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One of the pleasures of studying knot and links is
that, at some level, everybody understands what
you are thinking about.

Formally speaking, a link is a smooth com-
pact oriented 1-dimensional submanifold of the 3-
sphere S3 or of 3-space R3, and a knot is a link
of only one component. Some pictures of knots
appear just below in Figures 1–6.

Informally speaking, a knot is just a knotted up
piece of string with its ends glued together. Knots
and links are most often considered up to isotopy,
meaning up to smooth deformations that do not
allow the passing of strands through one another.
A fundamental question of knot theory is how to
tell when two knots are different or really the same
– given this knotted up piece of string and that
knotted up piece of string can we, without getting
out the scissors, arrange this one to look exactly
like that one?

Another pleasure open to knot theorists is that
their specialism is frequently enriched by contri-
butions from outsiders. Perhaps this is not so sur-
prising: knots give the simplest non-trivial exam-
ples of isotopy classes of submanifolds, so concepts
from knot theory are encountered in other areas
of mathematics and physics that have manifolds
and submanifolds as underlying objects of interest.
Similarly, concepts originating outside knot theory
can often find a testing ground among knots and
links.

To a knot theorist, this is all money for jam. A
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concept in knot theory is understood by physicists
or algebraists, they come up with generalizations,
these get fed back to you, and all of a sudden you
have a whole new family of ideas to play with.
Khovanov homology is the best example of such a
concept.

At first sight, Khovanov homology seems a fairly
innocuous link invariant – perhaps of use to those
of us engaged in classifying isotopy classes of links,
but with no obvious potential relative to other
such invariants to break its bounds. However, in
the quarter century or so since it appeared on the
scene, Khovanov homology has infiltrated other
areas of mathematics and physics in an unprece-
dented fashion, eclipsing in this way even its own
direct forebear – the Jones polynomial.

A feeling for Khovanov homology

Anyone who has seen Holbein’s painting The Am-
bassadors will know that the same object can
present very differently when viewed from an al-
ternative perspective. Khovanov homology is not
an exception to this, and it is a measure of the
ubiquity of the theory that it admits understand-
ing from several disparate vantage points.

The purpose of this article is to give the casual
reader, who may have a sandwich in one hand as
they read, a feeling for Khovanov homology, so
that they finish the article and the sandwich with
the sense that they know what kind of thing Kho-
vanov homology is. To achieve our ends we will
approach Khovanov homology from several differ-
ent directions and record what we see.

To each link L, Khovanov homology associates a
finitely-generated abelian group, Kh(L), invariant

1



-1 0 1

-3

-1

1

3

Z
Z•

Figure 1: The unknot.

-3 -2 -1 0

-9

-7

-5

-3

-1

Z
Z2

Z
Z

•
Z

Figure 2: The left-handed trefoil.

up to isotopy of the link. This splits as a direct
sum along a bigrading (i, j) ∈ Z× Z

Kh(L) =
⊕

(i,j)∈Z×Z

Khi,j(L).

The simplest knots are the unknot, the left- and
right-handed trefoils, and the figure eight knot –
these are the first four knots K whose homologies
Khi,j(K) we have given in Figures 1–4, plotted in
the (i, j)-plane. The i-grading is called the homo-
logical grading, while the j-grading is called the
quantum grading. We write Zn for the n-element
cyclic group. So that the reader may get their
bearings quickly, we have included a thick dot in
bidegree (i, j) = (0, 0).

The forty-second nine-crossing knot to appear
in Rolfsen’s knot table, 942, is well-known in cer-
tain quarters as being the first knot in the table
which nevertheless exhibits generic characteristics
from various points of view. We have given the
homology of 942 in Figure 5.

Each of these five knots only admits one orien-
tation up to isotopy, so we have omitted to orient
the knots.
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Figure 3: The right-handed trefoil.
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Figure 4: The figure eight knot.
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Figure 5: The knot 942.

Phenomenology

Most mathematicians are phenomenologists.
When trying to understand something, we often
think about a toy case, then a toy case with bells
on, then a toy case with bells and whistles, before
we finally allow ourselves to think generally.

Above we see several examples of homology
groups, and just by looking at them the reader
will have started to get a feeling for Khovanov ho-
mology. What strikes us about these examples?
Let’s go through them.

Firstly, looking at Figure 1, we see that the ho-
mology of the unknot is 2-dimensional and is sup-
ported in bidegrees (0,−1) and (0, 1). If we were
making a guess of what the homology of the un-
knot ought to be, we might guess that it should
be 1-dimensional and supported in bidegree (0, 0).
This guess is correct for the variant of Khovanov
homology called reduced Khovanov homology, but
we are going to stick with vanilla flavored Kho-
vanov homology for this exposition.
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So much for the unknot, let’s take a look at the
trefoils in Figures 2 and 3. If you were to com-
mission the carving of the following woodblock
stamps, then you would be able to use them to
produce the homology tables of the unknot, of
the left-handed trefoil, and of its mirror image the
right-handed trefoil.

Z
Z

Z

Z
Z2

The block on the left is all that you would need
to make the homology of the unknot, whereas you
would also need the block on the right for the tre-
foils. This latter is sometimes called the knight’s
move block by chess-playing mathematicians.

