MATH4171:
 Riemannian Geometry

Solution 2

Solutions

1. One purpose of a smooth atlas is to give us a way to define to smooth maps between spaces that are locally topologically the same as Euclidean space.
2. (*) Let $\left(U_{i}, V_{i}, \phi_{i}\right) i \in I$ be the atlas for M, and $\left(U_{j}, V_{j}, \psi_{j}\right) j \in J$ be the atlas for N. The map F was said to be smooth at a point p if there exists U_{i} containing p and U_{j} containing $F(p)$ such that $\psi_{j} \circ F \circ \phi_{i}^{-1}$ is smooth at $\phi_{i}(p)$. The map F was said to be smooth everywhere if for any pair (i, j) the map $\psi_{j} \circ F \circ \phi_{i}^{-1}$ is smooth where defined.
So clearly if a F is smooth everywhere it must be smooth at all points $p \in M$ (by the covering property of atlases).
Now suppose F is smooth at every point p. Then as above we know there exists U_{i} containing p and U_{j} containing $F(p)$ such that $\psi_{j} \circ F \circ \phi_{i}^{-1}$ is smooth at $\phi_{i}(p)$. Suppose also $U_{i^{\prime}}$ contains p and $V_{j^{\prime}}$ contains $F(p)$. Then $\psi_{j^{\prime}} \circ F \circ \phi_{i^{\prime}}^{-1}$ is smooth at $\phi_{i^{\prime}}(p)$ since we can express it as the composition of smooth maps:

$$
\psi_{j^{\prime}} \circ F \circ \phi_{i^{\prime}}^{-1}=\left(\psi_{j^{\prime}} \circ \psi_{j}^{-1}\right) \circ\left(\psi_{j} \circ F \circ \phi_{i}^{-1}\right) \circ\left(\phi_{i} \circ \phi_{i^{\prime}}^{-1}\right) .
$$

This implies that F is smooth everywhere since we have shown that for any pair $\left(i^{\prime}, j^{\prime}\right)$ the map $\psi_{j^{\prime}} \circ F \circ \phi_{i^{\prime}}^{-1}$ is smooth at all points where it is defined.
3. Let I_{1} be the open interval $(1 / 6,5 / 6)$ and I_{2} be the open interval formed as a quotient $((2 / 3,1] \cup[0,1 / 3)) /(1 \sim 0)$. Then we have $S^{1}=I_{1} \cup I_{2}$ in the obvious way.
Next we consider the spaces $M \times I_{1}$ and $M \times I_{2}$. The cartesian product of two smooth manifolds is certainly still a smooth manifold since if $\left(U_{\alpha}, V_{\alpha}, \phi_{\alpha}\right)$ and $\left(U_{\beta}, V_{\beta}, \psi_{\beta}\right)$ are atlases for two manifolds X and Y, then the maps

$$
\left(\phi_{\alpha}, \psi_{\beta}\right): U_{\alpha} \times U_{\beta} \rightarrow V_{\alpha} \times V_{\beta}
$$

form a smooth atlas for $X \times Y$.
In the same way, if $\left(U_{\alpha}, V_{\alpha}, \phi_{\alpha}\right)$ for $\alpha \in A$ is an atlas for M, we see that the charts

$$
\phi_{\alpha} \times i d_{i}: U_{\alpha} \times I_{i} \rightarrow V_{\alpha} \times I_{i}
$$

(for $i d_{i}: I_{i} \rightarrow I_{i}$ the identity map) make each of $M \times I_{1}$ and $M \times I_{2}$ into smooth ($m+1$)-manifolds.
We now form the space $S(f)$ as a quotient space of the disjoint union of $M \times I_{1}$ and $M \times I_{2}$.

$$
S(f)=\left[\left(M \times I_{1}\right) \cup\left(M \times I_{2}\right)\right] / \sim
$$

where

$$
\left(p, x_{1}\right) \sim\left(p, x_{2}\right) \text { if } 1 / 6<x_{1}=x_{2}<1 / 3
$$

and

$$
\left.\left(p, x_{1}\right) \sim\left(f(p), x_{2}\right)\right) \text { if } 2 / 3<x_{1}=x_{2}<5 / 6
$$

