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Abstract

We study Skyrmion dynamics in a (2 1)-dimensional Skyrme model. The system contains a dimensionless parameétar
a = 0 corresponding to the O(3) sigma-model. If two Skyrmions collide head-on, then they can either coalesce or scatter—this
depends o and on the incident speedand is affected by transfer of energy to and from the internal vibrational modes of the
Skyrmions. We classify these internal modes and compute their spectrum, for a range of valuespafrticular, we find that
there is a fractal-like structure of scattering windows, analogous to those seen for kink—antikink scatterin diniensions.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction A long-standing prototype is thg system in 14 1
dimensions. Here the soliton is a kink (or antikink),
In this paper, we investigate aspects of the dynamics which possesses a single internal oscillatory mode.
ofthe planar Skyrme system, in which the field configu- If a kink and an antikink approach each other with
ration is amap fronR? to $2. In particular, we examine  |ow relative speedv < vg, then they form a long-
the discrete vibrational modes of statleSkyrmion so- lived ‘breather’ or bion statl0]. (This is not an ex-
lutions. Such modes correspond to relatively long-lived act breather, and eventually decays.) If, on the other
vibrational states. They are of importance for semi- hand, the kink and the antikink approach at high speed
classical quantization (see, for examg, 2] for the v > v1, then they bounce off each other, and each es-
Skyrme cas€22] for the planar-Skyrme case); butour  capes to infinity (the collision is inelastic, with some
interest lies in their effect on the classical dynamics of radiation being emitted). For intermediate impact speed
Skyrmions. vg < v < v1, there is a fractal-like structure of ‘reflec-
tion windows’, with trapping and reflection alternat-
fa +44 191 334 3051 ing [4,3,1] This can be understood in termg of a reso-
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mentioning is that the internal mode can in some sense density is

be ‘extrapolated’ to a hon-infinitesimal dynamical pro- 1ya = - b1

cess, namely a kink—antikink-kink collisigf5]. L=300.9)-(0"¢) = 372" — 5aV(ds), (1)
In this paper, we shall study analogous features for

the (2+ 1)-dimensional Skyrme system. There are sev-

eral significant differences between this case and tha

of kinks. The firstis that two kinks (as opposed to a kink

and an antikink) always repel each other, and there is

no static 2-kink solution; whereas for Skyrmions (with

a suitable choice of potential) static two-Skyrmion so-

lutions do exist. Consequently, it makes sense to study

where Q,,, is the triple scalar producf2,, =$-
t(a#&'s) x (3,4), V a function of¢s, ande andy are
constants.

The boundary condition at spatial infinity s—
(0,0,1) asr — oo, wherer? = x? + y2. A configu-
ration satisfying the boundary condition has an inte-
ger winding number, which we dendtg and which is

Skyrmion—Skyrmion collisions: for head-on collisions, 9'V€N bY
one might expect that there will be a critical spegd 1
such that N = E/ledzx' )

e forimpact speed < vo, the Skyrmions coalesce to 1€ Static energf of a configuration is

form a two-Skyrmion; 1 - - 5 5
e for v > vg, the Skyrmions scatter and each escapes £ = 5/ [(3/'(1)) (0j8) + v(Q12)" + aV(¢3)] d“x.
to infinity;

®3)
and the internal modes should play a role in this The quantity {/«)Y/4 has units of length, and so we
process. shall henceforth fix the length scale by takipg= «.

As we shall see, however, the pic@ure is not qu'ite So we have a system depending on the parameter
as simple as this. The system contains a dimension- 55 well as on the functiol(¢°). The static energy of

less parametex, and the various dynamical features 5 configuration with winding numbeX satisfies the
depend crucially orx. We study numerically how  Bogomolnyi bound8,7]

