The global distribution of magnetic helicity in the solar corona

Anthony Yeates

with thanks to
Gunnar Hornig (Dundee), Chris Lowder, Marcus Page (Durham)

National Astronomy Meeting, Hull, 06-Jul-2017
To identify **where** magnetic helicity is stored in the corona.

Magnetic helicity is a volume integral that measures the average pairwise linking of magnetic field lines.

\[H = \int_V A \cdot B \, dV \]
Aim

To identify **where** magnetic helicity is stored in the corona.

The concept extends to non-closed magnetic field lines if you specify relative connection of end-points (**relative helicity**).
The ideal tool

The magnetic flux through a closed magnetic field line is invariant in ideal magnetohydrodynamics.

\[\mathcal{A}(L) = \int_{S(L)} B \cdot n \, dS = \oint_{L} A \cdot \, dl \]

We call \(\mathcal{A} \) the **field line helicity**.

\[B = \nabla \times A \]
The ideal tool

If L ends on the boundary, A is still the flux through a suitable surface. This is invariant if the footpoints are fixed.

Choosing which curve γ to complete the loop is equivalent to choosing the gauge of A on the boundary, or to choosing the reference field in relative helicity.

\[A(L) = \int_L A \cdot dl \]

Field line helicity reveals footpoints of the sheared arcade.
before the flare...
after the flare…
before the flare…
after the flare...

Significant *local* decrease in helicity during the flare.
Example: global magneto-frictional model

Field line helicity reveals the concentration of helicity above photospheric neutral lines.

Example: global magneto-frictional model

Field line helicity can identify flux ropes and eruptions…
Conclusions

- **Field line helicity** reveals the distribution of magnetic helicity within the corona.

- Useful tool both within active regions and globally, e.g. for identification of magnetic flux ropes [next talk!]

More details

http://www.maths.dur.ac.uk/~bmjg46/