as

5 ~ R
ex3(7,2) = 24chi (7, 2) + chi_yo(T, 2)

(16)
-(—2+90qg + 4624¢% + 1540¢° + 4554q* + .. )
We can now see that these coefficients are all sums of dimensions of
irreducible representations of Mog.
The twining elliptic genera for g € M4 have been studied (eg.?)
bg(T,2) = chpy(g )ch1 o™t Z chy,(g chR L %(’T,Z) (17)

n=0

and Gannon? proved that all* H, are indeed representations of Mog.

8Gaberdiel, Hohenegger, and Volpato, “Mathieu twining characters for K3".
9Terry Gannon. “Much ado about Mathieu”. In: arXiv preprint arXiv:1211.5531
(2012).
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Lattices - First Definitions

Here we will be interested only in real lattices, that is subgroups of R”.

Definition
o A /attice of dimension n is a free Z-module, L, with a symmetric
bilinear form < -, - >.
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A lattice is even if < \, A >€2Z VA€ L,.

For an even lattice L, we define the set of roots to be those elements
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Lattices - First Definitions

Here we will be interested only in real lattices, that is subgroups of R”.

Definition
o A /attice of dimension n is a free Z-module, L, with a symmetric
bilinear form < -, - >.
o A lattice is integral if < A\, u >€ Z, VY A\ p € L,.
o A lattice is even if < A, \ >€2Z VA € L,,.

e For an even lattice L, we define the set of roots to be those elements
of norm 2.

e We call a matrix, M whose rows are a basis for L, a generator matrix
for L,. Then elements \ € L, may be written as A = éM, & € Z=2".

e The Gram matrix, A is given by M- MT.

e The determinant of the Gram matrix is known as the determinant of
L,, det(L,) = det(A).
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Unimodular Lattices

Definition
We define the dual of a lattice, L} = {u € R"|u- L, C Z}.
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If M is the generating matrix for L then (M~1)T is a generating matrix for
L* and A~! is the Gram matrix.

Clearly in an integral lattice we have L, C L%, if we have L, = L}, we say
L, is self-dual or unimodular.

For an integral lattice with generating matrix M we have, for u € L*,
p=gM T =M MM
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Unimodular Lattices

Definition
We define the dual of a lattice, L} = {u € R"|u- L, C Z}.

If M is the generating matrix for L then (M~1)T is a generating matrix for
L* and A~! is the Gram matrix.

*

Clearly in an integral lattice we have L, C L%, if we have L, = L}, we say

L, is self-dual or unimodular.
For an integral lattice with generating matrix M we have, for u € L*,
p=gM T =M MM
= EATIM = det(A) teadj(A)M

= det(L) 1M

hence we also have L¥ C det(L)~'L,.
When det(L) = 1 then L is unimodular.

Sam Fearn (Durham University) 24 / 36



The Niemeier Lattices

The Leech lattice is the unique even, unimodular (Type Il) lattice of
dimension 24 without roots, vectors of norm 2.
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The Niemeier Lattices

The Leech lattice is the unique even, unimodular (Type Il) lattice of
dimension 24 without roots, vectors of norm 2.

The only 16 dimensional Type Il lattices are Eg x Eg and the weight lattice
of Spin(32)/Z,. Related to gauge groups for Heterotic string theory.
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The Niemeier Lattices

The Leech lattice is the unique even, unimodular (Type Il) lattice of
dimension 24 without roots, vectors of norm 2.

It can be shown!® that an even, unimodular lattice either has no roots

(Leech) or its roots are given by the union of irreducible, simply-laced root
systems of the same Coxeter number. Verified by Mass Formula.

% John Horton Conway and Neil James Alexander Sloane. Sphere packings, lattices
and groups. Vol. 290. Springer Science and Business Media, 2013.
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The Niemeier Lattices

The Leech lattice is the unique even, unimodular (Type Il) lattice of
dimension 24 without roots, vectors of norm 2.