The atlas on $\left(M \times \underset{\sim}{I_{1}}\right) \cup\left(M \underset{\sim}{\times} I_{2}\right)$ descends to an potential atlas on $S(f)$ whose charts are $\left\{\widetilde{\phi}_{\alpha} \times i d_{1}, \widetilde{\phi}_{\alpha} \times i d_{2} \mid \alpha \in A\right\}$, but now there are more overlaps of the charts - and we need to make sure that changing coordinates on the new overlaps is a smooth operation.
So consider the charts $\widetilde{\phi}_{\alpha} \times i d_{1}$ and $\widetilde{\phi}_{\beta} \times i d_{2}$ (the other cases are easy). Then for $1 / 6<t<1 / 3$ we have

$$
\left(\widetilde{\phi}_{\beta} \times i d_{2}\right) \circ\left(\widetilde{\phi}_{\alpha}^{-1} \times i d_{1}\right)\left(x^{\alpha}, t\right)=\left(\phi_{\beta} \circ \phi_{\alpha}^{-1}\left(x^{\alpha}\right), t\right)
$$

and $\phi_{\beta} \circ \phi_{\alpha}^{-1}$ is certainly a smooth map by the definition of an atlas. And for $2 / 3<t<5 / 6$ we have

$$
\left(\widetilde{\phi}_{\beta} \times i d_{2}\right) \circ\left(\widetilde{\phi}_{\alpha}^{-1} \times i d_{1}\right)\left(x^{\alpha}, t\right)=\left(\phi_{\beta} \circ f \circ \phi_{\alpha}^{-1}\left(x^{\alpha}\right), t\right)
$$

and $\phi_{\beta} \circ f \circ \phi_{\alpha}^{-1}$ is smooth by the definition of a smooth map of manifolds (f and f^{-1} were chosen to be smooth). The other direction $\left(\widetilde{\phi}_{\alpha} \times i d_{1}\right) \circ$ $\left(\widetilde{\phi}_{\beta}^{-1} \times i d_{2}\right)$ is similar.
It remains to see that $S(f)=T(f)$, the mapping torus of f.
We define the multifunction

$$
G_{1}: M \times I_{1} \rightarrow M \times[0,1]
$$

by $G_{1}(p, x)=(p, x+1 / 4)$ for $x \leq 3 / 4$ and $G_{1}(p, x)=(f(p), x-3 / 4)$ for $x \geq 3 / 4$.
And

$$
G_{2}: M \times I_{2} \rightarrow M \times[0,1]
$$

by $G_{2}(p, x)=\left(f^{-1}(p), x+1 / 4\right)$ for $2 / 3 \leq x \leq 3 / 4, G_{2}(p . x)=(p, x-3 / 4)$ for $x \geq 3 / 4$, and $G_{2}(p, x)=(p, x+1 / 4)$ for $x \leq 1 / 3$.
Then you can check that G_{1} and G_{2} descend to a well-defined bijection

$$
G: S(f) \rightarrow T(f)
$$

It remains a delicate exercise for those more comfortable with topology to show that G and G^{-1} are both continuous so that $S(f)$ and $T(f)$ are homeomorphic as topological spaces.
4. (a) If we write $|w|^{2}+|z|^{2}=F(w, z)=F(a, b, c, d)=a^{2}+b^{2}+c^{2}+d^{2}$ then $S^{3}=F^{-1}(1)$, the preimage of a regular value of F. Since F is constant along S^{3}, we have $\left.D F\right|_{p}(v)=0$ for any $p \in S^{3}$ and $v \in T_{p} S^{3}$. (You might like to try proving this by writing $v=c^{\prime}(0)$ for some curve $c(t)$ contained in S^{3} - heuristically it should be clear with a little thought - $D F_{p}$ is the local change in F at p, and if we measure the local change in a direction along which F does not change (i.e. along a tangent $v \in T_{p} S^{3}$) we should get the answer 0).
Now, $D F_{(1,0)}=\left.(2 a, 2 b, 2 c, 2 d)\right|_{a=1, b=c=d=0}=(2,0,0,0)$, and this is zero on a 3 -dimensional subspace which must coincide with the 3 dimensional space $T_{(1,0)} S^{3}$:

$$
T_{(1,0)} S^{3}=\left\langle\frac{\partial}{\partial b}, \frac{\partial}{\partial c}, \frac{\partial}{\partial d}\right\rangle .
$$

(b) Let's write the coordinates on \mathbf{C} as $\alpha+i \beta$

Let $s(t)=(1, i t)$ be a path through $(1,0) \in \mathbf{C}^{2}$. Then $s^{\prime}(0)=\partial / \partial d$. Now $D \pi_{(1,0)}\left(s^{\prime}(0)\right)=(\pi \circ s)^{\prime}(0)$ and $(\pi \circ s)(t)=i t$ so we see that

$$
D \pi_{(1,0)}\left(\frac{\partial}{\partial d}\right)=\frac{\partial}{\partial \beta} \in T_{0} \mathbf{C}
$$

Similarly we see that

$$
D \pi_{(1,0)}\left(\frac{\partial}{\partial c}\right)=\frac{\partial}{\partial \alpha} \in T_{0} \mathbf{C}
$$

and

$$
D \pi_{(1,0)}\left(\frac{\partial}{\partial b}\right)=0 \in T_{0} \mathbf{C}
$$

Hence we see that the kernel of $D \pi_{(1,0)}$ is just the 1-dimensional vector space spanned by $\frac{\partial}{\partial b}$.