the spectrum of vibrational modes, and the scatter-
ing behaviour, vary witha. For small «, internal a 1
modes are absent, and the picture is indeed as sug-E > 4n|N| <1+ 2 /_1 VV(9) d¢) : (4)
gested above: coalescence fox vg, and scattering
for v > vg. But for largerqa, a rich spectrum of inter-  Clearly for finite energy we need(1) = 0. In the
nal modes appears, and the scattering behaviour alscasymptotic regiom > 1, the two components; and
becomes more complex. In particular, there is a range ¢> (which are the analogues of the three pion fields
of a within which one sees a fractal-like structure of in the full Skyrme model) satisfy a Klein—Gordon
‘scattering windows’, separated by regions of coales- equation where the ‘pion massi is given bym? =
cence. —aV’(1)/2. Sothe frequenay of radiation is bounded
below bym. Two choices oV (¢) for which the corre-
sponding systems have been investigated in some detalil
2. The planar Skyrme system [17,18,12,23,5hreV(¢) = 1 — pandV(¢) = 1 — ¢?;
we refer to these as Old Baby Skyrme (OBS) and New
The Skyrme system iR?1 is defined as follows. ~ Baby Skyrme (NBS), respective[23]. We shall re-
Let x* = (x°, x1, x%) = (1, x, y) denote the standard strict our attention to these two systems, concentrating
space—-time coordinates; indices are raised and loweredespecially on the NBS case; note that previous work
using the standard Minkowski metric (with signature on semiclassical quantizati¢®2] dealt with the OBS
+ — —). The two spatial coordinates are denot€d case.
The Skyrme field isaunitvectorfieﬁd: (p1, P2, P3), We remark in passing on the— oo limit, which
with [1355 = 1. Its space—time and spatial derivatives amounts to deleting th@,([ﬁf)z term in the Lagrangian
are denote@ué anda,-fgﬁ respectively. The Lagrangian [16]. This system may admit stable solitons. For ex-
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ample, ifV(¢) = 1 — ¢, then there is a solution which
has compact support (i¢% = 1 outside a disc of finite

radius), and which does not saturate the Bogomol'nyi

bound[6]. With V(¢) = (1 — $)2, on the other hand,

one has a smooth static rotationally symmetric solu-

tion with ¢3 = 1 — 2 exp(=r2/2N), which does satu-
rate the Bogomol’'nyi bound. S¢&6] for a more gen-
eral discussion.

The simplest Skyrmion solutions are rotationally
symmetric, or more accurately O(2)-symmetric. Let-

tingr ando represent the usual polar coordinatefdn
we say that a configuratiaf(r, 6) is O(2)-symmetric if

* $3 = ¢3(r) with ¢3(c0) = 1 = |¢3(0)]; and
® 1+ ipo = F(r) exp(iN®) with F(r) real-valued.

Here N is an integer. Note that we necessarily have

F(o0) = 0= F(0). An equivalent definition is to say
that¢ has the ‘hedgehog’ form

$(r, 6) = (sin(f) cosvo), sin(f) sin(N6), cos(f)) ,
®)

where the profile functionf = f(r) is smooth and
real-valued withf(co) = 0 and f(0) = Kx for some

positive integerK. There exist symmetric solutions

with K > 1, but they are unstab[&2]; so we shall re-
strict our attention here to the cake= 1. In this case,
N is the same as the winding numk@) [17]. For the

therefore decomposes into disjoint subspaces corre-
sponding to representations of O(2). We begin, there-
fore, with a brief summary of the irreducible represen-
tations of O(2) in this context.

The group O(2) is generated by the rotatiens-
6 + ¢, which make up SO(2); and the reflectiahs>
—0. It has two 1-dimensional irreducible representa-
tions (+) and (—); and for each positive integer, a
2-dimensional irreducible representatigy), contain-
ing two degenerate modés, +) and(p, —). The cor-
responding perturbationk) of ¢ have the following
form:
(+): 8¢ = (Acos(N6), Asin(N6), B), with A sin f

+ Bcosf = 0;

(=) 8¢ = (—Asin(NB), A cos(No), 0);

(p,+): dp1=Bcos[(N — p)d] + Ccos[(N + p)ol.
3¢2 = BsIin[(N — p)0] + Csin[(N + p)d],
d¢3 = A cos(pb), with (B+C)sinf+Acosf = 0.

(p, =) d¢1=— Bsin[(N—p)b] — Csin[(N+p)6].
8¢ = Bcos[(N — p)6] + C cos[(NV + p)b].
3¢z = —A sin(ph), with (B+C)sinf+A cosf = 0.

Clearly (+) consists of perturbations which maintain

NBS system, there is considerable numerical evidence the hedgehog forngs): the profile of the Skyrmion

that, for eachN, there is a smooth minimal-energy
N-Skyrmion solution, and this solution is O(2)-

symmetric. Fore = 1, the normalized energfy =
E /(47 N) of thisN-Skyrmion for 1< N < 4, obtained
by numerical minimization, is as followgf; = 2.15,
E> =191, E3=1.85, E4=183. (Note that the
Bogomol’'nyi bound(4) is Ex > 1.7854.) SinceEy
is a decreasing function df, we expect Skyrmions

to coalesce; in particular, a low-speed collision of two

one-Skyrmions will result in a single two-Skyrmion.

