MATH4171:
 Riemannian Geometry

Solution 3

Solutions

1. To see that $c(t)$ lies on S^{3}, check that $\|c(t)\|=1$. We now compute $c^{\prime}(\pi / 4)(f)$.

$$
\begin{aligned}
c^{\prime}(\pi / 4)(f) & =\left.\frac{d}{d t}\right|_{t=\pi / 4} f \circ c(t) \\
& =\left.\frac{d}{d t}\right|_{t=\pi / 4} \operatorname{im}\left(\cos (\mathrm{t})+\mathrm{e}^{\mathrm{it}} \sin (\mathrm{t})\right) \\
& =\left.\frac{d}{d t}\right|_{t=\pi / 4} \sin ^{2}(t) \\
& =2 \cos (\pi / 4) \sin (\pi / 4)=1
\end{aligned}
$$

Suppose now that

$$
c^{\prime}(0)=\beta \frac{\partial}{\partial b}+\gamma \frac{\partial}{\partial c}+\Delta \frac{\partial}{\partial d}
$$

Then we see, for example, that $c^{\prime}(0)(b)=\beta$ where b is the function on $S^{3} \subset \mathbf{R}^{4}$ given by projection onto the second coordinate. Similarly we can determine γ and Δ.
Computing we find that $\beta=0$ and $\gamma=1$ and $\Delta=0$, for example (I apologise for c standing for both a circular curve and a coordinate function - hard to fix now),

$$
\begin{aligned}
\gamma & =c^{\prime}(0) c=\left.\frac{d}{d t}\right|_{t=0} \cos (t) \sin (t) \\
& =\cos (0)^{2}-\sin (0)^{2}=1
\end{aligned}
$$

2. (*) Let $A(t)$ be a smooth path in $S O(n)$ with $A(0)=I$. Then we have

$$
A^{T}(t) A(t)=I
$$

for all t. Differentiating this identity with respect to t and evaluating at $t=0$ we get

$$
A^{T}(0) A(0)+A^{T}(0) A^{\prime}(0)=A^{T}(0)+A^{\prime}(0)=0
$$

(you should convince yourself that differentiating commutes with taking transpose and that the Leibniz rule holds in matrix multiplication).
Hence we see that the tangent space $T_{I} S O(n)$ is contained in the skewsymmetric $n \times n$ matrices. Since both spaces are vector spaces of the same dimension, it follows that they are equal.
3. This is an important result and should be found in your lecture notes.

