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Planar Skyrmions: vibrational modes and dynamics
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Abstract

We study Skyrmion dynamics in a (2+ 1)-dimensional Skyrme model. The system contains a dimensionless parameterα, with
α = 0 corresponding to the O(3) sigma-model. If two Skyrmions collide head-on, then they can either coalesce or scatter—this
depends onα and on the incident speedv, and is affected by transfer of energy to and from the internal vibrational modes of the
Skyrmions. We classify these internal modes and compute their spectrum, for a range of values ofα. In particular, we find that
there is a fractal-like structure of scattering windows, analogous to those seen for kink–antikink scattering in 1+ 1 dimensions.
© 2004 Elsevier B.V. All rights reserved.
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. Introduction

In this paper, we investigate aspects of the dynamics
f the planar Skyrme system, in which the field configu-
ation is a map fromR2 toS2. In particular, we examine
he discrete vibrational modes of staticN-Skyrmion so-
utions. Such modes correspond to relatively long-lived
ibrational states. They are of importance for semi-
lassical quantization (see, for example,[21,2] for the
kyrme case,[22] for the planar-Skyrme case); but our

nterest lies in their effect on the classical dynamics of
kyrmions.
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A long-standing prototype is theφ4 system in 1+ 1
dimensions. Here the soliton is a kink (or antikin
which possesses a single internal oscillatory m
If a kink and an antikink approach each other w
low relative speedv < v0, then they form a long
lived ‘breather’ or bion state[10]. (This is not an ex
act breather, and eventually decays.) If, on the o
hand, the kink and the antikink approach at high sp
v > v1, then they bounce off each other, and each
capes to infinity (the collision is inelastic, with so
radiation being emitted). For intermediate impact sp
v0 < v < v1, there is a fractal-like structure of ‘refle
tion windows’, with trapping and reflection altern
ing [4,3,1]. This can be understood in terms of a re
nant energy exchange between the translational m
of the kink and its internal oscillation[4]. Also worth
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mentioning is that the internal mode can in some sense
be ‘extrapolated’ to a non-infinitesimal dynamical pro-
cess, namely a kink–antikink-kink collision[15].

In this paper, we shall study analogous features for
the (2+ 1)-dimensional Skyrme system. There are sev-
eral significant differences between this case and that
of kinks. The first is that two kinks (as opposed to a kink
and an antikink) always repel each other, and there is
no static 2-kink solution; whereas for Skyrmions (with
a suitable choice of potential) static two-Skyrmion so-
lutions do exist. Consequently, it makes sense to study
Skyrmion–Skyrmion collisions: for head-on collisions,
one might expect that there will be a critical speedv0
such that

• for impact speedv < v0, the Skyrmions coalesce to
form a two-Skyrmion;

• for v > v0, the Skyrmions scatter and each escapes
to infinity;

and the internal modes should play a role in this
process.

As we shall see, however, the picture is not quite
as simple as this. The system contains a dimension-
less parameterα, and the various dynamical features
depend crucially onα. We study numerically how
the spectrum of vibrational modes, and the scatter-
ing behaviour, vary withα. For small α, internal
modes are absent, and the picture is indeed as sug-
gested above: coalescence forv < v0, and scattering
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density is

L = 1
2(∂µ�φ) · (∂µ�φ) − 1

4γ�µν�
µν − 1

2αV (φ3), (1)

where �µν is the triple scalar product�µν = �φ ·
(∂µ�φ) × (∂ν�φ), V a function ofφ3, andα and γ are
constants.

The boundary condition at spatial infinity is�φ →
(0,0,1) asr → ∞, wherer2 = x2 + y2. A configu-
ration satisfying the boundary condition has an inte-
ger winding number, which we denoteN, and which is
given by

N = 1

4π

∫
�12 d2x. (2)

The static energyE of a configuration is

E = 1

2

∫ [
(∂j �φ) · (∂j �φ) + γ(�12)

2 + αV (φ3)
]

d2x.

