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What is Mathematical Biology?

® Application of mathematical modelling to solve problems in biology
® One of the fastest growing research areas in mathematics

® Contributes significantly to our understanding of the biological world

® Produces new mathematical questions




New Maths into Biology EPSRC Workshop
11th October 2007

107 wnb'ZH
——= h!

- —' L THE‘\I }1 ﬁ i:'{"": 1

4 ohnd 4 - —— o~ il
"Cl d MIRACLE o Higully
~ .‘C'CI.':'..H‘-{':_A ; .'-—T\. ‘:; -
) L W& yo

w
S A0S

T TUNK Nou SHouw &e MORE
EXPLIU\T HERE IN STEP TWO,"

" , 'Q;_

Biologists...

® deal with "single problems'’
® have intuitive approach to problems
® have excellent technology at their disposal

® can be intimidated by mathematicians

Mathematicians...

look for generalisations
® use noddy' approaches bearing little relevance
to the real situation in Biology

® use very brushstroke approaches not specific
enough for Biology




Some specific biological problems where new mathematical
approaches are needed:

- Cell Signalling

* Reaction - diffusion in cells

* Modelling kinetics

+ Spatio-temporal issues in cells

+ Self-assembly

* Hierarchy of scales, deterministic vs stochastic

+ Cell processes e.g. dynamics of microtubules

* Huge amounts of messy biological data which needs very good
statistical methods (data integration that you can have
confidence in)

* Neural networks

* Protein structure and folding - conformational changes in
viruses

* Mapping phenotype to genotype




New Mathematics?

» Brand new maths inspired by a biological problem

» Surprising maths - using existing maths techniques you would
never expect to be appropriate or relevant, or adapting
maths techniques to the scales involved in biology.
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Surprising maths: classification of icosahedral viral capsids

computer model based on crystallographic data

pentamer = cluster of 5 proteins (12)

hexamer = cluster of 6 proteins (3 + 3) (20)

chlorotic cowpea mottle virus
(ccmv)

number of proteins on capsid: 5 x 12 + 6 x 20 = 180

|

number of faces’

 /

number of vertices




Golden rectangles and icosahedra

The icosahedron is a Platonic solid with 20 triangular faces
and 12 vertices

- 2-fold symmetry axis (15 axes)

| * 5-fold symmetry axis (6 axes)

1
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Caspar-Klug classification

T = h® + hk + k?, h,k € NUJ{0}
T =1,3,4,7,9,12,13, ...

global 3-fold symmetry axis or
local 6-fold symmetry axis




The surface lattices ( Caspar-Klug classification)

12 pentagonal clusters
T=1

: N 12 pentagonal clusters
7 : LKA 20 hexagonal clusters
} LT T=3
— 3 ) i 1;:"
— -":_( } o ! )— ;'\ }_<

12 pentagonal clusters
30 hexagonal clusters
T=4

Viruses following the predicted surface lattices have subsequently been discovered experimentally.
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However...

Not all viruses follow these predictions

Rayment et al. (Nature, 1982) and
Liddington et al. (Nature, 1991) observe
a virus with 72 pentamers

Example:

Cancer-causing viruses, such as Human Papilloma
virus.

It causes cervical cancer which represents 10% of all
cancers in women

All clusters are pentamers, meaning:
1. existence of local 5-fold symmetry axes

2. they can not be modelled via hexagonal
lattices
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Adapted maths: Viral Tiling Theory

Patera and Twarock, 2002

Twarock, 2004
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Tiling of SV40: Rhombs and kites

5-fold axis

Pentamer not located at

5-fold axis
Courtesy K. ElSawy, T. Keef and R. Twarock
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New Maths: 3d implications of non-crystallographic
properties
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Finite crystallographic vs non-crystallographic Coxeter
groups

) ® Finite non-crystallographic Coxeter groups

° ® Symmetry groups of regular polygons
with any number of vertices but 2, 3, 4, 6
(Ex: H2 - pentagons/decagons; order 10);

(A, @) c 7 H3 - icosahedral group, order 120;
(o, @) H4 - order 14400

Q ® generated by reflections

(A @)
’I“a()\) 2(@, Q)

L ® admit a unique affine extension (infinite-dim)

em¢7:%u+¢®

o e application of reflections and translation
by the highest root produces a dense
point set
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Non-dense point sets

2
5-fold rotation by a translation
o- 1 /2 degrees, @ called T
called R

The extended group contains every possible combination of R and T:
R, RR, RRR, RRRR, T, RT, RRT, RRRT, etc...