We also note that the homological degrees i
which support the homology run from −3 to 0 for
the left-handed trefoil and from 0 to 3 for the right-
handed trefoil.

If you choose orientations for the trefoils you
will see that the left-handed trefoil has three nega-
tive crossings in the given diagram while the right-
handed trefoil has three positive crossings, follow-
ing the conventions below.

− +

To add weight to our musings, the unknot has 0
crossings of either sign and its homology is en-
tirely supported in homological grading i = 0. So
we might guess that the homological support has
something to do with the numbers of positive and
negative crossings in a minimal crossing-number
diagram.

Finally, there seems to be some sort of duality
going on between the left-handed and the right-
handed trefoil. These knots themselves are dual
in the sense that one is the mirror image of the
other. In their homology tables we see that, up
to a bit of messing about with the Z2 summand
(which you might hope to explain by some sort

of universal coefficient theorem), the homology of
one looks like it is obtained from the homology of
the other by rotation by π around the thick dot
that marks the bidegree (0, 0).

Moving now to the figure eight knot in Figure 4,
we see that our woodblocks still stand us in good
stead – we need to use the unknot block once and
then the knight’s move twice.

Moreover, the homology of the figure eight knot
is supported between gradings i = −2 and i = 2,
matching the two negative and two positive cross-
ings in the diagram. And finally the homology has
a self-duality around (0, 0), which we would expect
once we are told that the figure eight knot is its
own mirror image.

Next we turn to the knot known as 942, pictured
in Figure 5. It takes a little bit of scrutinizing,
but we see that our woodblocks still suffice. At
this point we notice that the unknot block is not
getting as much use as the knight’s move. For all
the examples so far, the unknot block gets used
exactly once while the rest of the homology is filled
up with knight’s moves. We further notice that the
unknot block always appears in grading i = 0, but
its quantum grading j can slide up or down.

These woodblocks, which we commissioned as
a time-saving device, are starting to seem quite
important. Do they remind us of anything? Re-
lating the groups to the usual singular homology of
a space, the unknot block has the total homology
of a sphere, while the knight’s move block has the
total homology of RP3. We do not see yet what
these spaces might have to do with knots or their
Khovanov homology.

The homology of 942 is supported between de-
grees i = −4 and i = 2, while the diagram given
has four negative and five positive crossings. So
the support of the homology cannot be telling us
exactly how many negative and positive crossings
there are in a minimal crossing-number diagram of
the knot, but maybe it is giving us lower bounds
on these quantities?

Let’s end our phenomological tour by looking at
a larger knot – the (5, 6) torus knot T5,6 – which
has 24 positive and zero negative crossings in its
minimal diagram D5,6 given in Figure 6.
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Figure 6: The diagram D5,6 of the (5, 6) torus knot
T5,6 and the Khovanov homology of T5,6.

We have not included a thick dot in bidegree (0, 0)
in the interests of space. The homology is sup-
ported between degrees i = 0 and i = 14, so our
guess about the support possibly providing a lower
bound on the numbers of positive and negative
crossings in a diagram of the knot is not yet con-
tradicted.

Unfortunately, the reader will notice the groups
Z3 and Z5 appearing as summands in the higher
homological degrees. Before we destroy our wood-
blocks in frustration, let us also notice that there
is still an unknot block summand appearing in de-
gree i = 0 and there are also several instances of
the knight’s move appearing among more general
configurations.

And what else? The middle of the unknot block
in degree i = 0 is placed at quantum degree j = 20.
Since every second j-degree seems to support no
homology, this is morally a jump of 10 above j = 0.
If we look up T5,6, the first topological measure of
its complexity is its genus which is g(T5,6) = 10.
The genus of a knot is the minimal genus of a
compact orientable surface in S3 whose boundary
is the knot. Is this just a coincidence? Looking at
the homologies of the earlier knots we have stud-
ied tells us that the height of the unknot block
in degree i = 0 is not just recording the genus of
the knot, although this does seem to be the case
for the genus and homology of any other positive
torus knot that we care to look up.

Finally, we should record that in all examples
there seems to be a certain diagonalness to Kho-
vanov homology, with the support of the homol-
ogy very roughly lining up along a line from bot-
tom left to top right. There does not seem to be
an expected slope nor, in general, an expected y-
intercept.

Now that we have started to get a feeling for
Khovanov homology, let’s ask for its historical
meaning by discussing the context in which it was
discovered.
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History of the discovery

Mikhail Khovanov put a paper [Kho00] introduc-
ing his homology theory on the arXiv at the tail
end of the 20th century, a couple of years after
completing his PhD at Yale.

Khovanov homology may be viewed as an early
exemplar of the success of the program known as
categorification, a term coined by Louis Crane.
Khovanov’s PhD advisor Igor Frenkel was another
originator and proponent of the nascent subject,
and collaborated in a seminal paper with Crane
[CF94]. Categorification was originally conceived
with a somewhat precise meaning, but is now more
often understood as an umbrella term used to re-
fer to various lifts of structure. It is one of those
things of which you may say, after having become
acquainted with a few examples, that you know it
when you see it.