(3)

The quantity (γ/α)1/4 has units of length, and so we
shall henceforth fix the length scale by takingγ = α.
So we have a system depending on the parameterα,
as well as on the functionV (φ3). The static energy of
a configuration with winding numberN satisfies the
Bogomol’nyi bound[8,7]

E ≥ 4π|N|
(

1 + α

2

∫ 1

−1

√
V (φ) dφ

)
. (4)
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or v > v0. But for largerα, a rich spectrum of inte
al modes appears, and the scattering behaviou
ecomes more complex. In particular, there is a ra
f α within which one sees a fractal-like structure

scattering windows’, separated by regions of coa
ence.

. The planar Skyrme system

The Skyrme system inR2+1 is defined as follows
et xµ = (x0, x1, x2) = (t, x, y) denote the standa
pace–time coordinates; indices are raised and low
sing the standard Minkowski metric (with signat
− −). The two spatial coordinates are denotedxj.

he Skyrme field is a unit vector field�φ = (φ1, φ2, φ3),
ith �φ · �φ = 1. Its space–time and spatial derivati
re denoted∂µ�φ and∂j �φ respectively. The Lagrangia
learly for finite energy we needV (1) = 0. In the
symptotic regionr 
 1, the two componentsφ1 and
2 (which are the analogues of the three pion fi

n the full Skyrme model) satisfy a Klein–Gord
quation where the ‘pion mass’m is given bym2 =
αV ′(1)/2. So the frequencyω of radiation is bounde
elow bym. Two choices ofV (φ) for which the corre
ponding systems have been investigated in some
17,18,12,23,5]areV (φ) = 1 − φ andV (φ) = 1 − φ2;
e refer to these as Old Baby Skyrme (OBS) and N
aby Skyrme (NBS), respectively[23]. We shall re
trict our attention to these two systems, concentra
specially on the NBS case; note that previous w
n semiclassical quantization[22] dealt with the OBS
ase.

We remark in passing on theα → ∞ limit, which
mounts to deleting the (∂µ�φ)2 term in the Lagrangia

16]. This system may admit stable solitons. For
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ample, ifV (φ) = 1 − φ, then there is a solution which
has compact support (i.e.φ3 ∼= 1 outside a disc of finite
radius), and which does not saturate the Bogomol’nyi
bound[6]. With V (φ) = (1 − φ)2, on the other hand,
one has a smooth static rotationally symmetric solu-
tion with φ3 = 1 − 2 exp(−r2/2N), which does satu-
rate the Bogomol’nyi bound. See[16] for a more gen-
eral discussion.

The simplest Skyrmion solutions are rotationally
symmetric, or more accurately O(2)-symmetric. Let-
tingr andθ represent the usual polar coordinates onR2,
we say that a configuration�φ(r, θ) is O(2)-symmetric if

• φ3 = φ3(r) with φ3(∞) = 1 = |φ3(0)|; and
• φ1 + iφ2 = F (r) exp(iNθ) with F (r) real-valued.

HereN is an integer. Note that we necessarily have
F (∞) = 0 = F (0). An equivalent definition is to say
that �φ has the ‘hedgehog’ form

�φ(r, θ) = (sin(f ) cos(Nθ), sin(f ) sin(Nθ), cos(f )) ,

(5)

where the profile functionf = f (r) is smooth and
real-valued withf (∞) = 0 andf (0) = Kπ for some
positive integerK. There exist symmetric solutions
with K > 1, but they are unstable[12]; so we shall re-
strict our attention here to the caseK = 1. In this case,
N is the same as the winding number(2) [17]. For the
NBS system, there is considerable numerical evidence
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therefore decomposes into disjoint subspaces corre-
sponding to representations of O(2). We begin, there-
fore, with a brief summary of the irreducible represen-
tations of O(2) in this context.

The group O(2) is generated by the rotationsθ �→
θ + c, which make up SO(2); and the reflectionsθ �→
−θ. It has two 1-dimensional irreducible representa-
tions 〈+〉 and〈−〉; and for each positive integerp, a
2-dimensional irreducible representation〈p〉, contain-
ing two degenerate modes〈p,+〉 and〈p,−〉. The cor-
responding perturbationsδ�φ of �φ have the following
form:

〈+〉 : δ�φ = (A cos(Nθ), A sin(Nθ), B),with A sinf

+B cosf = 0;

〈−〉 : δ�φ = (−A sin(Nθ), A cos(Nθ),0);

〈p,+〉 : δφ1=B cos[(N − p)θ] + C cos[(N + p)θ],

δφ2 = B sin[(N − p)θ] + C sin[(N + p)θ],

δφ3 = A cos(pθ), with (B+C) sinf+A cosf = 0.