3. Vibrational modes of the N-Skyrmion

In this section, we study the spectrum of vibrations
about O(2)-symmetric Skyrmion solutions. The set of
all perturbations about a symmetric configuration is a
vector space which is acted on by O(2), and which

changes, but it remains O(2)-symmetric. Are) con-
sists of perturbations which allow(r) to become
complex-valued but preserve its modulus (in other
words, F acquires an-dependent phase). Se-) in-
cludes the zero-modg; + ig2 — exp (ix)(¢1 + i¢2),
where x is a constant phase angle. The other zero-
modes are the translations in space; these form a dou-
bletwhich belongsto the representati@h Apartfrom
shape modes itt), some other particularly significant
positive modes (cfl21,2] for the (3+ 1)-dimensional
Skyrme case) are ‘dipole breather’ modes belonging
to (1), which correspond to the Skyrmion oscillating
from one side to the other; and the ‘splitting mode’ of
the two-Skyrmion into two single Skyrmions, which
belongs to(2).

The spectrum of oscillations around a static solution
will consist of the zero-modes mentioned above (angu-
lar frequencyw = 0); a continuum of radiation modes
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(w > m); a finite number of negative modes {mag-
inary) if the solution is unstable; and a finite, possibly
zero, number of discrete positive modes{Q < m).

We have used two, very different, numerical meth-
ods to compute the vibration spectrum. The first in-
volves deriving the relevant Sturm-Liouville equation
(in r) for each of the classest), (—), (1), (2),...;
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e N =2: a shape mode witkb = 0.519; a dipole
breather doublet withh = 0.613; a splitting doublet
with @ = 0.398; and two further doublets (one(®)
with w = 0.909 and one ig3) with w = 0.912). See
Fig. 3

this is then solved using a Chebyshev spectral method.4. Skyrmion—Skyrmion scattering
This method can be used for unstable as well as stable

solutions. The second method involves a fulk{2)-

dimensional simulation of the field equations, and only
works for vibrations about stable solutions. The proce-
dure is to construct a static Skyrmion (by relaxation),
putin a perturbation, solve the time evolution for along
time interval, extract a time-series by sampling the field

In the NBS system, solitons attract each other, and
the lowest-energyW = 2 configuration corresponds to
two superimposed solitons. This means that if two soli-
tons are released from rest at finite separation, they
slowly move towards each other to form a large lump.
When simulating this numerically, we see that after the

at some point in space, and finally Fourier-analyse this scattering, the solitons emerge af 9but their mutual

data. See, for example, R§2], where this method was
used for the (3+ 1)-dimensional Skyrme system. The
results of the two methods are consistent.

Let us now look at the internal modes of the one-
Skyrmion in both the OBS and NBS systems. The
results are summarized iRig. 1, where the modes
can be seen ‘peeling off’ the bottom of the contin-
uum band ag increases. For the OBS system (where
m? = «/2), there are no internal modesiif< 1. The
first mode to appear belongsb), followed by modes
in (2), (—) and(+) in that order. For the NBS system
(wherem? = «), the first mode (again ifl)) appears
ata ~ 0.27, followed by a mode if+) (ata ~ 0.30).
The latter crosses over the formeroats 0.31; but at
a ~ 1.2, the modes cross again, and thhe mode has
the lower frequency fax > 1.2. The number of modes
grows quite rapidly withw.

In the OBS system, the two-Skyrmion is stable; for
all« > 0, it has a discrete positive mode(®), corre-
sponding to the breakup of the two-Skyrmion into two
single Skyrmions (‘splitting mode’). A& increases,
more positive modes appear. The three-Skyrmion in
the OBS system is unstallEr]; there is always a neg-
ative mode, which belongs t?). From now on, we
consider the NBS system only.

Forthe NBS system withh = 1, the positive discrete
modes of the one-Skyrmion and the two-Skyrmion are
as follows:

e N = 1:ashape mode (if#)) with » = 0.806; and
adipole breather doubletin (id)) with w = 0.834.
See the upper-right-hand diagranmFig. 1

attraction slows them down and forces them to move
back towards each other. They then merge again and
scatter in their initial direction, but stop again and keep
oscillating back and forth. As the interaction is non-
elastic, the lumps emit waves that carry away some
energy. As a result, the amplitude of oscillation slowly
decreases, and the configuration converges toward the
two-soliton static configuration.

