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Abstract. Given a diagram D of a knot K, we give easily computable bounds
for Rasmussen’s concordance invariant s(K). The bounds are not independent
of the diagram D chosen, but we show that for diagrams satisfying a given
condition the bounds are tight. As a corollary we improve on previously known
Bennequin-type bounds on the slice genus.

1. Statement of results

1.1. Introduction. In [R], Rasmussen defined a homomorphism on the smooth
concordance group of knots C

s : C → 2Z,

which he showed had the property that

|s(K)| ≤ 2g∗(K)

where we write g∗(K) for the smooth 4-ball genus (or slice genus) of K.
The starting point for this paper is the following Theorem of Rasmussen’s [R]:

Theorem 1.1. For positive knots K (that is, knots which admit a diagram with
no negative crossings)

s(K) = 2g∗(K).

The point being that in the case of positive knots K, the computation of s(K) is
a triviality and agrees with twice the genus of an obvious candidate for a minimal-
genus slicing surface (namely the one obtained by pushing the Seifert surface given
by Seifert’s algorithm into the 4-ball).

The invariant s(K) is equivalent to all the information contained in F jHi(K),
where F jHi is the perturbed version of standard Khovanov homology first defined
and studied by Lee [L]. There is a spectral sequence with E2 page being the
standard Khovanov homology of a knot K and E∞ page being the bigraded group
F jHi(K)/F j+1Hi(K) and many efforts to compute s for knots other than for
positive knots have made use of the existence of spectral sequences (for some nice
examples see [Sh]).

However, since it is known that F jHi(K) = 0 for i 6= 0, to define s(K) only
requires knowledge of the partial chain complex

F
jC−1(D)

∂−1

→ F
jC0(D)

∂0→ F
jC1(D),

where D is a diagram of K. In fact, since explicit representatives for a basis of
F jHi(K) are known at the chain level, one only needs to know the map
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∂−1 : F
jC−1(D) → F

jC0(D).

Remark. For a positive diagram D, C−1(D) = 0. This is what made Theorem 1.1
a trivial corollary once the properties of s were established.

By studying this map we obtain a diagram-dependent upperbound U(D) for
s(K). We also give an error estimate 2∆(D) for this upperbound. The resulting
lowerbound U(D) − 2∆(D) for s(K) improves upon previously known Rudolph-
Bennequin-type inequalities. We give a list of particular cases where ∆(D) vanishes
and so U(D) necessarily agrees with s(K).

Just prior to posting on the arXiv, we heard from Tomomi Kawamura [K1] that
she has independently obtained several of the results in this paper, using entirely
different methods. Kawamura’s work is based on Livingston’s axiomatic approach
to s and also to the bound τ coming from Heegaard-Floer homology. We thank
Tetsuya Abe and Cornelia van Cott for their comments on an earlier draft of this
paper.

1.2. Results. The following results are stated for knots, since the Rasmussen in-
variant is most familiar in this setting. Some results however admit a generalization
to links (via the definition of s for links as found for example in [BW]). We discuss
this in Section 3.

Our results concern an easily-computable number U(D) ∈ 2Z which is defined
from an oriented knot diagram D. Postponing an explicit description of how to
compute U(D) until Definition 1.8, we begin by giving some results.

Theorem 1.2.

s(D) ≤ U(D).

Of course, we must remember that s(D) depends only on the isotopy class of
the knot represented by D, whereas the same is not true of U(D). Hence in order
for the bound of Theorem 1.2 to be a good bound, we should expect to be forced
to give some restrictions on diagrams D:

Proposition 1.3. The bound of Theorem 1.2 is tight for positive diagrams D and
for negative diagrams D.

Proposition 1.4. Let εi ∈ {−1, +1} for i = 1, 2, . . . , n. Then if w is any word in
the n letters

{σ
ε(1)
1 , σ

ε(2)
2 , . . . , σε(n)

n }

and B is a knot diagram which is the closure of the (n+1)-stranded braid represented
by w, then we have

s(B) = U(B).