〈p,−〉 : δφ1= − B sin[(N−p)θ] − C sin[(N+p)θ],

δφ2 = B cos[(N − p)θ] + C cos[(N + p)θ],

δφ3 = −A sin(pθ), with (B+C) sinf+A cosf = 0.

Clearly 〈+〉 consists of perturbations which maintain
the hedgehog form(5): the profile of the Skyrmion
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hat, for eachN, there is a smooth minimal-ener
-Skyrmion solution, and this solution is O(2
ymmetric. Forα = 1, the normalized energyEN =
/(4πN) of thisN-Skyrmion for 1≤ N ≤ 4, obtained
y numerical minimization, is as follows:E1 = 2.15,
2 = 1.91, E3 = 1.85, E4 = 1.83. (Note that th
ogomol’nyi bound(4) is EN ≥ 1.7854.) SinceEN

s a decreasing function ofN, we expect Skyrmion
o coalesce; in particular, a low-speed collision of
ne-Skyrmions will result in a single two-Skyrmion

. Vibrational modes of theN-Skyrmion

In this section, we study the spectrum of vibrati
bout O(2)-symmetric Skyrmion solutions. The se
ll perturbations about a symmetric configuration
ector space which is acted on by O(2), and wh
hanges, but it remains O(2)-symmetric. And〈−〉 con-
ists of perturbations which allowF (r) to become
omplex-valued but preserve its modulus (in o
ords,F acquires anr-dependent phase). So〈−〉 in-
ludes the zero-modeφ1 + iφ2 �→ exp (iχ)(φ1 + iφ2),
hereχ is a constant phase angle. The other z
odes are the translations in space; these form a
let which belongs to the representation〈1〉. Apart from
hape modes in〈+〉, some other particularly significa
ositive modes (cf.[21,2] for the (3+ 1)-dimensiona
kyrme case) are ‘dipole breather’ modes belon

o 〈1〉, which correspond to the Skyrmion oscillat
rom one side to the other; and the ‘splitting mode
he two-Skyrmion into two single Skyrmions, whi
elongs to〈2〉.

The spectrum of oscillations around a static solu
ill consist of the zero-modes mentioned above (a

ar frequencyω = 0); a continuum of radiation mod
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(ω > m); a finite number of negative modes (ω imag-
inary) if the solution is unstable; and a finite, possibly
zero, number of discrete positive modes (0< ω < m).

We have used two, very different, numerical meth-
ods to compute the vibration spectrum. The first in-
volves deriving the relevant Sturm–Liouville equation
(in r) for each of the classes〈+〉, 〈−〉, 〈1〉, 〈2〉, . . .;
this is then solved using a Chebyshev spectral method.
This method can be used for unstable as well as stable
solutions. The second method involves a full (2+ 1)-
dimensional simulation of the field equations, and only
works for vibrations about stable solutions. The proce-
dure is to construct a static Skyrmion (by relaxation),
put in a perturbation, solve the time evolution for a long
time interval, extract a time-series by sampling the field
at some point in space, and finally Fourier-analyse this
data. See, for example, Ref.[2], where this method was
used for the (3+ 1)-dimensional Skyrme system. The
results of the two methods are consistent.

Let us now look at the internal modes of the one-
Skyrmion in both the OBS and NBS systems. The
results are summarized inFig. 1, where the modes
can be seen ‘peeling off’ the bottom of the contin-
uum band asα increases. For the OBS system (where
m2 = α/2), there are no internal modes ifα < 1. The
first mode to appear belongs to〈1〉, followed by modes
in 〈2〉, 〈−〉 and〈+〉 in that order. For the NBS system
(wherem2 = α), the first mode (again in〈1〉) appears
atα ≈ 0.27, followed by a mode in〈+〉 (atα ≈ 0.30).
The latter crosses over the former atα ≈ 0.31; but at
α s
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• N = 2: a shape mode withω = 0.519; a dipole
breather doublet withω = 0.613; a splitting doublet
withω = 0.398; and two further doublets (one in〈2〉
withω = 0.909 and one in〈3〉 withω = 0.912). See
Fig. 3.

