
MATH4171:
Riemannian Geometry

Solution 6

Solutions

1. (a) In class we showed using elementary methods that the distance be-
tween z1 = iy1 and z2 = iy2 is d(z1, z2) = log(y1/y2) (where we
assume without loss of generality that y2 > y1).

In this case, the LHS of the equation to be verified is
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And the RHS is
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and that’s that.

(b) The LHS is preserved since isometries preserve distances (if you like,
as many of you did for homework, you can argue this from the defi-
nition of isometry given in terms of the Riemannian metric and the
definition of distance given as an infimum of the values of certain
integrals).

The RHS requires some calculation. We recall the hint from the last
problem sheet which told us that
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So let’s play with the RHS:
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and that’s that.

(c) You can achieve this by some basic Moebius transformations. If x1, x2

are real numbers x1 6= x2, then

z 7→ az − ax2

z − x1

takes x2 to 0 and x1 to ∞, where we choose a ∈ R so that the
unimodular condition is satisfied.

Suppose now that z1 and z2 are in the upper half-plane and lie on the
unique semicircle or half-line through x1 and x2 which meets the real
axis at right angles. Then this transformation must take z1 and z2
to the upper imaginary axis, since Moebius transformations preserve
circlines.

(d) Moebius transformations take circles and lines to circles and lines and
also preserve angles. Since a, b, c, d are all real, the class of Moebius
transformations that we deal with all preserve the real axis. Since we
know that vertical half-lines satisfy the shortest-distance property, we
know that the only other lines which have a chance to are semicircles
meeting the real axis at right angles. But (exercise!) given any two
points in the upper half-plane, there is a unique semicircle or half-line
through both points that meets the real axis at right angles: hence
these are the geodesics.

2. Using the standard global coordinate chart on Hn, the matrix gi,j is di-
agonal with all diagonal entries gi,i = 1/x2

n. We now use the formula
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Since in our case the matrix gij is diagonal so also is its inverse and we
have

gii = x2
n.

Looking at (∗), we see that we must have k = l for any non-zero terms,
and also at least one of i, j, k has to be equal to n.

More precisely, there are four cases giving potentially non-zero answers:
i = j 6= n, k = n; i = k 6= n, j = n; j = k 6= n, i = n; i = j = k = n.
Of these, the second and the third are really the same since we have the
identity Γk
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ji.

Then it is a simple matter of differentiation and we see that
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whenever i 6= n, with all other Christoffel symbols being 0.