The ideas around categorification included from
quite early on the belief that one should be able
to categorify the representation theory of quantum
groups, a so-far successful enterprise that is still
employing mathematicians today. The represen-
tation theory of quantum sl2 yields up the Jones
polynomial V (L) ∈ Z[q, q−1], which is an invariant
of links L whose discovery earned Vaughan Jones
a Fields medal. So, it was believed that the Jones
polynomial should eventually admit a ‘lift’ to some
stronger invariant, but perhaps this lift would only
be accessible a little further down the line once the
groundwork had been laid by categorifying the un-
derlying algebraic structure.

On the other hand, as well as arising from quan-
tum representation theory, the Jones polynomial
has a particularly simple definition provided by
Kauffman [Kau87]. In this reformulation, given a
diagram of the link, its Jones polynomial is ex-
pressed as an alternating sum of Laurent polyno-
mials in q, each of which has non-negative integer
coefficients.

Once you know to listen for it, this definition
strongly echoes the notion of Euler characteristic.
The Euler characteristic is a topological invariant
expressed as an alternating sum of non-negative
integers (the numbers of simplices or cells of each

dimension) which are themselves not topological
invariants. In what might now be described by the
more excitable at the departmental teatime as one
of the earliest examples of categorification, one re-
alizes that these numbers are non-negative because
they ought to be interpreted as the dimension of a
vector space (or as the rank of an abelian group).
These vector spaces or groups fit into a chain com-
plex, of which the homology groups turn out to be
strong topological invariants.

Khovanov saw that one could attempt to play
the same game with Kauffman’s definition of the
Jones polynomial. The plan was to leap-frog the
business of categorifying quantum representation
theory and to jump straight to the answer – a ho-
mology theory whose Euler characteristic, appro-
priately defined, should be the Jones polynomial.

The quantum world

The philosophy of categorification would suggest
that such a putative homology theory would have
something to tell us about 4-dimensional topology
and might be a quantum competitor or counter-
part to the gauge and Floer theoretic invariants
that we shall shortly come to discuss.

When we use the word quantum here, we are not
thinking of quantum mechanics. Rather we use the
term to refer to a collection of combinatorial topo-
logical invariants arising out of the representation
theory of quantum groups. A quantum group is
not a group, but rather a non-commutative alge-
bra which may be thought of as a perturbation by
an extra parameter ~ of the universal enveloping
algebra of a Lie algebra. Specializing by setting
~ = 0 recovers the universal enveloping algebra.
So we see that the terminology arises by analogy
with the fact that setting Planck’s constant to zero
recovers classical physics from quantum physics.

The reader intent on acquiring a feeling for Kho-
vanov homology should think of two streams of
invariants – the analytically defined gauge and
Floer theoretic invariants, and the combinatorial
and algebraic quantum invariants. The confluence
of these two apparently distinct streams will form
part of our narrative.

5



+
− −

n− = 2, n+ = 1,

w = n+ − n− = −1.

Figure 7: The trefail diagram of the unknot.

Khovanov’s chain complex

Khovanov’s construction of a chain complex from
a link diagram is so elegant that it has an air of
inevitability about it. The original paper [Kho00]
is very concrete and readable by anyone who has
seen a modicum of homological algebra.

The Khovanov cube

We present Khovanov’s construction in the case of
a link diagram of sufficient complexity so that the
reader can recover the general case. In fact, we
start with a diagram of the unknot known to the
cognoscenti as the trefail, pictured in Figure 7.

We have included an orientation so that we can
collect some sign data from the crossings, follow-
ing the conventions below. We write n− = 2 for
the number of negative crossings, and n+ = 1 for
the number of positive crossings. The quantity
w = n+ − n− = −1 is known as the writhe of the
diagram.

− +

−1 0 0 1

Below the positive and negative crossings you
see two smoothings of these crossings. Each
smoothing is associated with an integer – either
−1, 0, or 1. We are going to be interested in
smoothings of the diagram which arise from pick-
ing a smoothing at each crossing. Each diagram

−2 = −n− −1 0 1 = n+

coordinate sum

(−1,−1, 0)

(0, 0, 1)

Figure 8: The smoothings of the trefail diagram
decorate the vertices of a cube.

smoothing is nothing more than a collection of cir-
cles embedded in the plane.

Since the diagram has three crossings, there are
23 = 8 possible diagram smoothings. Picking an
ordering on the negative crossings enables us to
associate each diagram smoothing with a vertex
of the cube

[−1, 0]2 × [0, 1] = [−1, 0]n− × [0, 1]n+ .

In Figure 8 we have put the vertex (−1,−1, 0) on
the far left and the opposite vertex (0, 0, 1) on the
far right, and the edges are oriented from left to
right. Moving along any edge will increase exactly
one coordinate of the cube by 1, leaving the others
fixed. So we see that the coordinate sum of the ver-
tices ranges between −2 = −n− and 1 = n+. The
cube is arranged so that vertices with the same
coordinate sum lie in a vertical line in the page.

To pass to algebra, our fundamental building
block will be the free 2-dimensional Z-module

V = 〈v−, v+〉.

The module V comes graded by the quantum j-
grading that we have already encountered. We
think of v−, v+ as being homogeneous of gradings
j = −1,+1 respectively. A useful shorthand to
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V ⊗2[−3]

V [−2]

V ⊗3[−2]

V [−2]

V ⊗2[−1]

V ⊗2[−1]

V ⊗2[−1]

V

Figure 9: The chain groups arising from the trefail
diagram.

record this is to write

qdim(V ) = q−1 + q

for the so-called quantum dimension of V in which
the power of q records the quantum grading and
the coefficient records the dimension. In other con-
texts this shorthand is referred to as the Poincaré
polynomial.