4. Skyrmion–Skyrmion scattering

In the NBS system, solitons attract each other, and
the lowest-energyN = 2 configuration corresponds to
two superimposed solitons. This means that if two soli-
tons are released from rest at finite separation, they
slowly move towards each other to form a large lump.
When simulating this numerically, we see that after the
scattering, the solitons emerge at 90◦, but their mutual
attraction slows them down and forces them to move
back towards each other. They then merge again and
scatter in their initial direction, but stop again and keep
oscillating back and forth. As the interaction is non-
elastic, the lumps emit waves that carry away some
energy. As a result, the amplitude of oscillation slowly
decreases, and the configuration converges toward the
two-soliton static configuration.

If the solitons are sent toward each other with a large-
enough speed, they momentarily merge to form a large
lump, and then two lumps emerge at 90◦ and move
away from each other. If the initial speed is too small,
then these solitons do not escape from their mutual
attraction, and they eventually form a single lump after
s
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t
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b ed)
m cf.
[ om
e ita-
t hen
t

≈ 1.2, the modes cross again, and the〈1〉 mode ha
he lower frequency forα > 1.2. The number of mode
rows quite rapidly withα.

In the OBS system, the two-Skyrmion is stable;
ll α > 0, it has a discrete positive mode in〈2〉, corre-
ponding to the breakup of the two-Skyrmion into t
ingle Skyrmions (‘splitting mode’). Asα increases
ore positive modes appear. The three-Skyrmio

he OBS system is unstable[17]; there is always a ne
tive mode, which belongs to〈2〉. From now on, we
onsider the NBS system only.

For the NBS system withα = 1, the positive discre
odes of the one-Skyrmion and the two-Skyrmion
s follows:

N = 1: a shape mode (in〈+〉) with ω = 0.806; and
a dipole breather doublet in (in〈1〉) with ω = 0.834.
See the upper-right-hand diagram inFig. 1.
everal oscillations.
This behaviour suggests that there is a critical sp

elow which the solitons merge, and above which
scape. InFig. 2, we present the dependence of
ritical speedv (defined below) on the coupling co
tantα. In the limit α → 0, the system is the O(
igma model, and a head-on collision always res
n 90◦ scattering[14,13]. In other words, we expe
hat v → 0 asα → 0, and this is consistent with t
umerical results. For smallα, the Skyrmions sca

er very easily; but asα increases towards 0.27, they
ave an increasing tendency to coalesce. In a coll
etween Skyrmions, any positive discrete (localiz
ode of the Skyrmion will inevitably be excited (

3,9]); this removes translational kinetic energy fr
ach Skyrmion, and transfers it to an internal exc

ion which eventually decays into radiation. So w
he shape mode appears (atα = 0.27), it very efficiently
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Fig. 1. Frequencies of the internal modes of the one-Skyrmion.

removes translational energy from the Skyrmions, and
leaves them in a bound state. There is a partial effect
even belowα = 0.27, which can perhaps be understood
in terms of a quasimode (cf.[9]): an ‘internal’ mode
which is embedded within the continuum spectrum,
and which becomes the shape mode whenα increases
beyond 0.27.

On the other hand, forα larger than about 0.7, the
critical speed decreases. Between these two extremes,
there is a region where the critical speed is close to the
speed of light (1 in our units); but as scattering two
solitons numerically at large speed is quite difficult,
we were not able to determine the critical speed when
0.27< α < 0.7, or determine for which value ofα the
90◦ scattering never takes place.

If one looks closely atFig. 2, one notices that the
curve folds back around the valueα = 0.263. In that
region, the solitons merge when the initial speed is ei-
ther below the lowest value or above the largest one.
The numerical simulations from whichFig. 2was ob-
tained involve the head-on collision of two Skyrmions
in their most attractive mutual orientation (the ‘at-
tractive channel’), and with each having equal initial
speed. The critical speedv plotted inFig. 2 is defined
as the speed below which the solitons always merge,
except for the top part of the folding where it is de-
fined as the speed above which the solitons always
merge.

