
ALGEBRA II LECTURE NOTES
EPIPHANY TERM 2012

1. Quick motivation and overview

Motivation. The notion of a group is absolutely central and ubiquitous to math-
ematics, be it for linear algebra (e.g. matrix groups), geometry (e.g. symmetry/iso-
metry groups of regular solids or polygons; Möbius transformations of the complex
plane), mathematical physics (e.g. the Lorentz group of affine transformations in
space-time), topology (e.g. the fundamental group of a torus, or more generally of
any topological space), number theory (e.g. the set of integer solutions (x, y) ∈ Z2

of Pell’s equation x2 − dy2 = 1, where d ∈ Z>0), Galois theory (e.g. Galois groups
of field extensions) or algebraic geometry (e.g. rational solutions (x, y) ∈ Q2 of the
elliptic curve x3 + y3 = p for a prime p ≡ 4 (mod 9)).

Overview. We give an outline of the topics that we will treat in this part of the
course:

— Revision and introduction of structural properties and of important families
of groups (e.g. Sn, An or Dn);

— Tools to distinguish groups from each other (numerical invariants, struc-
tural invariants);

— Methods to relate or even identify groups (homomorphisms, isomorphisms);
— How to break up a group into smaller pieces (distinguished subgroups,

quotient groups);
— Conversely, how to splice groups together (direct product [maybe also semi-

direct product]);
— Methods to “visualise” groups (“action” of a group on a set);
— Classification theorems (e.g. classification, for p a prime, of all groups of

order p2, classification of (finitely generated)abelian groups;
— Structural theorems (“Orbit-Stabiliser”, “Sylow”, “Cauchy” [if p | #G then
∃ subgroup of G of order p]).

2. Reminders from last term

In Michaelmas term, a number of properties have already been discussed, we
summarise a few important ones here.

Recall that a subgroup H of a group G is a non-empty subset of G that is closed
under composition and under taking inverses. We then denote this fact by H < G
(rather than just by H ⊂ G). (Examples are nZ < Z for any n ∈ Z, or Q∗ <
R∗ < C∗, where the R∗ denotes the units of the ring R which constitute a group
by themselves. There are always obvious subgroups (called “trivial”): {e} < G and
G < G.)
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There are subgroups of a group G generated by an element of G, and denoted by
diamond brackets: for a subset consisting of a single element g, one puts

〈g〉 = {gn | n ∈ Z} .

More generally, the subgroup generated by a subset S ⊂ G consists of all the finite
products of elements in S and of their inverses, a non-trivial example being, for
S = { 1

2 , 3, 7} ⊂ Q∗,
〈S〉 = {2m3n7r | m,n, r ∈ Z} .

Recall that the order of an element g ∈ G is the smallest positive integer r such
that gr = e, the identity element in G, provided such an r exists; otherwise the
order of g is ∞. The order of an element always divides the group order #G.

Moreover, an important theorem of Lagrange states something more general:
H < G⇒ #H | #G.

Recall that a normal subgroup H < G (denoted H C G) is characterised by its
satisfying gHg−1 ⊂ H for any g ∈ G; equivalently, gHg−1 = H for any g ∈ G; also
equivalently, gH = Hg for any g ∈ G (i.e. each left coset of H is also a right coset
of H); yet another equivalent way to phrase it is ghg−1 ∈ H for any h ∈ H, g ∈ G.
Normal subgroups are important, as they allow to give the set of cosets gH = {gh |
h ∈ H} the structure of a group: multiplying the cosets (with respect to H) of g
and g′ gives (gH)(g′H) = (gg′)H, the coset of gg′; also, the inverse of gH is simply
g−1H. (Note that this multiplication does not make sense if H is not normal!)

As a consequence, we can write G/H as the quotient group for H normal (it
consists precisely of the cosets in G w.r.t. H).

3. Conjugacy classes and the centre

An important notion closely connected with the one of a normal subgroup is the
one of conjugacy. We will get a first glimpse in this section and will revisit the
notion in due course.

Proposition. Let H be a subgroup of G. Then we have

H is normal in G ⇔ H is a union of conjugacy classes of G .

Proof. ”⇒”: if H is normal in G then, by definition of being normal, whenever
h ∈ H we also have ghg−1 ∈ H for any g ∈ G. But this means that {ghg−1 | g ∈ G},
the conjugacy class of h in G, is a subset of H. So we can write H =

⋃
h∈H h ⊂⋃

h∈H{ghg−1 | g ∈ G}.
Now it remains to note that the latter expression is indeed a union of conjugacy
classes, that it obviously contains H, but also that it is contained in H (any of the
individual {ghg−1 | g ∈ G} does), so it actually agrees with H.
”⇐”: Suppose the subgroup H is the union of certain conjugacy classes in G. Then
we have to show that gHg−1 = H or, what is actually equivalent, gHg−1 ⊂ H.
But

gHg−1 =
⋃
h∈H

ghg−1 ⊂
⋃
h∈H

{ghg−1 | g ∈ G} = H .

In the last equality we have used that H is the union of conjugacy classes (neces-
sarily the conjugacy classes of all its elements). �
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Example: (Conjugacy classes of D3)
There are three conjugacy classes in the dihedral group D3, which can be viewed
as the group of symmetries of an equilateral triangle in the plane. It consists of 6
elements: the identity e, two non-trivial rotations r and r2 (around 2π/3 and 4π/3,
respectively) and three reflections s, rs and r2s (around the respective axes defined
by the vertices of the triangle and their opposite medians).