To create each chain group we shall be applying
three algebraic operations to copies of V ; these op-
erations are tensor product, direct sum, and quan-
tum grading shift. The quantum grading shift is
exactly as it sounds, and is written by append-
ing a square bracket with the degree of the shift.
Concretely, we have for each free j-graded module
W

qdim(W [n]) = qnqdim(W ).

The chain groups CKhi of the Khovanov chain
complex coming from the trefail diagram of the
unknot are given in Figure 9.

Recall that we started by decorating each corner
of the cube by a smoothing of the trefail diagram.
Now each such smoothing has been replaced by a
tensor power of V together with some shift. The
tensor power corresponds to the number of compo-
nents of the smoothing, while the shift is by i+w
where i is the coordinate sum and w = −1 is the
writhe. Finally, the chain group in homological
degree i is given by taking the direct sum of the
groups on corners with coordinate sum i.

This decorated cube is known as the Khovanov
cube, which is a name also applied to the earlier
cube of smoothings. It is useful in thinking about
the chain complex to bear both in mind.

The Jones polynomial

At this point we pause to take stock. We do not yet
have a chain complex because we have not given
the chain maps between the chain groups

∂iKh : CKhi −→ CKhi+1.

But no matter what chain maps we give, it will
of course not affect the Euler characteristic, since
this should just be the alternating sum of the di-
mensions of the chain groups. We note that each
chain group is quantum graded. If we give chain
maps that preserve the quantum grading then the
chain complex will split as a direct sum of chain
complexes, one complex for each quantum grading.

CKhi =
⊕
j

CKhi,j ,

∂iKh : CKhi,j −→ CKhi+1,j .

If we compute∑
i

(−1)iqdim(CKhi) =
∑
i,j

(−1)iqj dim(CKhi,j)

then we will get a Laurent polynomial in q in which
the coefficient of qj will just be the Euler charac-
teristic of the chain complex summand in quantum
degree j.

This Laurent polynomial is in fact the Jones
polynomial of the link, and its expression as an
alternating sum of Laurent polynomials in q with
non-negative integer coefficients is exactly Kauff-
man’s reformulation of the Jones polynomial.

Now it is clear where the construction up to this
point has come from. If you believe that Kauff-
man’s alternating sum is actually computing the
Euler characteristic of a chain complex and you
want to guess the chain groups, then a natural
choice would be the one that we have given above.
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The differential

Of course, it is well and good to imagine that we
can make a chain complex this way, but to do so
we still need to give the differential. We cannot
cheat by just using the zero differential, because
the aim is to produce homology groups that do
not depend on the chosen diagram.

To specify a differential ∂iKh : CKhi → CKhi+1,
we decorate each edge of the Khovanov cube with
a map, and then ∂iKh is the direct sum of all those
maps decorating edges connecting the summands
of CKhi to those of CKhi+1.

Looking back at the cube of smoothings, we re-
call that as we travel along an edge either two cir-
cles of a smoothing are being joined into one, or
a single circle is being split into two. Each circle
of a smoothing corresponds to a tensor factor V .
So in order to give the edge maps we first write
down maps m : V ⊗ V → V and ∆: V → V ⊗ V
and extend by the identity map on those tensor
factors V corresponding to circles that do not get
merged or split as we move along an edge.

m : V ⊗ V → V : v− ⊗ v− 7→ 0,

v− ⊗ v+ 7→ v−,

v+ ⊗ v− 7→ v−,

v+ ⊗ v+ 7→ v+;

∆: V → V ⊗ V : v− 7→ v− ⊗ v−,
v+ 7→ v− ⊗ v+ + v+ ⊗ v−.

These edge maps that we have now specified
make each square face of the cube commute (this
should not be obvious, but it is a relatively easy
check). In fact, m and ∆ are one of the very few
non-trivial choices that achieve this, which may
explain how they were chosen. In order that the
differential squares to zero, we want rather that
each face of the cube should anti-commute, so that
travelling one way around any face gives the neg-
ative of travelling the other way.

To turn the commutative faces into anti-
commutative faces we replace some (in this case,
four) of the edge maps with their negative, as indi-
cated by the minus signs in the algebraic cube dia-
gram. It can be checked that any selection of neg-

←→

←→ ←→

←→←→

Figure 10: The oriented Reidemeister moves.

ative edges achieving anti-commutativity of faces
results in a chain homotopic complex.

Finally, note that both m and ∆ are quantum
j-graded of degree −1. Since there is a quantum
shift by i + w on the chain group summands, it
follows that ∂iKh preserves j, as we wanted.

It remains to verify that the resulting homology
does not depend on the diagram of the link chosen.
Since any two link diagrams of the same link are
related by a finite sequence of Reidemeister moves,
this amounts to finding a chain homotopy equiv-
alence between two diagrams differing by such a
move.

More precisely, the oriented Reidemeister moves
are pictured in Figure 10. To each double-headed
arrow Khovanov associated a chain homotopy
equivalence between the chain complexes of dia-
grams differing locally by the moves.