Q2(n) = {s"(T,R)O :m <n},ne N
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Non-dense point sets

Introduce a cut-off (T only acts n times, reflections are unrestricted) to obtain point sets
S(n) that are subsets of the vertex sets of Penrose tilings.

Qa(n) =4{s"(T,ra,,7a,)0 :m <n} = {Z naa g € NU{0}, Z Ng <N

acd acd

¢ = {+ay, *as, £(a; + Tas),

™ =7+1

1 — 1, o — 647’7r/5

}

:|:(7'Ck1 —+ CVQ), :|:(’7'le1 -+ 7'042)}
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Non-dense point sets

Introduce a cut-off (T only acts n times, reflections are unrestricted) to obtain point sets
S(n) that are subsets of the vertex sets of Penrose tilings.

Q2(n) ={s"(T,70,,7ay)O0 :m <n} = {Zna(x :ne € NU{0}, Zna < n}

acd oaEed

¢ = {+ay, *as, £(a; + Tas),
i(T&l%—&QLZi(T&l%—TOQ)}

™ =74+1

a; =1, ay = /5
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Non-dense point sets

Introduce a cut-off (T only acts n times, reflections are unrestricted) to obtain point sets
S(n) that are subsets of the vertex sets of Penrose tilings.
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n=2 T 0 + 2T 27 (a1 + )
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Non-dense point sets

Introduce a cut-off (T only acts n times, reflections are unrestricted) to obtain point sets
S(n) that are subsets of the vertex sets of Penrose tilings.

Q2(n) ={s"(T,70,,7ay)O0 :m <n} = {Zna(x :ne € NU{0}, Zna < n}
oaEed acd

2
n=2 Than + 27 a; 27 (a1 + )

¢ = {+ay, *as, £(a; + Tas),

72 (01 TR Q2 2T
i(T&l%—&QLZi(T&l%—TOQ)}

T(a1 + ag) 5
T"=7+1

a; =1, ay = /5

Nested decagons and pentagons
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Solving the puzzle of Papovaviridae

The 3d point set of H3 is dense enough to contain the vertices of polyhedra
representing the all-pentamer capsids observed so far.

181 nested shells of radii between 0.236 and 5

icosahedron
R=1.17;

templates

(5-coordinated

vertices) snub cube
R=2.32;

snub dodecahedron
R=3.12;

Courtesy T. Keef and R. Twarock

Keef & Twarock, q.bio.BM/0512047
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Prediction: relative sizes

Predictions are in good agreement with experiments (Kanesashi et al.)
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Prediction: relative sizes

Predictions are in good agreement with experiments (Kanesashi et al.)
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Adapted Maths:Vibrations of viral capsids
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Integrative biology: Prediction of Bonding structure

Trimer interaction Two types of dimer interaction
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Integrative biology: Prediction of Bonding structure

Trimer interaction

Two types of dimer interaction
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Capsid structure : Huge

number of degrees of freedom

vibration of protein

Ex: The capsid protein VP | exhibits 361 residues,
and the capsid of SV40 is formed with 360
such proteins

D =360 x XA x3=129960 xA x 3

Degrees of freedom:

3n

D=PxRxAx3-=
¢ l l spatial d.o.f. per atom

number of proteins

23



Capsid structure : Coarse-Graining

Reduced number of d.o.f.

EINSTEIN SiMPLIFIED

Insight in systematics of capsid dynamics

Each capsid protein is replaced
by its centre of mass calculated
from all its constituent atoms

The equilibrium positions of proteins are taken from the VIPER
website and are assumed to respect icosahedral symmetry

24



Irus

: Rice Yellow Mottle Vi

Typical example

T=3 virus

—~~
wv
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o0
c
.m
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~
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.m
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<
«
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wn
«
O

25

ins positions

tal data on prote

experimen




Potential : Harmonic approximation

o k.
Vizh,z) = S 22 (17 = [79))°

2
a,b=1

spring-mass model

Tab = Tp — Tqg small deviations from equilibrium
. 1 0%V . . : :
7t ) Oz J ]
_:Ub 5 P |CIJ o (xa_xa)(xb_xb )+
b ox (%:b
d? y 0i FU j 07 0 equations of motion for
A2 (xa — g ) + ab(xb — T ) — deviations from equilibrium

lforce matrix whose eigenvalues are the frequencies of the normal modes of
vibration
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Example: Low-frequency spectrum of RYMV

|80 Proteins (9 Per Rice Yellow Mottle Virus (1f2n) spectrum (lowest 40 modes)
1 4 d
triangular face) o ooal esseeiii
0.003
0.002
0.001
. . AAA
-1 1 ’.”’AAA”."
| l 10 20 30 40
6 trivial zero modes

1

T3Pl — g [P+ 4 373F 4 303+ 4404+ 4 5054 v

24 near zero-modes
2[0%'+ 4 It + 5]

recurrent pattern in all Caspar-
Klug viruses
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Why 24?

