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Solution 2

Solutions

1. One purpose of a smooth atlas is to give us a way to define to smooth
maps between spaces that are locally topologically the same as Euclidean
space.

2. (*) Let (Ui, Vi, φi) i ∈ I be the atlas for M , and (Uj , Vj , ψj) j ∈ J be the
atlas for N . The map F was said to be smooth at a point p if there exists
Ui containing p and Uj containing F (p) such that ψj ◦ F ◦ φ−1i is smooth
at φi(p). The map F was said to be smooth everywhere if for any pair
(i, j) the map ψj ◦ F ◦ φ−1i is smooth where defined.

So clearly if a F is smooth everywhere it must be smooth at all points
p ∈M (by the covering property of atlases).

Now suppose F is smooth at every point p. Then as above we know there
exists Ui containing p and Uj containing F (p) such that ψj ◦ F ◦ φ−1i is
smooth at φi(p). Suppose also Ui′ contains p and Vj′ contains F (p). Then
ψj′ ◦F ◦φ−1i′ is smooth at φi′(p) since we can express it as the composition
of smooth maps:

ψj′ ◦ F ◦ φ−1i′ = (ψj′ ◦ ψ−1j ) ◦ (ψj ◦ F ◦ φ−1i ) ◦ (φi ◦ φ−1i′ ).

This implies that F is smooth everywhere since we have shown that for
any pair (i′, j′) the map ψj′ ◦ F ◦ φ−1i′ is smooth at all points where it is
defined.

3. Let I1 be the open interval (1/6, 5/6) and I2 be the open interval formed
as a quotient ((2/3, 1] ∪ [0, 1/3))/(1 ∼ 0). Then we have S1 = I1 ∪ I2 in
the obvious way.

Next we consider the spaces M × I1 and M × I2. The cartesian prod-
uct of two smooth manifolds is certainly still a smooth manifold since if
(Uα, Vα, φα) and (Uβ , Vβ , ψβ) are atlases for two manifolds X and Y , then
the maps



(φα, ψβ) : Uα × Uβ → Vα × Vβ

form a smooth atlas for X × Y .

In the same way, if (Uα, Vα, φα) for α ∈ A is an atlas for M , we see that
the charts

φα × idi : Uα × Ii → Vα × Ii

(for idi : Ii → Ii the identity map) make each of M × I1 and M × I2 into
smooth (m+ 1)-manifolds.

We now form the space S(f) as a quotient space of the disjoint union of
M × I1 and M × I2.

S(f) = [(M × I1) ∪ (M × I2)]/ ∼

where

(p, x1) ∼ (p, x2) if 1/6 < x1 = x2 < 1/3

and

(p, x1) ∼ (f(p), x2)) if 2/3 < x1 = x2 < 5/6.

The atlas on (M × I1) ∪ (M × I2) descends to an potential atlas on S(f)

whose charts are {φ̃α × id1, φ̃α × id2 | α ∈ A}, but now there are more
overlaps of the charts - and we need to make sure that changing coordinates
on the new overlaps is a smooth operation.

So consider the charts φ̃α × id1 and φ̃β × id2 (the other cases are easy).
Then for 1/6 < t < 1/3 we have

(φ̃β × id2) ◦ (φ̃−1α × id1)(xα, t) = (φβ ◦ φ−1α (xα), t)

and φβ ◦φ−1α is certainly a smooth map by the definition of an atlas. And
for 2/3 < t < 5/6 we have

(φ̃β × id2) ◦ (φ̃−1α × id1)(xα, t) = (φβ ◦ f ◦ φ−1α (xα), t)

and φβ ◦ f ◦φ−1α is smooth by the definition of a smooth map of manifolds

(f and f−1 were chosen to be smooth). The other direction (φ̃α × id1) ◦
(φ̃−1β × id2) is similar.

It remains to see that S(f) = T (f), the mapping torus of f .

We define the multifunction



G1 : M × I1 →M × [0, 1]

by G1(p, x) = (p, x + 1/4) for x ≤ 3/4 and G1(p, x) = (f(p), x − 3/4) for
x ≥ 3/4.

And

G2 : M × I2 →M × [0, 1]

by G2(p, x) = (f−1(p), x+ 1/4) for 2/3 ≤ x ≤ 3/4, G2(p.x) = (p, x− 3/4)
for x ≥ 3/4, and G2(p, x) = (p, x+ 1/4) for x ≤ 1/3.

Then you can check that G1 and G2 descend to a well-defined bijection

G : S(f)→ T (f).

It remains a delicate exercise for those more comfortable with topology
to show that G and G−1 are both continuous so that S(f) and T (f) are
homeomorphic as topological spaces.

4. (a) If we write |w|2 + |z|2 = F (w, z) = F (a, b, c, d) = a2 + b2 + c2 + d2

then S3 = F−1(1), the preimage of a regular value of F . Since
F is constant along S3, we have DF |p(v) = 0 for any p ∈ S3 and
v ∈ TpS3. (You might like to try proving this by writing v = c′(0) for
some curve c(t) contained in S3 - heuristically it should be clear with
a little thought - DFp is the local change in F at p, and if we measure
the local change in a direction along which F does not change (i.e.
along a tangent v ∈ TpS3) we should get the answer 0).

Now, DF(1,0) = (2a, 2b, 2c, 2d)|a=1,b=c=d=0 = (2, 0, 0, 0), and this is
zero on a 3-dimensional subspace which must coincide with the 3-
dimensional space T(1,0)S

3:

T(1,0)S
3 = 〈 ∂

∂b
,
∂

∂c
,
∂

∂d
〉.

(b) Let’s write the coordinates on C as α+ iβ

Let s(t) = (1, it) be a path through (1, 0) ∈ C2. Then s′(0) = ∂/∂d.
Now Dπ(1,0)(s

′(0)) = (π ◦ s)′(0) and (π ◦ s)(t) = it so we see that

Dπ(1,0)

(
∂

∂d

)
=

∂

∂β
∈ T0C

Similarly we see that

Dπ(1,0)

(
∂

∂c

)
=

∂

∂α
∈ T0C

and



Dπ(1,0)

(
∂

∂b

)
= 0 ∈ T0C

Hence we see that the kernel of Dπ(1,0) is just the 1-dimensional

vector space spanned by ∂
∂b .