Theorem 1 ([Kho00]). Suppose that D is a dia-
gram of a link L. The chain complex CKhi,j(D)
associated to D is invariant under Reidemeister
moves up to chain homotopy equivalence. Conse-
quently, the homology groups Khi,j(L) are an in-
variant of L. The graded Euler characteristic∑

i,j

(−1)iqjrk(Khi,j(L))
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coincides with the Jones polynomial of L.

If the aim of Khovanov’s paper were simply to
produce a bigraded abelian group whose graded
Euler characteristic coincides with the Jones poly-
nomial then he could have simply started with the
Jones polynomial, forgotten about the link, and
defined a bigraded group from there. However,
Khovanov homology is strictly stronger than the
Jones polynomial (for example the knots 51 and
10132 have the same Jones polynomial but differ-
ent Khovanov homologies). And, as we shall soon
see, Khovanov homology is more than just an im-
provement on the Jones polynomial as an isotopy
invariant.

Observations

Now that we have a definition, let’s see whether we
can explain some of the phenomenological features
of Khovanov homology that we recorded earlier.

From the definition we can immediately see that
if the homology of a link is non-zero in degree i =
m then any diagram of the link must have at least
−m negative crossings if m < 0, and at least m
positive crossings if m > 0. So this bears out some
of our observations on the homological support of
the homology.

With a little bit of work, the reader would be
able to convince themselves that the complex as-
sociated to the mirror of a link diagram is isomor-
phic to the dual of the complex associated to the
unmirrored diagram. This explains the duality in
the homology that we observed between the left-
and right-handed trefoils, and the self-duality in
the homology of the figure eight knot.

What about the copy of the homology of the
unknot that seems to appear in homological degree
i = 0? Let’s think about the complex associated
to the diagram D5,6 that we drew above of the
torus knot T5,6.

Firstly, D5,6 has 24 positive crossings, mean-
ing that the complex CKhi(D5,6) runs from de-
gree i = 0 to degree i = 24. We can identify the
chain group in degree i = 0 very quickly. It is just
the group that decorates the vertex (0, 0, . . . , 0)

of the Khovanov cube. To construct this group we
first take the 0-smoothing of every crossing of D5,6.
This gives us 5 nested circles in R2. Remembering
to shift by i+ w = 0 + 24 = 24 we see that

CKh0(D5,6) = V ⊗5[24].

Since CKh−1(D5,6) = 0, we have

Kh0(T5,6) = ker(∂0
Kh : CKh0(D5,6)→ CKh1(D5,6)).

Thinking about the vertices of the Khovanov cube
in degree i = 1, we note that each of them is dec-
orated by 4 circles, arising from merging a pair
of the 5 nested circles on the vertex (0, 0, · · · , 0).
Looking back at the definition of the map m asso-
ciated to edges of the Khovanov cube along which
circles merge, we see that the element

v⊗5
− ∈ V ⊗5[24] = CKh0(D5,6)

must be in the kernel of ∂0
Kh and hence represents

a non-trivial homology class in the 0th homology
group.

The quantum j-grading of this element is 24 −
5 = 19, so this corresponds to the copy of Z that
appears at (0, 19) in the table of Khi,j(T5,6). The
one task that this article will leave to the reader,
in between bites of their sandwich, is to find the
generator of the copy of Z at (0, 21).

Of course, there was nothing particularly special
about T5,6 among all torus knots. If we were to
repeat the arguments for the torus knot Tp,q where
0 < p < q with p, q coprime, we would see copies of
Z in bidegrees (0, (p−1)(q−1)±1). In other words
we would find the unknot homology but shifted up
by (p−1)(q−1). This matches twice the knot genus

g(Tp,q) =
(p− 1)(q − 1)

2
,

although we might make the mistake, at this point
in our tour of Khovanov homology, of discounting
this as a coincidence rather than recognizing it as
a foreshadowing.

Floer homology

It was recognized almost immediately that Kho-
vanov homology had some similarities with homo-
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logical invariants of 3-manifolds known as Floer
homologies. Although combinatorial formulations
of several Floer homologies have appeared, these
invariants are, at heart, analytic: the differentials
of their chain complexes count solutions to dif-
ferential equations, even if combinatorial means
might be found to make the count.

Floer homologies of 3-manifolds arose in the
last two decades of the twentieth century from
the study of gauge-theoretic invariants of smooth
closed 4-manifolds. These gauge theoretic invari-
ants notably include the Donaldson invariant from
instanton gauge theory or the Seiberg-Witten in-
variant from monopole gauge theory.

Removing two open balls from a closed 4-
manifold X turns it into a cobordism X̊ from S3

to S3. It was realized that the gauge theoretic in-
variants of the closed manifold are determined by
a map on the relevant Floer homology of S3 (which
is always a very simple algebraic structure such as
a polynomial ring) induced by the cobordism

X̊∗ : HFloer
∗ (S3) −→ HFloer

∗ (S3).

Essentially one reproduces the invariants of closed
4-manifolds by using the functoriality of Floer ho-
mology.

It is interesting to note the progression in this
case was by jumping down from dimension 4 to
dimension 3. There is much effort at the moment
in trying to jump further down the dimensions
by associating invariants of some kind to 2–, 1–
, and eventually to 0–manifolds. The idea is to
attempt to understand known examples of (3+1)-
dimensional topological quantum field theories in
the spirit of the cobordism hypothesis laid out by
Baez and Dolan [BD95].