The vibrations of the icosahedral cage induce vibrations
of the dodecahedral cage

o

e ————

degrees of freedom: 12x 3 =36
non-genuine vibrations: 3 +3 = 6 (rotations + translations of whole capsid)
number of constraints: 30 (springs along edges of icosahedron)
number of zero modes: 36 -6-30=0 stable capsid
DOC!ecahedron The vibrations of the dodecahedral cage induce vibrations

of the icosahedral cage

_|_F3’+_|_F3’— —|—F4++F4_+F5++F5_ (24)

degrees of freedom: 20 x 3 =60
non-genuine vibrations: 3+ 3 = 6 (rotations + translations of whole caspid)
number of constraints: 30 (springs along edges of dodecahedron)

number of zero modes: 60 - 6 - 30 = 24 unstable capsid
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Spectrum within spring-mass model

Icosahedron spectrum Dodecahedron spectrum

3 000000000 S5l $000000000
AAA
3r >h) +000
0 I
2.5
4000
2 1.5+
Y XY 00000
1.5 L -
1r 00000 o
AAA 0.5}
0.5 00000
10 15 20 25 30 35 7W%MW

stable capsid unstable capsid (24 zero-modes)

Map between representations in icosahedron and dodecahedron cases

F(]Mspl - Fl—l— 4+ (FS—i— 4+ F3—) + FB— 4 FS’— 4 F4—|— 4+ F4_ + 2F5—|— + F5_
oy | |
F(zl;g)zl)E _ it 4 (FH + FS—) + 13— 4 FS’— 4 4+ 4 4- 4 o5+ 4 15—
—|—F3/+ i FB/— i F4—|— 4+ F4_ 4+ F5—|— —|—F5_
!
0




Dodecahedron zero mode 3'+
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New Maths
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RAE 2008
Sector Overview UoA 21: Applied Mathematics

Mathematical Biology: The sub-panel noted the continued growth in this area. Strong groups
were present in 13 submissions and many institutions expressed plans to expand their
research in this area; some 13 of the early career researchers were declared in this area. There
is a great breadth of coverage, from biology and medicine right through to ecology and
epidemiology. A number of groups are involved in large, inter-departmental, multi-
disciplinary research efforts. There has been significant growth in applications in medicine.

Scope remains for increased attention to problems which lead to significant advances in
either science or mathematics, or both.
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Centre for Mathematical Biology - Bath University

Biology and Biochemistry Steve Dorus, evolutionary genetics and genomics.

Edward Feil, molecular evolution, recombination and population structure of bacterial pathogens.

Laurence Hurst, evolutionary genetics.

Alex Jeffries, functional genomics, molecular evolution, and bioinformatics.

Robert Kelsh, vertebrate developmental biology, gene regulatory networks, cell migration.

Klaus Kurtenbach, genetic epidemiology and evolutionary ecology of vector-borne zoonoses.

Mike Mogie, understanding the factors favouring the evolution and maintenance of sexual and asexual reproduction.
Alan Rayner, fungi, complexity.

Tamas Szekely, evolutionary biology.

Matthew Wills, macroevolutionary patterns and the fossil record.

Mathematical Sciences Nick Britton, ecology and evolution, reaction-diffusion.

Ben Adams, host-pathogen systems - epidemiology, evolution, diversity.
Merrilee Hurn, Markov chain Monte Carlo methods, including image analysis.
Hartmut Schwetlick, analysis, PDEs, applied mathematics, modelling, numerics.
Gavin Shaddick, statistics, epidemiology.

Vadim Shcherbakov, spatial point processes and interacting particle systems.
Jane White, ecology, epidemiology.

Computer Science Joanna Bryson, understanding natural intelligence, designing intelligent systems.
Mariana De Vos, knowledge representation and reasoning, evolutionary game theory.

Management Neil Allan, disease theory and risk.
Christos loannidis, linear econometric models; non-linear, and long-memory time series dynamic models.

Andreas Krause, networks, agent-based simulations.