Remark. We note that knots admitting such a braid presentation are known to be
fibered [Sta], so in particular not every knot admits such a presentation.

Proposition 1.5. Let D be an alternating diagram of a knot. Then we have

s(D) = U(D).
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Propositions 1.3, 1.4, and 1.5 are each consequences of Theorem 1.10 for which
we need a few definitions. Given a diagram D we write O(D) for the oriented
resolution.

Definition 1.6. We form a decorated graph T (D), known as the Seifert graph of
D, as follows:

We start with a node for each component of O(D). Each crossing in D, when
smoothed, lies on two distinct components of O(D); for each positive (respectively
negative) crossing of D we connect the corresponding nodes by an edge decorated
with + (respectively −).

Note that T (D) by itself is not enough to recover the full Khovanov chain complex
of the diagram D, but if we added extra data of an ordering of the edges at each
node, we would be able to recover the full complex.

Definition 1.7. From T (D) we now form two other graphs:
We form a subgraph T−(D) (respectively T +(D)) from T (D) by removing all

edges of T (D) decorated with a + (respectively −).

Definition 1.8. We define the number

U(D) = #nodes(T (D)) − 2#components(T−(D)) + w(D) + 1,

where w(D) is the writhe of D.

Definition 1.9. We define the number

∆(D) = #nodes(T (D)) − #components(T−(D)) − #components(T +(D)) + 1.

Then we have

Theorem 1.10. If ∆(D) = 0 then s(D) = U(D). In fact we can say more:

U(D) − 2∆(D) ≤ s(D) ≤ U(D).

Theorem 1.10 enables us to improve on previously known easily-computable
combinatorial lower bounds for the slice genus. We have:

Corollary 1.11.

2g∗(K) ≥ s(K) ≥ U(D) − 2∆(D)

≥ w(D) − #nodes(T (D)) + 2#components(T +(D)) − 1,

which is stronger than the Rudolph-Bennequin inequalities as proved in [K2], [P],
and [Sh] (for a nice discussion see [Sto]).

Proof. of Propositions 1.3, 1.4, and 1.5. This is just a matter of checking that the
condition ∆(D) = 0 of Theorem 1.10 holds in each case. This is only a non-trivial
check for the case of D being alternating.

Suppose D is an alternating diagram. The complement of the oriented resolution
O(D) is a number of regions of the plane. If D is not the trivial diagram, there
is a unique way to associate to each region either a + or a − such that only
positive (respectively negative) crossings of D occur in regions associated with a +
(respectively −) and such that adjacent regions have different associated signs. See
Figure 1 for an example.
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Figure 1. On the left of this figure we show part of an alternating
knot diagram D. We indicate which crossings are positive and
which negative. On the right of the figure is the oriented resolution
O(D) on which we indicate how to uniquely associate + or − to
each component of the complement of O(D).

Then each region with associated sign + (respectively −) corresponds to exactly
one component of T +(D) (respectively T−(D)). Since there is one more region than
there are circles of O(D) (or equivalently nodes of T (D)) we must have ∆(D) = 0.
�

We note that Proposition 1.5 gives a combinatorial formula for the Rasmussen
invariant of an alternating diagram. It is known [L] that the Rasmussen invariant
of an alternating knot agrees with the signature of the knot, and there is also
known [Tr] a combinatorial formula for the signature of an alternating diagram.
Proposition 1.5 gives an equivalence between these two results.
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There is a nice topological interpretation of ∆ which is useful in computing it
by hand:

Proposition 1.12. Form a graph G which has a node for each component of T−(D)
and a node for each component of T +(D). Each circle in O(D) is a member of
exactly one component of T−(D) and exactly one component of T +(D); for each
circle in O(D) let G have an edge connecting the corresponding pair of nodes.

Then ∆(D) = b1(G), the first betti number of G.