From its inception it was expected, in line with
the program of categorification, that Khovanov ho-
mology should not just be a strengthening of the
essentially 3-dimensional Jones polynomial, but
should also give rise to 4-dimensional invariants.
As we have already mentioned, the Jones polyno-
mial being the Euler characteristic of Khovanov
homology suggests singular homology as a useful
parallel. Singular homology not only strengthens
the Euler characteristic invariant of a space but is

L0 × {0} ⊂ S3 × {0}

L1 × {1} ⊂ S3 × {1}

Σ ⊂ S3 × [0, 1]

Figure 11: A smooth link cobordism Σ from L0 to
L1.

functorial for continuous maps. The correct ana-
logue of continuous map turns out to be link cobor-
dism.

A link cobordism between the links L0, L1 ⊂ S3

is a smooth embedding of a compact oriented sur-
face Σ ⊂ S3 × [0, 1] which satisfies ∂Σ = L0 ×
{0} ∪ L1 × {1}. We give a picture of this in Fig-
ure 11. In fact, the object of interest is usually
the isotopy class of a link cobordism, in which we
allow smooth deformations of Σ while keeping the
boundary links fixed. Such a cobordism induces a
map

Σ∗ : Khi,j(L0) −→ Khi,j+χ(Σ)(L1)

which preserves the homological i-grading and
shifts the quantum j-grading by the Euler char-
acteristic of the surface.

The map Σ∗ is constructed combinatorially, be-
ginning with a suitable description of Σ. Any such
cobordism Σ can be described by a so-called movie,
which is a finite sequence of link diagrams (the
frames of the movie), starting with a diagram D0

for L0 and ending with a diagram D1 for L1. Suc-
cessive diagrams in the list differ either by an ori-
ented Reidemeister move or by one of the three
Morse moves, drawn in Figure 12, which represent
a local maximum, a local minimum, or a saddle
point of Σ.

To each Morse move there is an associated chain
map of Khovanov chain complexes. The chain

10



−→

←→ ∅

Figure 12: The three Morse moves.

maps corresponding to maxima and minima are
quantum j-graded of degree +1, while the sad-
dle chain map is quantum j-graded of degree −1.
And in his original paper Khovanov already gave
chain homotopy equivalences for each Reidemeis-
ter move. Composing all the chain maps coming
from Reidemeister and Morse moves in a movie of
Σ, one obtains a chain map

Σ# : CKhi,j(D0) −→ CKhi,j+χ(Σ)(D1).

Theorem 2 ( [Jac04,CMW09]). The induced map

Σ∗ : Khi,j(L0) −→ Khi,j+χ(Σ)(L1)

on homology is an invariant of Σ up to isotopy.

To prove this theorem, one essentially verifies
that equivalent movies define chain homotopic
chain maps.

Heegaard-Floer homology

From the start, then, 4-dimensional functoriality
provided at least a superficial similarity between
Khovanov homology and Floer homology. Back
at the turn of the century, however, one could still
imagine a world in which quantum homological in-
variants (i.e. generalizations of Khovanov homol-
ogy) and Floer homological invariants, although
similar, would continue to develop in parallel but
were essentially unrelated, in the same way that
the Jones polynomial and the Alexander polyno-
mial were thought of as being very distinct. This
is not how it has turned out.

The meeting of quantum and Floer homologi-
cal invariants was first presaged by a result re-
lating the Khovanov homology of a link L to the

Heegaard-Floer homology of its branched double
cover M(L).

Heegaard-Floer homology is a package of ho-
mological invariants; in its simplest incarnation
it is an invariant of a closed 3-manifold M that
takes the form of a singly-graded Z2-vector space
ĤF(M).

Avoiding a formal definition, the branched dou-
ble cover M(L) is a closed 3-manifold that admits
an everywhere 2-to-1 map M(L)→ S3 apart from
at points of L ⊂ S3 where it is 1-to-1. Its topology
is intimately connected with that of L. Ozsváth
and Szabó, the progenitors of Heegaard-Floer ho-
mology, proved the following result.

Theorem 3 ([OS05]). There is a spectral se-
quence from the Khovanov homology of L with Z2-
coefficients to ĤF(−M(L)).

Here we have written −M(L) for the branched
double cover but with reversed orientation. For
readers unfamiliar with spectral sequences, the im-
portant content for us is that it means that there is
an extra differential on Kh(L;Z2) whose homology

gives ĤF(−M(L)).

This theorem came early on in an era of re-
sults that established the existence of spectral se-
quences between various quantum homological in-
variants, and from quantum homological invari-
ants to Floer theoretic invariants. Often these
spectral sequences were more structural rather
than being proved with any concrete topological
application in mind. The result is a web of in-
terdependency that ties Khovanov homology and
Floer homology tightly together.

What we would like the reader to take from this
is that Khovanov homology may be thought of as
a first order combinatorial approximation to more
analytic invariants.