Whenα is slightly smaller than 0.263, and when the
initial speed is slightly above the lower critical value,
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Fig. 2. Critical velocity as a function ofα for the NBS model.

we observed numerically that the scattering behaviour
of the solitons can have a complex pattern for some
values ofα. Instead of simply escaping or merging, the
solitons swing back and forth as if they were slowly
merging, but eventually they escape at 90◦ or in the
direction from which they came.

To describe this process, we can define the ‘scat-
tering number’ as the number of times the two soli-
tons scatter at 90◦, and define it as zero when the
solitons coalesce. So when the initial speed is very
large, the scattering number is 1 (except for the nar-
row range ofα around 0.26, where high-speed soli-
tons coalesce). When the scattering number is even,
the solitons scatter in the direction they came from;
and when it is odd, they scatter at 90◦. For a range
of values ofα, the scattering number is very sensitive
to the initial velocity, and exhibits a fractal-like struc-
ture.

The structure of the data is described inTable 1,
where we present the scattering number for various
ranges of initial speed, sampled at regular intervals.
Each digit in the large strings corresponds to the scat-
tering number for a given value ofv. The 5th and last
string (which are split over two lines) should be read
as a single merged string. The first digit in each string
corresponds to the smallest value ofv (‘First v’ in the
table), while the last digit corresponds to the largest
value ofv (‘Last v’ in the table). The increment size in
v is given in the third column.

One clearly sees that for the values ofα given in
Table 1, there is no sharp transition between scatter-
ing and the merging of solitons, but that instead there
are several windows of initial speed where the soli-
tons scatter several times before escaping at 90◦ or
in their original directions; these windows are sepa-
rated by regions where the solitons do not escape. As
the scattering number increases, the width of the win-
dows become smaller, but the structure at any scale
seems to be similar. One can also see inTable 1that
often, at the edge of a given window, there is a nar-
rower window for a larger scattering number; this is
not always the case, but we have observed this many
times.

We should also point out that the scattering patterns
given inTable 1form a small subset of the range of scat-
tering velocities that we have investigated numerically.
We have observed a fractal structure in the scattering
data for the range of speed contained between the lower
a
α s
w
i ns of
m

Table 1
Scattering numbers for a range ofα andv

α Firstv v increment Lastv Scattering numbers

0.24 0.4705 0.0001 0.477 00222200000000022 1
0.24 0.4721 0.00001 0.4726 2222222222222222
0.24 0.472428 0.000001 0.4725 0555555555000000 55555555
0.25 0.49 0.0001 0.497 22222200000000002 202002
0.25 0.493241 0.000001 0.49332 2222200000000000 004005504

3333000
0.26 0.4905 0.0005 0.53 00002022203002000 022200
0.26 0.5156 0.000005 0.5159 2222222222222222
0.26 0.51578 0.000001 0.515872 0300000000000333 000000

33333
0000533333333
nd upper branch of the critical speed inFig. 2 when
was just below 0.26. Whenα = 0.24, the window
ere not as rich in structure as forα = 0.26, exhibit-

ng large gaps of coalescence between the regio
ultiple scattering.

200500002200000322000020000200200203020000011111
20000000000000000500000555500000000
0000000000000000000000000000000007000000000000555
222200000000222250000022250000222000020002200200
000000500000000050000000500000000000550555550000

002222200000002220000022230002200002000220230202
222222222222220000000003000300000003330000000
400000000000000000333333040000000000000000000000

34040
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5. Scattering and vibration modes

Our observations are analogous to those described
by Anninos et al.[1] in their study of kink–antikink
scattering in theφ4 model in one dimension, where the
scattering also exhibits windows of scattering separated
by regions where a long-lived bound state is formed.