It can be shown!® that an even, unimodular lattice either has no roots
(Leech) or its roots are given by the union of irreducible, simply-laced root
systems of the same Coxeter number. Verified by Mass Formula.

The Niemeier lattices can be constructed 1° by gluing the root lattices
using glue vectors whose components are given by elements of L*/L. We

consider (A?*)" and (A3?)".

(A2*)* is constructed using the
Extended binary Golay code, Go4
as glue. The minimum weight of
Gos ensures this doesn’t add roots
and maintains evenness.

(A3?)" is constructed using the
Extended ternary Golay code, Gis.
Gi2 is a [12,6,6]3 code. Therefore
using this as glue doesn’t add
roots and maintains evenness.

Conway and Sloane, Sphere packings, lattices and groups.

Sam Fearn (Durham University)
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7. Umbral Moonshine
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The Umbral Forms

Cheng, Duncan and Harvey!! described a particular way to associate to
each Niemeier lattice a (vector-valued) mock modular form.

"Miranda CN Cheng, John FR Duncan, and Jeffrey A Harvey. “Umbral moonshine”.
In: arXiv preprint arXiv:1204.2779 (2012); Miranda CN Cheng, John FR Duncan, and
Jeffrey A Harvey. “Umbral moonshine and the Niemeier lattices”. In: arXiv preprint
arXiv:1307.5793 (2013).
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The Umbral Forms

Cheng, Duncan and Harvey!! described a particular way to associate to
each Niemeier lattice a (vector-valued) mock modular form.

This construction, in the simplest cases of A?* and A}? may be
summarised as follows:

1 Cheng, Duncan, and Harvey, “Umbral moonshine”; Cheng, Duncan, and Harvey,
“Umbral moonshine and the Niemeier lattices".

Sam Fearn (Durham University) 27 / 36



The Umbral Forms

Cheng, Duncan and Harvey!! described a particular way to associate to
each Niemeier lattice a (vector-valued) mock modular form.

This construction, in the simplest cases of A?* and A}? may be
summarised as follows:

e Begin with a weight 0, index m — 1 (holo.) weak Jacobi form ¢(, z).

" Cheng, Duncan, and Harvey, “Umbral moonshine”; Cheng, Duncan, and Harvey,
“Umbral moonshine and the Niemeier lattices".

Sam Fearn (Durham University) 27 / 36



The Umbral Forms

Cheng, Duncan and Harvey!! described a particular way to associate to
each Niemeier lattice a (vector-valued) mock modular form.

This construction, in the simplest cases of A?* and A}? may be
summarised as follows:

o Begin with a weight 0, index m — 1 (holo.) weak Jacobi form ¢(, z).
e Form a weight 1, index m Jacobi form as

1/}(7—7 Z) = N1,0(77 Z)(ZJ(T? Z) (18)

where pi1 9 is a meromorphic Jacobi form of weight 1, index 1.

" Cheng, Duncan, and Harvey, “Umbral moonshine”; Cheng, Duncan, and Harvey,
“Umbral moonshine and the Niemeier lattices".
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The Umbral Forms

Cheng, Duncan and Harvey!! described a particular way to associate to
each Niemeier lattice a (vector-valued) mock modular form.

This construction, in the simplest cases of A?* and A}? may be
summarised as follows:

o Begin with a weight 0, index m — 1 (holo.) weak Jacobi form ¢(, z).
e Form a weight 1, index m Jacobi form as

1/}(7—7 Z) = /1/1,0(7—7 Z)(ZJ(T? Z) (18)

where pi1 9 is a meromorphic Jacobi form of weight 1, index 1.
o We define the Polar part of v as

WP (7,2) = Xpmyo (19)

where x = ¢(7,0) is a weight 0 modular form and hence is constant.