Ifthe solitons are senttoward each other with a large-
enough speed, they momentarily merge to form a large
lump, and then two lumps emerge at°%hd move
away from each other. If the initial speed is too small,
then these solitons do not escape from their mutual
attraction, and they eventually form a single lump after
several oscillations.

This behaviour suggests that there is a critical speed
below which the solitons merge, and above which they
escape. IrFig. 2 we present the dependence of the
critical speedv (defined below) on the coupling con-
stanta. In the limit « — O, the system is the O(3)
sigma model, and a head-on collision always results
in 90° scattering[14,13] In other words, we expect
thatv — 0 asa — 0, and this is consistent with the
numerical results. For smad, the Skyrmions scat-
ter very easily; but ag increases towards.®7, they
have an increasing tendency to coalesce. In a collision
between Skyrmions, any positive discrete (localized)
mode of the Skyrmion will inevitably be excited (cf.
[3,9]); this removes translational kinetic energy from
each Skyrmion, and transfers it to an internal excita-
tion which eventually decays into radiation. So when
the shape mode appearsdat 0.27), it very efficiently
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OBS 1-Skyrmion: Internal Modes NBS 1-Skyrmion: Internal Modes
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Fig. 1. Frequencies of the internal modes of the one-Skyrmion.

removes translational energy from the Skyrmions, and  If one looks closely aFig. 2, one notices that the
leaves them in a bound state. There is a partial effect curve folds back around the valae= 0.263. In that
even belowr = 0.27, which can perhaps be understood region, the solitons merge when the initial speed is ei-
in terms of a quasimode (cf9]): an ‘internal’ mode ther below the lowest value or above the largest one.
which is embedded within the continuum spectrum, The numerical simulations from whidfig. 2was ob-
and which becomes the shape mode whéncreases  tained involve the head-on collision of two Skyrmions
beyond 027. in their most attractive mutual orientation (the ‘at-
On the other hand, far larger than about.@, the tractive channel’), and with each having equal initial
critical speed decreases. Between these two extremesspeed. The critical speadplotted inFig. 2is defined
there is a region where the critical speed is close to the as the speed below which the solitons always merge,
speed of light (1 in our units); but as scattering two except for the top part of the folding where it is de-
solitons numerically at large speed is quite difficult, fined as the speed above which the solitons always
we were not able to determine the critical speed when merge.
0.27 < a < 0.7, or determine for which value afthe When is slightly smaller than @63, and when the
9(° scattering never takes place. initial speed is slightly above the lower critical value,
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Fig. 2. Critical velocity as a function ef for the NBS model.

we observed numerically that the scattering behaviour
of the solitons can have a complex pattern for some
values ofx. Instead of simply escaping or merging, the
solitons swing back and forth as if they were slowly
merging, but eventually they escape af @0 in the
direction from which they came.

To describe this process, we can define the ‘scat-
tering number’ as the number of times the two soli-
tons scatter at 90 and define it as zero when the
solitons coalesce. So when the initial speed is very
large, the scattering number is 1 (except for the nar-
row range ofa around 026, where high-speed soli-

tons coalesce). When the scattering number is even,

the solitons scatter in the direction they came from;
and when it is odd, they scatter at°9@-or a range
of values ofw, the scattering number is very sensitive
to the initial velocity, and exhibits a fractal-like struc-
ture.

Table 1
Scattering numbers for a rangewandv

B.M.A.G. Piette, R.S. Ward / Physica D 201 (2005) 45-55

The structure of the data is describedTable 1,
where we present the scattering number for various
ranges of initial speed, sampled at regular intervals.
Each digit in the large strings corresponds to the scat-
tering number for a given value of The 5th and last
string (which are split over two lines) should be read
as a single merged string. The first digit in each string
corresponds to the smallest valuevafFirst v’ in the
table), while the last digit corresponds to the largest
value ofv (‘Last v’ in the table). The increment size in
v is given in the third column.