It is interesting to note that inFig. 2, the value
α = 0.263 where the critical speed curls over is just
below the valueα = 0.265 where the breather mode
〈1〉 emerges from the continuum band. Moreover, the
curve for the shape mode〈+〉 emerges atα = 0.295,
and the curves for the two modes cross atα = 0.310.
See lower diagram inFig. 1.

We also notice fromFig. 3 that a splitting mode in
〈2〉 (although not the lowest one) peels off from the
continuum band atα = 0.62, and this is approximately
the value (cf.Fig. 2) above which the solitons can scat-
ter, suggesting that this splitting mode is implicated in
the large-α part ofFig. 2.

To understand the relation between the vibration
modes and the scattering of solitons, we must first re-
alise that during the scattering process the solitons are
excited in various vibration modes. When they are suf-
ficiently far apart, each lump can be considered as a
single Skyrmion; while when they overlap, they form a
configuration close to theN = 2 rotationally symmet-
ric solution. Between these two configurations, they
form intermediate states that extrapolate between the

e-
res-

sions forδ�φ is that the mode〈p〉1 for the one-Skyrmion
becomes the mode〈2p〉2 for the two-Skyrmion, as the
two Skyrmions merge. For example, the dipole breather
mode〈1〉1 for each incident one-Skyrmion becomes
the splitting mode〈2〉2 for the two-Skyrmion, as the
Skyrmions coalesce. More precisely, the lowest state
for 〈1〉1 which is the translation mode of the one-
Skyrmion becomes the lowest-state of the〈2〉2 mode.
The first excited state of the〈1〉1 mode, shown inFig. 1
transforms into the first excited state for the〈2〉2 mode,
which (as shown inFig. 3) crosses the mass threshold
aroundα = 0.62.

Moreover, due to the nonlinear nature of the model,
the different vibration modes exchange some energy
during the scattering. In particular, this means that some
kinetic energy is transferred from the translation mode
into the various vibration modes, and the reverse is also
true when the two Skyrmions try to escape from their
mutual attraction.

During the scattering, the vibration modes that are
excited vary with time and depend on the overlap be-
tween the Skyrmions; but when the initial speed is close
to the critical value, we observed that the vibration pe-
riod is less than the characteristic time of scattering,
implying that the system has plenty of time to oscil-
late.

We should also point out that all the scatterings
that we have simulated numerically involved head-on
collisions in the attractive channel[18], which means
in particular that�φ was invariant under the rotation
θ

S
-

t os-
c ing
i
d ively
l rge,
t
w ergy
i take
p ce
t
b

2 ton
s qual
m this,
�→ θ + π. This implies that the modes〈p〉 of the two-
kyrmion, withp odd, were never excited.
We thus see that whenα < 0.265, there is no in

ernal mode to excite the one-Skyrmion, and the
illation of the Skyrmions induced by their scatter
s radiated away. Whenα > 0.265, the〈1〉1 is excited
uring the scattering and it can absorb progress

arger amounts of energy. As the Skyrmions me
his mode transforms into the first excited〈2〉2 mode
hich is well above the mass threshold. The en

s thus radiated away and the scattering does not
lace. Whenα > 0.65, the〈2〉2 is a bound state, hen

he energy is not radiated away and the 90◦ scattering
ecomes possible again.

To try to predict the critical velocity shown inFig.
, we now consider a simple model for the two-soli
cattering process, namely the dynamics of two e
asses, connected by a spring, on a cone. To do
two extreme configurations, but that are difficult to d
scribe. One thing that can be inferred from the exp

Fig. 3. The frequencies of the internal modes of theN = 2 Skyrmion.
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we use the technique described in detail in[11,20,19].
The first observation is that when the two Skyrmions
are in the attractive channel, the configuration has a
central reflection symmetry around the centre of mass.
As the Skyrmions are indistinguishable, and as the
centre of mass (which we choose to be the origin of
the coordinate system) does not move, we can iden-
tify the points that are diametrically opposite each
other with respect to the origin. If we describe each
Skyrmion as a moving point-like particle, using any
momentum-conserving dynamics, then the two parti-
cles will remain diametrically opposite each other. Us-
ing this identification of opposite points, the dynamics
of a pair of Skyrmions reduces to the dynamics of a
single particle moving on a half plane, sayx ≤ 0 with
the half-lines (x = 0, y > 0) and (x = 0, y < 0) iden-
tified. Topologically, this corresponds to the motion of
a single particle on a cone.