" Cheng, Duncan, and Harvey, “Umbral moonshine”; Cheng, Duncan, and Harvey,
“Umbral moonshine and the Niemeier lattices".
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Umbral Forms Continued

e Now form the finite part of v as

wF(Tv Z) = ¢(T> Z) - ¢P(Ta Z)

YF is known as a mock Jacobi form of weight 1 and index m.
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Umbral Forms Continued

e Now form the finite part of v as

V(7. 2) = P(r,2) = 97 (7, 2) (20)

YF is known as a mock Jacobi form of weight 1 and index m.

e It can be shown'? that such a form has a theta expansion given by

m—1
vF(r, z) = Z he(7)0m. (T, 2) (21)

the theta coefficients h, are the components of a vector-valued mock
modular form of weight %

12 Atish Dabholkar, Sameer Murthy, and Don Zagier. “Quantum black holes, wall
crossing, and mock modular forms”. In: arXiv preprint arXiv:1208.4074 (2012).
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The first few coefficients

The link to the Niemeier lattices A?* and A1, comes by taking ¢ to be an

extremal Jacobi form of index the Coxeter number of the Niemeier root
system.

Sam Fearn (Durham University)
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The first few coefficients

The link to the Niemeier lattices A?* and A1, comes by taking ¢ to be an
extremal Jacobi form of index the Coxeter number of the Niemeier root

system. A weak Jacobi form of weight 0, index m is extremal if it admits a
particular decomposition into N = 4 characters.

Sam Fearn (Durham University) 29 / 36



The first few coefficients

The link to the Niemeier lattices A?* and A1, comes by taking ¢ to be an
extremal Jacobi form of index the Coxeter number of the Niemeier root
system. A weak Jacobi form of weight 0, index m is extremal if it admits a
particular decomposition into N = 4 characters.

The spaces of extremal Jacobi forms of index 2, and index 3, are both
known to be of dimension 1. We define

fi(t,z) : = 0;(r,2)/0:(7,0) (22)
01 = 8(fy + 5 + ), (23)
01 = 415+ B+ 51, (24)
We find the Umbral Forms (H,)
H? = 2q7Y/8(—1+445q + 231¢% + 770¢% + .. ) (25)
H} =2q71/12(—1 4 16q + 55¢° + 144¢% + ...) (26)
H3 = 2¢*3(10 + 44q + 110¢° + 280¢° + ...) (27)
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The Umbral Groups

In terms of the Niemeier lattices, the Umbral groups are easily defined.
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In terms of the Niemeier lattices, the Umbral groups are easily defined.
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generates a normal subgroup called the Wey! group WX.
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The Umbral Groups

In terms of the Niemeier lattices, the Umbral groups are easily defined.

For a root system X and corresponding Niemeier lattice LX, we may
consider the automorphism group Aut(LX). The reflections in the roots
generates a normal subgroup called the Wey! group WX.

We define the Umbral group GX to be the corresponding quotient

G* = Aut(LX)/ WX (28)
For the Niemeier lattices the Automorphism group is given by the product
GXWXGy, where GX is the group of permutations of the components of

X induced by automorphisms of LX, and G; is given by WX/WX where
WX is automorphisms of LX that stabilise the components of X.
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The Umbral Groups

In terms of the Niemeier lattices, the Umbral groups are easily defined.

For a root system X and corresponding Niemeier lattice LX, we may
consider the automorphism group Aut(LX). The reflections in the roots
generates a normal subgroup called the Wey! group WX.

We define the Umbral group GX to be the corresponding quotient

G* = Aut(LX)/ WX (28)
For the Niemeier lattices the Automorphism group is given by the product
GXWXGy, where GX is the group of permutations of the components of

X induced by automorphisms of LX, and G; is given by WX/WX where
WX is automorphisms of LX that stabilise the components of X.

In the cases A?* and A? we find
24
GA1 = My, (29)
12
G =2.Mi, (30)
30 / 36
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(M)Umbral Moonshine

We see that the coefficients of the forms HZ, H; and H3 are given by

dimensions of representations of the Umbral groups M4 and 2.M,
respectively.