Proof. This follows from the connectedness of G so that we have

b1(G) = b0(G) − χ(G) = 1 − #nodes(G) + #edges(G)

= 1 − #components(T−(D)) − #components(T +(D)) + #nodes(T (D))

= ∆(D).

�

2. Proof of main results

We assume familiarity with the definition of the Khovanov chain complex defined
from a knot diagram D, and with Rasmussen’s paper [R]. We write F jCi(D)
for Lee’s perturbed chain complex with complex coefficients (where the TQFT is
induced from the Frobenius algebra C →֒ C[x]/(x2 − 1)), with the F j representing
the quantum filtration:

. . . ⊆ F
j+1Ci ⊆ F

jCi ⊆ F
j−1Ci ⊆ . . . ,

and the superscript i denoting the homological grading:

∂i : F
jCi → F

jCi+1, ∂i∂i−1 = 0.

Similarly we write F jHi(D) for the homology of the chain complex F jCi(D).
There is a distinguished subspace of C0(D) which I shall write as H(O(D)){w(D)};

O(D) being the oriented resolution of D and {w(D)} being a shift in the quan-
tum filtration by the writhe of D. Here one can think either of H as being Lee’s
TQFT functor or of H(O(D)) as being the perturbed Khovanov homology of the
(0-crossing) diagram O(D).

Remark. Our method of proving Theorem 1.2 is to restrict our attention to the
summand H(O(D)) of C0(D). There is a generator for the homology H0(D) whose
filtered degree in the homology determines s(D). This generator lies in the summand
H(O(D)), so a bound on s(D) can be calculated by looking at the filtered degree of
the generator in a certain quotient of H(O(D)).

This method will give possibly better (certainly no worse) approximations for
s(D) if the subspace H(O(D)) is enlarged (for example by taking the direct sum of
H(O(D)) with a summand corresponding to a different resolution of D, which still
lies in homological degree 0). In the general case, there is no obvious choice for
a useful enlargement, but given a particular class of knots it is possible that better
bounds on s(D) can be obtained by a suitable choice of larger summand.

By Lee [L] we know that
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Theorem 2.1. Given a knot diagram D with orientation o, there exist so, so ∈
H(O(D)){w(D)} ⊆ C0(D) such that ∂0so = ∂0so = 0 Furthermore, the homol-
ogy F jHi(D) is 2-dimensional and supported in homological grading i = 0 with
H0(D) =< [so], [so] >.

There is an explicit description of these generators at the chain level:

Definition 2.2. The orientation o on D induces an orientation on O(D). For
each circle C in O(D) we give a invariant which is the mod 2 count of the number
of circles in O(D) separating C from infinity, to which we add 0 (respectively 1) if
C has the counter-clockwise (respectively clockwise) orientation. We label C with
v− + v+ (respectively v− − v+) if the invariant is 0 (respectively 1) (mod 2). Here
v+, v− is a basis for the vector space H(S1) where H is Lee’s TQFT functor; v+

has quantum degree +1 and v− has quantum degree −1. This determines an ele-
ment so ∈ H(O(D)){w(D)}, so being given in the same way but using the opposite
orientation o on D.

We know that, in Rasmussen’s notation, s(D) = smin(D) + 1 and smin(D) is the
filtration grading of the highest filtered part of H0(D) to contain [so] (or equiva-
lently [so] - this interchangeability is taken as understood from now on). This is the
same as the filtration grading of the highest filtered part of C0/im(d−1) containing
[so]. It follows that

Lemma 2.3. Let p : C0(D) → H(O(D)){w(D)} be the projection onto the vector
space summand. Then

smin(D) ≤ L(D)

where L(D) is the filtration grading in H(O(D)){w(D)}/im(p ◦ d−1) of the highest
filtered part containing [so]. �

Proof. (of Theorem 1.2) Given a knot diagram D with orientation o, we write
n+, n− for the number of positive, negative crossings of D respectively so that the
writhe w(D) = n+−n−. Form the diagram D− by taking the oriented resolution at
each of the positive crossings. Note that diagram D− is also oriented with writhe
−n−. Suppose there are l components D−