If the two Skrymions do not interact, then each par-
ticle moves freely on the cone; and if sent towards each
other, they move to the top of the cone and emerge on
the other side unaffected. If one unfolds the cone onto
the plane, this corresponds to 90◦ scattering of the two
Skyrmions[11].

To model the scattering process in our system, we
use an improved version of this model, describing each
Skyrmion by a pair of points collinear with the ori-
gin and connected by a spring which models a single
internal mode of oscillation. Moreover, to model the
attraction between the two Skyrmions, the two masses
a bing
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where

V1(x) = k

2
(x − X0)2,

V2(x) = − A

2 cosh(λx)
. (7)

The constantsA andλ are coefficients, depending onα,
which we will choose to model the two-soliton scatter-
ing as closely as possible. The parameterX0 describes
the size of the soliton; we will takeX0 = 1. The pa-
rameterMx is half the mass of a Skyrmion, so that the
masses of the two particles add up to the mass of a
Skyrmion. For simplicity we have takenMx = 0.5 in
what follows. Notice that the depth ofV2 is A/2; so
given that there are two degrees of freedom,A corre-
sponds to the depth of the two-Skyrmion bound-state
potential. The equations of motion are

MxẌ1 = −k(X1 − X2) − Aλ sinh(λX1)

2 cosh2(λX1)
,

MxẌ2 = k(X1 − X2) − Aλ sinh(λX2)

2 cosh2(λX2)
. (8)

The value ofk is chosen so that the frequency of os-
cillation betweenX1 andX2 is the frequency of the
shape mode〈+〉, namelyk/Mx = ω〈+〉1. The equation
ω〈+〉1 = 0.30+ 0.63(1− exp(−1.58α)) gives a good
approximation. Note that our simple model does not
distinguish between the different vibration modes; as
the frequencies of the〈+〉 and〈1〉 modes are very sim-
i
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ator
f xi-
re made to evolve in a central potential, descri
he binding energy of two Skyrmions. Each mas
qual to half the mass of a Skyrmion, and the ma
re positioned so that the line joining them crosse
rigin, i.e. the tip of the cone. In this picture, the t
articles modelling a Skyrmion still scatter with th
irror image; and motion over the tip of the cone ag

orresponds to 90◦ scattering once the cone is unfold
nto the plane. So in the model below, we only desc
ne Skyrmion made of two point-particles; the sec
kyrmion can then be obtained as the central imag

his particle-pair.
The Lagrangian for this system is

= 1

2
(MxẊ

2
1 + MxẊ

2
2) − V1(X1 − X2) − V2(X1)

−V2(X2), (6)
lar, we have taken the former for convenience.
The parametersA and λ in the potentialV2 are

etermined as follows. ForA we take the depth o
he potential, namelyA = 1 − E2/(2E1), whereE2
s the energy of the two-soliton bound state andE1
he energy of a single soliton. InFig. 4 we show the
-dependence of the binding energyE2/(2E1). The
urve is well-approximated by the relationE2/(2E1) =
+ 0.12(exp(−3.88α) − 1) + 0.01α. For λ, we im-
ose the condition that the frequency of the sm
mplitude oscillations forV2 is equal to the fre
uency of the lowest splitting mode for the tw
oliton bound stateω〈2〉2. That frequency is well ap
roximated by the expressionω〈2〉2 = 0.2 + 0.2(1−
xp(−3.875α)) − 0.015α. We therefore haveλ =
〈2〉2(2Mtot/A)1/2, whereMtot = 2Mx.
To be more realistic, we should have one oscill

or each vibration mode. One quick way to appro
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Fig. 4. α-dependence of the binding energy of two Skyrmions.

mate this is to haven0 decoupled oscillators which,
to first approximation, have the same frequency. This
will correspond to taking 2n0 points of massMx/n0
linked in pairs by springs with elastic constantk/n0.
To preserve the total binding energy of the system we
must also divideA byn0. This is actually equivalent to
solving Eq.(8), after multiplyingλ by n

1/2
0 .