13Cheng, Duncan, and Harvey, “Umbral moonshine and the Niemeier lattices”.
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(M)Umbral Moonshine

We see that the coefficients of the forms HZ, H; and H3 are given by
dimensions of representations of the Umbral groups M»4 and 2.M;5
respectively.

A similar procedure can be used to find vector-valued mock modular forms
associated to each of the 23 Niemeier lattices, each of which is found to
have coefficients encoding dimensions of representations of the 23 Umbral
groups as defined above.

13Cheng, Duncan, and Harvey, “Umbral moonshine and the Niemeier lattices”.
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(M)Umbral Moonshine

We see that the coefficients of the forms HZ, H; and H3 are given by
dimensions of representations of the Umbral groups M»4 and 2.M;5
respectively.

A similar procedure can be used to find vector-valued mock modular forms
associated to each of the 23 Niemeier lattices, each of which is found to
have coefficients encoding dimensions of representations of the 23 Umbral
groups as defined above.

Umbral Moonshine conjectures that there exists a graded module KX
associated to each Niemeier lattice LX such that the characters associated
to elements g € G give the umbral forms HX13.

13Cheng, Duncan, and Harvey, “Umbral moonshine and the Niemeier lattices”.
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Hidden Physics?

Recall:

e Monstrous Moonshine was hidden in the partition function of a
particular CFT
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Hidden Physics?

Recall:

e Monstrous Moonshine was hidden in the partition function of a
particular CFT

e The Elliptic Genus of K3, which revealed Mathieu Moonshine when
written in terms of AV = 4 characters, described the right-moving
ground states of the theory.

Umbral moonshine can also be seen in terms of the elliptic genus of K3:
Recall that we split the elliptic genus into massless and massive characters
of N = 4. We can instead split the elliptic genus into a part corresponding
to some surface singularities of the K3 and the remaining ‘Moonshine’

part which encodes the moonshine form1#.

“Miranda CN Cheng and Sarah Harrison. “Umbral Moonshine and K3 Surfaces”. In:
arXiv preprint arXiv:1406.0619 (2014).
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Hidden Physics

Kachru et al.> consider 3d gravity theories by for instance compactifying
the Type Il string on K3xT3. The moduli space of such theories can be
thought of as the space of 32-dimensional even unimodular lattices of

signature (8,24). In a neighbourhood of some particular points in this
moduli space the theory has Umbral symmetry.

r20,4

T3 0
T3 Tz
s 91
r240gro8 Y

15Shamit Kachru, Natalie M Paquette, and Roberto Volpato. “3D String Theory and

Umbral Moonshine”. In: arXiv preprint arXiv:1603.07330 (2016).
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ooch, Five-water, Booze, Stake 01,
Adult Beverage, Medicine, Elixir,
ce, Home Brew, Hair-of-the-dog.

Questions?



Mathieu and Monstrous Moonshine

e Both moonshines involve the representation theory of finite simple
groups and objects with particular modular transformations.
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e Both moonshines involve the representation theory of finite simple
groups and objects with particular modular transformations.

e In both cases we have been able to learn more about the
representations involved by twisting the functions involved.
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Mathieu and Monstrous Moonshine

e Both moonshines involve the representation theory of finite simple
groups and objects with particular modular transformations.

In both cases we have been able to learn more about the
representations involved by twisting the functions involved.

We can explain Monstrous Moonshine in terms of a Vertex Operator
Algebra and we expect to be able to explain Mathieu Moonshine in
terms of a Vertex Operator Superalgebra

Monstrous Moonshine involved modular functions (in fact
Hauptmodul) but Mathieu Moonshine (and Umbral Moonshine)
involves mock-modular forms.

Monstrous moonshine can be explained in terms of a string
propagating on an orbifold of the ‘Leech Torus’ R?*/A where the
j-invariant describes the partition functions for the theory. In Mathieu
Moonshine we don't consider the full partition function but the
elliptic genus which only counts half BPS states (right moving ground
states).

Sam Fearn (Durham University) 36 / 36
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