1 , D−

2 , . . . , D−

l of D− (where we mean
components as a subset of the plane, so that the standard 2-crossing diagram of
the Hopf link would be considered as a single component, for example) and suppose
that D−

r has nr crossings for 1 ≤ r ≤ l.
We observe that, up to quantum filtration shift by {n+}, the map

p ◦ d−1 : C−1(D) → H(O(D)){w(D)} ⊆ C0(D)

can be identified with the map

d−1 : C−1(D−) → C0(D−) = H(O(D−)){−n−}.

This latter map is in fact
⊕l

r=1 dr
−1 ⊗ idr where

dr
−1 : C−1(D−

r ) → C0(D−

r ) = H(O(D−

r )){−nr},

is the (−1)th differential in the chain complex C∗(D−

r ) and
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idr : H(O(D− \ D−

r )){−n− + nr} → H(O(D− \ D−

r )){−n− + nr}

is the identity map.
Inductively on r we observe a canonical identification

coker(
l⊕

r=1

(dr
−1 ⊗ idr)) =

l⊗

r=1

coker(dr
−1)

=
l⊗

r=1

(H0(D−

r )).

Now so = s1 ⊗ s2 ⊗ · · · ⊗ sl, where sr ∈ C0(D−

r ) is either the element so′ or
so′ where we use o′ to stand for the induced orientation on the oriented resolution
of D−

r . This is because the mod 2 invariant associated to each circle C ⊂ O(D−

r )
via Definition 2.2 differs by 0 or 1 from the invariant associated to C ⊂ O(D) via
Definition 2.2, and it is the same difference for all circles of O(D−

r ).
Suppose the number of components of O(D−

r ) is er. We observe that F er−nrC0(D−

r )
is the highest filtered part of C0(D−

r ) to be non-zero and is 1-dimensional. By
Lemma 3.5 [R], we know that [sr] cannot be of top filtered degree in H0(D−

r ).
Therefore [sr] has filtered degree less than or equal to er − nr − 2 in H0(D−

r ).
We compute for L(D) in Lemma 2.3:

L(D) ≤ n+ +
l∑

r=1

(er − nr − 2)

= n+ − n− + #nodes(T (D)) − 2#components(T−(D))

= #nodes(T (D)) − 2#components(T−(D)) + w(D).

Hence we have

s(D) = smin(D) + 1 ≤ L(D) + 1

≤ #nodes(T (D)) − 2#components(T−(D)) + w(D) + 1 = U(D).

�

Proof. (of Theorem 1.10) Given an oriented knot diagram D, let D be the mirror
image of D. It is then easy to check that

2∆(D) = U(D) + U(D).

So we have

s(D) = −s(D) ≥ −U(D) = U(D) − 2∆(D).

�
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3. Generalizations to links

Given an r-component link L ⊂ S3, let G(L) be the genus of a connected
minimal-genus smooth surface in the 4-ball which has L as boundary. We extend
the definition of the slice genus g∗ to links by defining

g∗(L) = G(L) +
1

2
−

r

2
∈

1

2
Z.

The definition of the s-invariant for links as found in [BW] is such that the proof
of Theorem 1.2 carries through unchanged to this setting. Also by [BW] we know
that

(1) s(L) ≤ 2g∗(L),
(2) s(L) + s(L) ≥ 2 − 2r.

Hence we also obtain a version of Corollary 1.11 for links:

Corollary 3.1. Suppose D is a diagram of an r-component link and T (D) and
T +(D) are the associated graphs, then

2g∗(D) ≥ w(D) − #nodes(T (D)) + 2#components(T +(D)) − 2r + 1.

Proof. We have

2g∗(D) ≥ s(D)

≥ 2 − 2r − s(D)

≥ 2 − 2r − U(D)

= w(D) − #nodes(T (D)) + 2#components(T +(D)) − 2r + 1.

�
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