Mechanical Engineering William Megill, biomimetics, comparative biomechanics, behavioural ecology, coastal oceanography.
Pharmacy and Pharmacology Begona Delgado-Charro, drug delivery, non-invasive monitoring and pharmacokinetic profiling across the skin.
Physics Dick James, animal aggregation.

Alain Nogaret, spiking semiconductor neurons (experimental).

Suzanne Skevington, psychosocial aspects of HIV/AIDS, depression, exercise, dementia, etc, especially in relation to quality
of life.

Psychology

34


http://www.bath.ac.uk/bio-sci/research/profiles/dorus-s.html
http://www.bath.ac.uk/bio-sci/research/profiles/dorus-s.html
http://www.bath.ac.uk/bio-sci/research/profiles/feil.html
http://www.bath.ac.uk/bio-sci/research/profiles/feil.html
http://www.bath.ac.uk/bio-sci/research/profiles/hurst-l.html
http://www.bath.ac.uk/bio-sci/research/profiles/hurst-l.html
http://www.bath.ac.uk/bio-sci/research/profiles/jeffries.html
http://www.bath.ac.uk/bio-sci/research/profiles/jeffries.html
http://www.bath.ac.uk/bio-sci/research/profiles/kelsh-rn.html
http://www.bath.ac.uk/bio-sci/research/profiles/kelsh-rn.html
http://www.bath.ac.uk/bio-sci/research/profiles/kurtenbach-k.html
http://www.bath.ac.uk/bio-sci/research/profiles/kurtenbach-k.html
http://www.bath.ac.uk/bio-sci/research/profiles/mogie-m.html
http://www.bath.ac.uk/bio-sci/research/profiles/mogie-m.html
http://people.bath.ac.uk/bssadmr/
http://people.bath.ac.uk/bssadmr/
http://www.bath.ac.uk/bio-sci/research/profiles/szekely.html
http://www.bath.ac.uk/bio-sci/research/profiles/szekely.html
http://www.bath.ac.uk/bio-sci/research/profiles/wills-m.html
http://www.bath.ac.uk/bio-sci/research/profiles/wills-m.html
http://www.maths.bath.ac.uk/~nfb/
http://www.maths.bath.ac.uk/~nfb/
http://www.maths.bath.ac.uk/~ba224/
http://www.maths.bath.ac.uk/~ba224/
http://people.bath.ac.uk/masmah/
http://people.bath.ac.uk/masmah/
http://www.maths.bath.ac.uk/~hs218/
http://www.maths.bath.ac.uk/~hs218/
http://people.bath.ac.uk/masgs/
http://people.bath.ac.uk/masgs/
http://people.bath.ac.uk/vs223/
http://people.bath.ac.uk/vs223/
http://www.maths.bath.ac.uk/~kajw/
http://www.maths.bath.ac.uk/~kajw/
http://www.cs.bath.ac.uk/~jjb/
http://www.cs.bath.ac.uk/~jjb/
http://www.bath.ac.uk/management/about/people/500072/
http://www.bath.ac.uk/management/about/people/500072/
http://people.bath.ac.uk/ci200/
http://people.bath.ac.uk/ci200/
http://people.bath.ac.uk/mnsak/
http://people.bath.ac.uk/mnsak/
http://people.bath.ac.uk/enswmm/
http://people.bath.ac.uk/enswmm/
http://www.bath.ac.uk/pharmacy/staff/bdc.shtml
http://www.bath.ac.uk/pharmacy/staff/bdc.shtml
http://people.bath.ac.uk/pysrj/
http://people.bath.ac.uk/pysrj/
http://people.bath.ac.uk/pysarn/
http://people.bath.ac.uk/pysarn/
http://people.bath.ac.uk/hsssms/
http://people.bath.ac.uk/hsssms/
http://www.cs.bath.ac.uk/~mdv/
http://www.cs.bath.ac.uk/~mdv/

Mathematics Institute VWarwick - Mathematical Biology

David Rand: Genetic circuits in clocks, pure and applied dynamical systems

Nigel Burroughs: Mathematical immunology, especially control and regulation of the immune system, graph
theory and phylogenetics, signalling and gene regulation, statistical methods for gene network inference.
Most of my work is a mix of modelling and data analysis.

David Epstein: Phylogenetic tree construction, on the basis of sequence data. Combinatorial, computational and statistical
issues which arise in the study of proteins in cell biology.

Ian Stewart: Pattern formation in networks of dynamical systems, with applications to animal locomotion, neuroscience,
and ecosystems.