To simulate a scattering, we set up the two masses
so that they are separated by their equilibrium distance
X0, and so that their centre of mass is located atx = 10.
We then send both of them with the same speed towards
the origin. The motion of the masses in the potential
well stretches the string and results in some transfer of
translation energy into the oscillator. The initial speed
therefore has to be large enough for the two masses to
go over the tip of the cone and escape towardsx = −∞.
If the speed is too small, the two masses oscillate around
the tip of the cone.

Using these parameters, we have determined the
critical velocity forn0 = 1 and 2, as shown inFig. 5. It
produces the correct shape of curve, i.e. one that looks
like the inverse of a Morse potential, but the actual crit-
ical velocities are too small.

This is explained by the fact our simple model does
not take into account the radiation of energy. Otherwise,
the shape of the curve is more or less explained by
the shape of the binding energy of two Skyrmions, as
shown inFig. 4. Where the well is deepest, around
α = 1, more energy is transferred into the oscillator,
a

Fig. 5. Critical speed for the two-point model; one oscillator (bottom
curve) and two oscillators (top curve).

The drop in the critical velocity for 0.27 ≤ α ≤ 0.3
whenn0 = 2 (top curve inFig. 5) is caused by a phase
resonance between the oscillation of the system in the
potential well and the oscillation of the rigid oscillator.
Similar phenomena were also observed when taking a
different value forX0.

Fig. 1suggests that our toy model predicts the crit-
ical speed reasonably well for large values ofα, if we
taken0 somewhere between 1 and 2. For small val-
ues ofα, the critical speed is too small by roughly a
factor of 2. The predicted critical speed is also far too
small in the range 0.3 < α < 0.7, but the position of
the maximum is surprisingly in the correct region ofα.

The main success of our simple model is in explain-
ing how the existence of a critical speed for 90◦ scat-
tering comes from the fact that some kinetic energy is
transferred into the vibration modes of the system. It
also shows that the dependence of the critical speed on
α is related to the depth of the potential well between
the two Skyrmions. To explain the other features of the
curve shown inFig. 2, one must analyse how the vi-
bration modes for one-Skyrmions and two-Skyrmions
transform into one another, and consider when these
modes are above or below the mass threshold.

When α < 0.265, our simple model does not re-
ally apply, as the one-Skyrmion does not have any
genuine vibration mode, although the two-Skyrmion
does. When 0.265< α < 0.62, the〈1〉1 mode trans-
forms into the〈2〉2 which radiates its energy away and
makes the 90◦ scattering difficult or impossible.
nd the critical speed is high.
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Whenα > 0.62, none of the major modes excited
during the scattering radiates energy away. So some
of the energy stored in these vibration modes can be
converted back into the translation mode, and the 90◦
scattering can happen at a relatively small speed.

To predict the critical speed more accurately, one
would have to take into account all the modes that are
excited in the process, as well as how they are coupled
together, and coupled to the deformation of the system
during the scattering. This goes well beyond what we
can expect from such a simple model. One could con-
sider using a genuine geodesic approximation for the
Skyrme model, but as we do not have an analytic ex-
pression for the general two-Skyrmions configuration
with a separation, this is difficult to do.

The fractal structure of the scattering data just be-
low α = 0.265 is more difficult to explain. When the
vibration modes have a frequency just above the mass
threshold, the solution for the continuum spectrum ex-
ists for all frequencies, but for some of them, the eigen-
function has a pronounced maximum at the position of
the Skyrmion. These solutions can be thought of as os-
cillation modes that decay relatively slowly in the linear
limit. These quasi-modes can thus absorb some energy
and make the system oscillate. The fractal structure
of the scattering data probably comes from a delicate
phase resonance between these modes and the scatter-
ing oscillations.
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two-Skyrmions solutions. When the deformation mode
of the one-Skyrmion transform into the excited split-
ting mode of the two-Skyrmion, and when this mode is
above the mass threshold, a large amount of energy is
radiated and the 90◦ scattering is not possible. We also
described a simple dynamical model which shows that
the value of the critical speed is related to the binding
energy of the two-Skyrmion solution.
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