Instanton floer homology

Instanton Floer homology is another invariant of a
pair (M,L) where M is a 3-manifold and L ⊂ M
is a 1-dimensional submanifold, taking the form
of a graded abelian group I(M,L). Kronheimer
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−→tr 0−

2−

−2−

SU(2) = S3

S2 = tr−1({0})

Figure 13: The trace function on S3 = SU(2).

and Mrowka observed a curious coincidence which
led them to suspect the existence of a spectral se-
quence from Kh(L) to I(S3, L) [KM11].

The chain group for I(M,L) is generated by
a perturbed space of flat SU(2) connections on
(M,L) which have a prescribed singularity along
L. Since there is a correspondence between flat
connections and representations of the fundamen-
tal group, to get a handle on the chain group for
I(S3, L) we consider the space of homomorphisms

Rep(L) := {ρ : π1(S3 \ L)→ SU(2) | (∗)}

where (∗) is the condition that ρ should send every
meridional element of π1(L) to an element of SU(2)
of trace tr = 0.

Topologically, SU(2) is diffeomorphic to the 3-
sphere (see Figure 13). The trace function

tr : SU(2) −→ [−2, 2]

has a unique maximum at the identity matrix I2
and a unique minimum at −I2. The traceless ma-
trices are the equatorial 2-sphere tr−1({0}) = S2.

In this example, K will be the left-handed tre-
foil. In Figure 14 we give a diagram giving three
elements a, b, c ∈ π1(S3 \ K). These are known
as meridional elements since, forgetting the base-
point, each is homotopic in the knot complement
to a small meridional loop to the knot. We have
drawn one for each of the three arcs that form the
knot diagram. Each of the arcs is incident to each
of the crossings. We have labelled the leftmost
crossing with a bullet •. If the reader performs

c

a

b

•

Figure 14: Generators for π1(S3 \K).
S2 = tr−1({0})

ρ(c)

ρ(a)

ρ(b)
• •

•−→

•ρ(a) = ρ(b) = ρ(c)

Figure 15: Computing the space Rep(K).

a mental isotopy and slides the generators a, b, c
towards the crossing •, they will be able to see
that

b = c−1ac.

There are similar relations coming from the other
two crossings. In fact, these generators and rela-
tions give the group

π1(S3 \K) =

〈a, b, c|b = c−1ac, c = a−1ba, a = b−1cb〉.

An element ρ ∈ Rep(K) is determined by the
images ρ(a), ρ(b), ρ(c) ∈ S2 = tr−1(0). This is not
a completely free choice because we need to make
sure that the three group relations are satisfied.
Unpacking the equation ρ(b) = ρ(c)−1ρ(a)ρ(c),
it turns out to be equivalent to requiring that
ρ(a), ρ(b), ρ(c) each lie on the same great circle
geodesic of S2, with ρ(c) lying halfway between
ρ(a) and ρ(b).
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Since there are two further relations,
Rep(K) corresponds to choices of three points
ρ(a), ρ(b), ρ(c) ∈ S2 which are equidistantly
spaced around a great circle of S2 (see Figure 15).

It follows that Rep(K) falls into two connected
components. One of the components parametrizes
representations satisfying ρ(a) = ρ(b) = ρ(c) ∈ S2

and is topologically just S2. Points in the other
component correspond to choosing a great circle
and three non-equal but equidistant points along
it. This is equivalent to the choice of the point
ρ(a) ∈ S2 along with a unit tangent vector in
the tangent space Tρ(a)S2. Specifically, there is a
unique great circle running in the direction of the
tangent vector, and we place ρ(b) a third of the
way along the great circle in this direction, and
then ρ(c) two thirds of the way along. In other
words, this second component is topologically just
the unit tangent bundle to S2. This is a circle bun-
dle over S2, and a characteristic class calculation
shows that it is RP3. In conclusion we have

Rep(K) = S2 t RP3.

This reminds us of something – where did we put
our woodblock stamps? The unknot block has
the same total homology as S2, while the knight’s
move has the total homology of RP3.

Looking back at Figure 2, we see that⊕
i

Hi(Rep(K)) =
⊕
i,j

Khi,j(K).

This is, and should be, both surprising and moti-
vational. The definition that we have seen of Kho-
vanov homology was entirely combinatorial and
yet here is some relationship with tangible spaces
parametrizing representations of the fundamental
group of the knot complement.

The coincidence between the singular homology⊕
iHi(Rep(L)) and

⊕
i,j Khi,j(L) does not hold

for all links L, this coincidence rather being a
shadow for small links of a more general algebraic
relationship. Kronheimer and Mrowka proved the
following result.

Theorem 4 ([KM11]). There is a spectral se-
quence from Khi,j(L) to I(S3, L).

If U is the unknot and K is a knot,
then Kronheimer-Mrowka further showed that
I(S3,K) = I(S3, U) only if K = U . Their spectral
sequence then allowed Kronheimer-Mrowka to co-
opt this Floer homological result to conclude that
Kh(K) = Kh(U) only if K = U . In other words,
Khovanov homology detects the unknot. The ques-
tion of whether the Jones polynomial detects the
unknot remains open.

Observations

We now have a partial explanation for the appear-
ance of the unknot and knight’s move blocks in
the homology. The space Rep(K) always includes
an S2 component corresponding to those SU(2)
representations of π1(S3 \K) that factor through
H1(S3 \K) = Z. Roughly speaking, there should
also be many RP3 components consisting of repre-
sentations which are path-connected only to their
own conjugates within Rep(K).