One clearly sees that for the valuescofjiven in
Table 1 there is no sharp transition between scatter-
ing and the merging of solitons, but that instead there
are several windows of initial speed where the soli-
tons scatter several times before escaping &t@®0
in their original directions; these windows are sepa-
rated by regions where the solitons do not escape. As
the scattering number increases, the width of the win-
dows become smaller, but the structure at any scale
seems to be similar. One can also sedable 1that
often, at the edge of a given window, there is a nar-
rower window for a larger scattering number; this is
not always the case, but we have observed this many
times.

We should also point out that the scattering patterns
giveninTable Iform a small subset of the range of scat-
tering velocities that we have investigated numerically.
We have observed a fractal structure in the scattering
data for the range of speed contained between the lower
and upper branch of the critical speedHiy. 2when
a was just below 6. Whena = 0.24, the windows
were not as rich in structure as fer= 0.26, exhibit-
ing large gaps of coalescence between the regions of
multiple scattering.

o Firstv vincrement Lasb Scattering numbers

0.24 0.4705 0.0001 0.477 002222000000000222005000022000003220000200002002002030200000111111

0.24 04721 0.00001 0.4726 222222222222222220000000000000000500000555500000000

0.24 0.472428 0.000001 0.4725 0555555555000000000000000000000000000000000000000700000000000055555555555

0.25 0.49 0.0001 0.497 22222200000000002222200000000222250000022250000222000020002200200202002

0.25 0.493241 0.000001 0.49332 2222200000000000000000500000000050000000500000000000550555550000004005504
3333000

0.26  0.4905 0.0005 0.53 00002022203002000002222200000002220000022230002200002000220230202022200

0.26 0.5156 0.000005 0.5159 2222222222222222222222222222220000000003000300000003330000000

0.26 0.51578 0.000001 0.515872  0300000000000333400000000000000000333333040000000000000000000000000000

00005333333333333334040
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5. Scattering and vibration modes
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sions forsé is that the modep)+ for the one-Skyrmion
becomes the mod@p)» for the two-Skyrmion, as the

Our observations are analogous to those describedtwo Skyrmions merge. For example, the dipole breather

by Anninos et al[1] in their study of kink—antikink
scattering in the* model in one dimension, where the

mode (1)1 for each incident one-Skyrmion becomes
the splitting mode2), for the two-Skyrmion, as the

scattering also exhibits windows of scattering separated Skyrmions coalesce. More precisely, the lowest state

by regions where a long-lived bound state is formed.

It is interesting to note that ifrig. 2 the value
a = 0.263 where the critical speed curls over is just
below the valuex = 0.265 where the breather mode
(1) emerges from the continuum band. Moreover, the
curve for the shape mode-) emerges ai = 0.295,
and the curves for the two modes crosgrat 0.310.
See lower diagram ifig. 1

We also notice frontig. 3that a splitting mode in
(2) (although not the lowest one) peels off from the
continuum band at = 0.62, and this is approximately
the value (cfFig. 2) above which the solitons can scat-
ter, suggesting that this splitting mode is implicated in
the largea part of Fig. 2

To understand the relation between the vibration

for (1)1 which is the translation mode of the one-
Skyrmion becomes the lowest-state of B mode.
The first excited state of thd)1 mode, shown iifrig. 1
transforms into the first excited state for 22> mode,
which (as shown irfFig. 3) crosses the mass threshold
arounde = 0.62.

Moreover, due to the nonlinear nature of the model,
the different vibration modes exchange some energy
during the scattering. In particular, this means that some
kinetic energy is transferred from the translation mode
into the various vibration modes, and the reverse is also
true when the two Skyrmions try to escape from their
mutual attraction.

During the scattering, the vibration modes that are
excited vary with time and depend on the overlap be-

modes and the scattering of solitons, we must first re- tween the Skyrmions; butwhen the initial speed is close
alise that during the scattering process the solitons areto the critical value, we observed that the vibration pe-
excited in various vibration modes. When they are suf- riod is less than the characteristic time of scattering,
ficiently far apart, each lump can be considered as a implying that the system has plenty of time to oscil-

single Skyrmion; while when they overlap, they form a
configuration close to th& = 2 rotationally symmet-
ric solution. Between these two configurations, they

late.
We should also point out that all the scatterings
that we have simulated numerically involved head-on

form intermediate states that extrapolate between the collisions in the attractive channfl8], which means

two extreme configurations, but that are difficult to de-

scribe. One thing that can be inferred from the expres-

NBS 2-Skyrmion: Internal Modes
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Fig. 3. Thefrequenciesoftheinternal modes ofthe- 2 Skyrmion.

in particular thatsz was invariant under the rotation
0 — 6 + z. Thisimplies that the mod€g) of the two-
Skyrmion, withp odd, were never excited.