Robert MacKay: Dynamical systems, mathematical physics, and complexity science
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Glasgow Department of Mathematics - Mathematical
Biology

Martin Bees: Bioconvection. Biological control of pests. Bacterial pattern formation. Plankton patchiness.
Christina Cobbold: Population dynamics. Spatial Ecology. Evolutionary ecology. Arterial disease.

Nick Hill: Arterial disease. Circulation of blood. Bioconvection. Plant population dynamics. Random walks and
animal movement.

Kenneth Lindsay: Neuron morphology. Neuron function. Spiking neural networks. Point processes and stochastic
differential equations.

Xiaoiu Luo: Arterial disease. Computational Biomechanics. Flow in airways. Fluid/structure interaction (FSI).
Gall bladder diseases. Heart valves.

Ray Ogden: Mechanics of biological tissues. Arteries.

Radostin Simitev: Waves in cardiac tissue.

Tianhai Tian: Genetic regulatory networks. Cell signal transduction pathways. Calcium signalling and regulation.
Stochastic simulation.
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School of Mathematical Sciences Nottingham -
Mathematical Medicine and Biology

Helen Byrne: Growth and treatment of solid tumours, tissue engineering and stem cell biology. Mathematical
tools: nonlinear dynamics, asymptotic analysis, continuum mechanics and multiscale-hybrid modelling.

Stephen Coombes: Role of branching dendrites with active spines on single neuron output. Effect of cannabinoids on emergent
neural network dynamics . Waves and patterns in tissue level models of synaptic and EEG. Mathematical tools: nonlinear
dynamics and statistical physics.

Linda Cummings: Growth and treatment of solid tumours, tissue engineering and stem cell biology. Mathematical
tools: nonlinear dynamics, asymptotic analysis, continuum mechanics and multiscale-hybrid modelling.
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Reidun Twarock: development and application of group theoretical and algebraic methods in mathematical biology, carbon
chemistry and mathematical physics.

Jamie Wood: computational and analytic techniques in statistical mechanics to further our knowledge of the stability and
robustness of natural systems. Flocking or herding behaviour in animals (network rewiring).

Durham University: Biomathematics group

Kasper Peeters: Dynamical processes within the cell. Protein and virus conformational changes.

Bernard Piette: Dynamical processes within the cell. Cytoskeleton.
Anne Taormina: Protein and virus conformational changes.Viral capsid assembly. Construction of DNA cages.

lan Vernon: modelling of intracellular chemical reaction networks as stochastic processes, applying
Bayesian inference to the rate constants of such reaction networks, and the adaptation of
deterministic computer model calibration techniques to the stochastic case, in view of applying

them to systems biology models.

Wojtek Zakrzewski: Dynamical processes within the cell. Cytoskeleton.

New lecturer (October 2009)

38



MSc in Biomathematics %,Durham

Department of Mathematical Sciences University

In partnership with the Biophysical Sciences Institute

Interested in building upon your undergraduate maths to
broaden your horizons and gain experience in working in
an interdisciplinary environment?

Curious to explore novel ways in which Mathematics and
Physics can shape our understanding of fundamental
biological processes?

Eager to become one of the next generation of multi-
faceted scientists whose skills and flair will catalyse
progress in the fast-developing field of Biomathematics?

Holding an undergraduate degree in Mathematics, Natural
Sciences, Engineering or Physics?

Then this one-year Masters degree is for you!

e The course includes:
Courtesy Jahn Attle, Durham Photographic Society

Crystallographic and Non-Crystallographic Groups
Protein Crystallography
Mathematical Virology
Modelling of Macrobiomolecule Dynamics

. . i Regulatory Networks in Biology
BlOthSlCﬁl Sciences Systems Biology and Bayesian Inference
Institut Biological Physics
LS Quantum Mechanics for Biomaterials
Computational Mechanics

Live and study in a beautiful, historic city

You will have opportunities to take an active part in several events organised by the Biophysical
Sciences Institute during the academic year, and to be exposed to a variety of research environments
within the Departments of Biological and Biomedical Sciences, Chemistry, Engineering, Mathematical

Sciences and Physics.

Apply before July 1st for entry in October 2009

www.dur.ac.uk/mathematical.sciences/biomaths/

Contact:

The Postgraduate Admissions Secretary,

Department of Mathematical Sciences,

University of Durham, South Road, Durham DH1 3LE.
Tel: +44 (0)191 334 3050
Email:P.G.Maths@durham.ac.uk
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