Furthermore, although we withhold the details,
the internal gradings of various spectral sequences
that start at Khovanov homology can give some-
thing of an explanation of the ‘diagonalness’ that
we saw in the homology tables.

It remains to account for the quantum height
of the unknot block summand and its apparent
relationship with the genus of torus knots.

The 4-ball genus

As was mentioned in the previous section, there
are many spectral sequences that start at Kho-
vanov homology or its quantum homological rel-
atives. Some of these limit to Floer homological
invariants, while others limit to quantum invari-
ants. The original example of a spectral sequence
that remained in the quantum world was due to
Lee and was studied and used by Rasmussen.

Theorem 5 ([Lee05, Ras10]). For each knot K,
there exists an even integer s(K) ∈ 2Z and a

spectral sequence from Khi,j(K) to Khi,j−s(K)(U)
where U is the unknot.
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(Lee and Rasmussen originally worked over the
rationals Q, although the result is now known over
Z as well.) In other words, the quantum j-grading
of this copy of the unknot that we see, in all our
examples, appearing in homological degree i = 0,
is this even integral knot invariant known as the
Rasmussen invariant s(K).

Using the functoriality of Khovanov homology
for smooth knot cobordism, Rasmussen showed
the following result.

Theorem 6. Suppose that Σ: K0 → K1 is a con-
nected smooth knot cobordism between the knots
K0 and K1. Then we have that

2g(Σ) ≥ |s(K0)− s(K1)|.

In other words, the difference in values of the
s invariant between two knots provides a lower
bound on the genus of a smooth connected knot
cobordism between them. What has this got to do
with torus knots?

For our example of the (5, 6)-torus knot we see
that s(T5,6) = 20. Suppose that T5,6 = ∂S where
S ⊂ B4 is a smooth, connected, oriented surface in
the 4-ball. Such a surface is called a slice surface
for T5,6 and the minimal genus of such a surface is
called the slice genus g∗(T5,6).

Puncturing by removing a small ball centered at
an interior point of S gives rise to a knot cobordism
S̊ : T (5, 6) → U where U is the unknot. We then
have

g(S) = g(S̊) ≥ |s(T5,6)− s(U)|
2

=
|20− 0|

2
= 10.

So we have g∗(T5,6) ≥ 10. Since there is a surface
in the 3-sphere of genus 10 whose boundary is T5,6,
pushing the interior of this surface down into the
4-ball shows that

g∗(T5,6) = 10 = g(T5,6).

Similar arguments using s(Tp,q) work for all
torus knots Tp.q so that we can conclude the fol-
lowing result which is sometimes known as the Mil-
nor Conjecture, and sometimes as the Local Thom
Conjecture.

Figure 16: The Conway knot C.

Theorem 7. For any torus knot Tp,q we have

g∗(Tp,q) =
(p− 1)(q − 1)

2
= g(Tp,q).

This result was first proved thirty years ago
[KM94], and was one of the high points of gauge
theory as applied to the understanding of smooth
4-manifolds. Rasmussen’s purely combinatorial
proof, which we have just outlined, was something
of a surprise to the low-dimensional topology com-
munity. It was hitherto believed that very little of
substance in smooth 4-dimensional topology could
be proved while sidestepping serious analysis.

Of course the structure of the argument which
produces from s(K) a lower bound on g∗(K) ap-
plies equally well to knots K other than torus
knots. In one of the more celebrated results of
recent years, Piccirillo used the s invariant to
show that the Conway knot C (pictured in Fig-
ure 16) does not bound a smooth disk in the
4-ball [Pic20] (in other words g∗(C) 6= 0). Al-
though it was known that the Conway knot sat-
isfies g∗(C) ∈ {0, 1}, it had hitherto stubbornly
resisted attempts to determine its slice genus pre-
cisely.

Piccirillo’s work was more than just the compu-
tation of s(C); in fact s(C) = 0 so does not ob-
struct g∗(C) = 0. Piccirillo gave a knot C that she
showed satisfies g∗(C) = 0 if and only if g∗(C) = 0.
Then an electronic computation gave s(C) = 2.

Although we have seen that quantum and
Floer theoretic invariants are becoming increas-
ingly tightly woven together, at the time of writing
there are no Floer theoretic invariants that can be
combined with Piccirillo’s topological arguments
to demonstrate that g∗(C) 6= 0.
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Further reading

Khovanov homology is so wide-ranging that one
would need a book, rather than an article, to at-
tempt to chase down its influence on all the fields
that it has colonized. In particular, we are sorry
to forgo consideration of the role of Khovanov
homology in quantum representation theory and
in mathematical physics; we refer the interested
reader to elegant and comprehensible discussions
of these in [LS22] and [GS16] respectively.

On the other hand, we hope that we have real-
ized our objective of giving readers who have per-
severed to this point a feeling for Khovanov ho-
mology. We entrust those who now wish to read
a little more to the seductive work of Bar-Natan
[BN05]. In this paper Bar-Natan takes as his ob-
ject of study the first, topological, Khovanov cube
that we drew above in Figure 8. He shows how this
cube itself, in a suitable category, already yields a
link invariant. In this way he opens the door to a
much subtler understanding of Khovanov homol-
ogy, and one that is more amenable to abstraction
and generalization.
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