We thus see that whem < 0.265, there is no in-
ternal mode to excite the one-Skyrmion, and the os-
cillation of the Skyrmions induced by their scattering
is radiated away. Wheam > 0.265, the(1), is excited
during the scattering and it can absorb progressively
larger amounts of energy. As the Skyrmions merge,
this mode transforms into the first excité2)> mode
which is well above the mass threshold. The energy
is thus radiated away and the scattering does not take
place. Whenr > 0.65, the(2)» is a bound state, hence
the energy is not radiated away and thé S6attering
becomes possible again.

To try to predict the critical velocity shown iRig.

2, we now consider a simple model for the two-soliton
scattering process, namely the dynamics of two equal
masses, connected by a spring, on a cone. To do this,
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we use the technique described in detafllih,20,19] where

The first observation is that when the two Skyrmions k

are in the attractive channel, the configuration has a Vi(x) = E(x — Xo)%,

central reflection symmetry around the centre of mass.

As the Skyrmions are indistinguishable, and as the y,(y) = _L_ (7)
centre of mass (which we choose to be the origin of 2 coshfx)

the coordinate system) does not move, we can iden- The constantd anda are coefficients, depending an

tify the points that are diametrically opposite each \yhich we will choose to model the two-soliton scatter-
other with respect to the origin. If we describe each ing as closely as possible. The parametgdescribes
Skyrmion as a moving point-like particle, using any ine size of the soliton; we will tak&o = 1. The pa-
momentum-conserving dynamics, then the two parti- yameter, is half the mass of a Skyrmion, so that the
cles will remain diametrically opposite each other. Us- masses of the two particles add up to the mass of a
ing this identification of opposite points, the dynamics Skyrmion. For simplicity we have takel, = 0.5 in

of a pair of Skyrmions reduces to the dynamics of a \yhat follows. Notice that the depth df is A/2; so
single particle moving on a half plane, say< 0 with given that there are two degrees of freedonrcorre-

the half-lines¢ = 0, y > 0)and ¢ =0, y < 0)iden-  gponds to the depth of the two-Skyrmion bound-state
tified. Topologically, this corresponds to the motion of - hotential. The equations of motion are

a single particle on a cone. _

If the two Skrymions do not interact, then each par- M X1 = k(X1 — X2) — AL smh(le)’
ticle moves freely on the cone; and if sent towards each 2 costf(rX1)
other, they move to the top of the cone and emergeon A sinh(L X2)
the other side unaffected. If one unfolds the cone onto MxX2 = k(X1 — X2) — > cosRG.X)
the plane, this corresponds to°%attering of the two 2 costt(aX2)
Skyrmiong[11]. The value ofk is chosen so that the frequency of os-

To model the scattering process in our system, we cillation betweenX; and X is the frequency of the
use an improved version of this model, describing each shape mod¢+-), namelyk/M, = w4y,. The equation
Skyrmion by a pair of points collinear with the ori-  w(y, = 0.30+ 0.63(1— exp(-1.58x)) gives a good
gin and connected by a spring which models a single approximation. Note that our simple model does not
internal mode of oscillation. Moreover, to model the distinguish between the different vibration modes; as
attraction between the two Skyrmions, the two masses the frequencies of thet-) and(1) modes are very sim-
are made to evolve in a central potential, describing ilar, we have taken the former for convenience.
the binding energy of two Skyrmions. Each mass is  The parameterst and A in the potentialV, are
equal to half the mass of a Skyrmion, and the massesdetermined as follows. FoA we take the depth of
are positioned so that the line joining them crosses the the potential, namel = 1 — E,/(2E1), where E3
origin, i.e. the tip of the cone. In this picture, the two is the energy of the two-soliton bound state affl
particles modelling a Skyrmion still scatter with their the energy of a single soliton. Irig. 4 we show the
mirror image; and motion over the tip of the cone again «-dependence of the binding enerd@yg/(2E1). The
corresponds to 9Gscattering once the cone is unfolded curve is well-approximated by the relatiéh/(2E1) =
onto the plane. So in the model below, we only describe 1+ 0.12(exp&3.88x) — 1) + 0.01x. For A, we im-
one Skyrmion made of two point-particles; the second pose the condition that the frequency of the small-
Skyrmion can then be obtained as the central image of amplitude oscillations forV, is equal to the fre-
this particle-pair. quency of the lowest splitting mode for the two-

