MATH4171:

Riemannian Geometry

Solution 5

Solutions
1. We shall use polar coordinates p, . The hyperbolic metric on B? is given
by
dv.w
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where we write ¢.” for the usual dot product.
Now x = pcosf and y = psinf so
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and similarly
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Hence the matrix g;; (considered with respect to p, 6 coordinates) is diag-
onal with entries m and ﬁ

So we see that the area Ap, is given by
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2.

(a) Write we f(X,Y,Z) = (z,y). Then since (z,y,0) lies on the line
containing (X,Y, Z) and (0,0,—1), we have /X =y/Y =1/Z +1
so that
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Likewise one can show that
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(b) Since ¢ = ¢o f~1, we have )=t = fo ¢!, and we know both f and
¢~ explicitly. So we see that
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1 )= sinh yo cosy; sinh ys sin yq 0
Y,92) = 1+coshys, * 1+4+coshys, /)~

(¢) By the definition of v, the map between the two charts Wofogp !
is just the identity map. Hence y; o f = x; so 8‘2 =

8y1
(d) We compute:

= (—sin(z) sinh(x2), cos(x1) sinh(xz), 0),

0

pr (cos(z1) cosh(xs), sin(z) cosh(xs), sinh(xs)).

And using the metric defined via the form ¢ on the hyperboloid, we
see that
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<53¢2’ 5:02> = cosh”(z3) — sinh”(z9) = 1.

We also compute:
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And using the metric on the Poincare unit ball model of hyperbolic
space, we see that
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and similarly

~_
Il
=l

S
T

N
N

S
=N
N
QD
NS
S
\/
Il
—_

3. We first follow the hint!
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Now we want to show that f4 is an isometry of H? - in other words, that

it preserves the Riemannian metric. In fact, as we saw in class, it will be
enough to show that it preserves the Riemannian norm || * ||2 = (x, *).

First we need to calculate the differential of f4. Let z(t) be a curve in
H? C C, z: R — H?, then

Dfa(#(0)) =



Then we see that
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So fa preserves the Riemannian norm and hence is an isometry.