The Lagrangian for this system is soliton bound state),. That frequency is well ap-

proximated by the expressian,p, = 0.2+ 0.2(1—

exp(—3.87%w)) — 0.015x. We therefore haveir =

L= 20052 + MX2) — va(Xa — X2) — Va(Xa) (2),(2Miot/ A)Y/?, whereMior = 2M. _
2 To be more realistic, we should have one oscillator
— Va(X2), (6) for each vibration mode. One quick way to approxi-

(8)
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Fig. 4. a-dependence of the binding energy of two Skyrmions. Fig. 5. Critical speed for the two-point model; one oscillator (bottom
curve) and two oscillators (top curve).
mate this is to haveg decoupled oscillators which, The drop in the critical velocity for @7 < o < 0.3
to first approximation, have the same frequency. This whenno = 2 (top curve inFig. 5) is caused by a phase
will correspond to taking 2o points of mass\,/no resonance between the oscillation of the system in the
linked in pairs by springs with elastic constaitio. potential well and the oscillation of the rigid oscillator.

To preserve the total binding energy of the system we Similar phenomena were also observed when taking a
must also divideA by no. This is actually equivalentto  different value forXj.
solving Eq.(8), after multiplyingi by n(l)/z. Fig. 1suggests that our toy model predicts the crit-
To simulate a scattering, we set up the two massesical speed reasonably well for large valuesxoff we
so that they are separated by their equilibrium distance take ng somewhere between 1 and 2. For small val-
Xo, and so that their centre of mass is locatedat 10. ues ofe, the critical speed is too small by roughly a
We then send both of them with the same speed towardsfactor of 2. The predicted critical speed is also far too
the origin. The motion of the masses in the potential small in the range @ < @ < 0.7, but the position of
well stretches the string and results in some transfer of the maximum is surprisingly in the correct regiorof
translation energy into the oscillator. The initial speed The main success of our simple model is in explain-
therefore has to be large enough for the two masses toing how the existence of a critical speed for 3¢at-
go overthetip of the cone and escape towargs—oo. tering comes from the fact that some kinetic energy is
Ifthe speedistoo small, the two masses oscillate aroundtransferred into the vibration modes of the system. It
the tip of the cone. also shows that the dependence of the critical speed on
Using these parameters, we have determined the« is related to the depth of the potential well between
critical velocity forng = 1 and 2, as shown iRig. 5. It the two Skyrmions. To explain the other features of the
produces the correct shape of curve, i.e. one that lookscurve shown irFig. 2, one must analyse how the vi-
like the inverse of a Morse potential, but the actual crit- bration modes for one-Skyrmions and two-Skyrmions
ical velocities are too small. transform into one another, and consider when these
This is explained by the fact our simple model does modes are above or below the mass threshold.
nottake into accountthe radiation of energy. Otherwise, = When« < 0.265, our simple model does not re-
the shape of the curve is more or less explained by ally apply, as the one-Skyrmion does not have any
the shape of the binding energy of two Skyrmions, as genuine vibration mode, although the two-Skyrmion
shown inFig. 4 Where the well is deepest, around does. When 265 < « < 0.62, the(1); mode trans-
o = 1, more energy is transferred into the oscillator, forms into the(2), which radiates its energy away and
and the critical speed is high. makes the 90scattering difficult or impossible.
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Whena > 0.62, none of the major modes excited two-Skyrmions solutions. When the deformation mode
during the scattering radiates energy away. So someof the one-Skyrmion transform into the excited split-
of the energy stored in these vibration modes can be ting mode of the two-Skyrmion, and when this mode is
converted back into the translation mode, and the 90 above the mass threshold, a large amount of energy is
scattering can happen at a relatively small speed. radiated and the 9Gscattering is not possible. We also

To predict the critical speed more accurately, one described a simple dynamical model which shows that
would have to take into account all the modes that are the value of the critical speed is related to the binding
excited in the process, as well as how they are coupled energy of the two-Skyrmion solution.
together, and coupled to the deformation of the system
during the scattering. This goes well beyond what we
can expect from such a simple model. One could con- Acknowledgement
sider using a genuine geodesic approximation for the
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