Recall that we have the following three basic relations among r and s (which are
complete in that they imply any relation among r and s):
r3 = e, s2 = e and srs−1 = r2.

(1) The conjugacy class of e is simply {e}, since geg−1 = e for any g ∈ D3.
(2) The conjugacy class of r is {r, r2}: we write

{grg−1 | g ∈ D3} = {ere−1, rrr−1, r2rr−2, srs−1, (sr)r(sr)−1, (sr2)r(sr2)−1}

where the first three elements agree with r and the last three with r2.
(3) The conjugacy class of s is {s, rs, r2s}: we write

{gsg−1 | g ∈ D3} = {ese−1, sss−1, r2sr−2, (sr)s(sr)−1, rsr−1, (sr2)s(sr2)−1}

where the first two elements are equal to s, the following two equal to rs
and the final two equal to r2s.

Overall, we see that D3 partitions into 3 conjugacy classes of size 1, 2 and 3,
respectively.

Proposition. Conjugate elements of a group G have the same order.

Proof. Compare x ∈ G and gxg−1 ∈ G for an arbitrary g ∈ G. First note that

(gxg−1)n = (gxg−1)(gxg−1) · · · · · (gxg−1)︸ ︷︷ ︸
n blocks

= gxng−1

as the intermediate g−1g drop out.
Now show that (gxg−1)n = e ⇔ xn = e , which then implies the claim (the
“order” of an element is the smallest positive such n). Indeed,

e = (gxg−1)n = gxng−1 ⇔ g = gxn ⇔ e = xn . �

Example. For the caseG = D3, we have ordD3(r) = 3 = ordD3(r2) and ordD3(s) =
2 = ordD3(rs) = ordD3(r2s).

Remark. Let G be a group. Then G is abelian if and only if all the conjugacy
classes consist of a single element.

Proof. For G abelian and any x ∈ G we have {gxg−1 | g ∈ G} = {gg−1x | g ∈
G} = {x | g ∈ G} = {x}. Conversely, if a conjugacy class {gxg−1 | g ∈ G} consists
of a single element, that means that this element must be x (specialise g = e, for
example) and hence we must have in particular gxg−1 = x, i.e. gx = xg, i.e. x
commutes with any element in G. As x was arbitrary, this shows that any two
elements of G commute, so G is indeed abelian. �

Another important notion is the centre of a group G, which consists of those ele-
ments in G which commute with all the other elements in G (they clearly commute
with themselves, anyway). The centre turns out to be a group itself.



4 ALGEBRA II LECTURE NOTES EPIPHANY TERM 2012

Definition. The center Z(G) of a group G is defined by

Z(G) = {x ∈ G | xg = gx for all g ∈ G} .

Example. (1) The center of D3 can neither contain r nor s, as rs 6= sr. For similar
reasons, it cannot contain r2, rs or r2s. We conclude that Z(D3) = {e}.

(2) The center of a cyclic group 〈g〉 is the group itself, as any gi commutes with
any gj . (This uses that the addition for the exponents (in Z) is commutative.)

Proposition. The center Z(G) of a group G is a normal subgroup of G.

Proof. We first verify that Z(G) is indeed a subgroup (which is not quite obvious
from the way it is defined).
Let x and y be in Z(G), i.e. xg = gx and yg = gy for any g ∈ G.
Then xy ∈ Z(G) as well: (xy)g = xgy = g(xy).
Also x−1 is in the centre: from inverting both sides of xg = gx for all g ∈ G we
find g−1x−1 = x−1g−1 for all g, but with g also g−1 runs through G.
Moreover, for each x ∈ Z(G) we have that its conjugacy class xG = {gxg−1 | g ∈ G}
equals {x} (cf. above remark). In particular Z(G), obviously equal to the union of
its elements, is also equal to the union of the corresponding conjugacy classes. By
one of the above propositions we find that Z(G) is normal in G. �

Examples.
(1) The centre of an abelian group is the group itself. [[ Clearly, every element

is in the centre as it commutes with any other element. ]]
(2) A more ambitious example is the group G = GL2(R). The condition to

commute with all the other matrices in G can be pinned down by looking

at specific matrices, e.g. g =
(

1 1
0 1

)
and its transpose. Equating(

a b
c d

)(
1 1
0 1

)
=
(
a a+ b
c c+ d

)
and (

1 1
0 1

)(
a b
c d

)
=
(
a+ c b+ d
c d

)
implies that we must have c = 0 and a = d.
In a similar way, we find that b = 0 must hold (use the inverse of g above).

Conversely, we can easily see that any matrix satisfying these three con-
ditions c = 0, a = d and b = 0, i.e. which is of the form a · Id for Id the
2 × 2–identity matrix, does indeed commute with every other matrix (all
entries are simply multiplied by a when multiplying with a · Id either on
the left or on the right).

Conclusion: Z(GL2(R)) = {a · Id | a 6= 0}. (Note that the zero matrix
does not lie in GL2(R).)

Aside. The last example gives rise to an interesting quotient: since Z(G) is a
normal subgroup of G, we can always form the quotient group G/Z(G). In the case
of an abelian group, this quotient is the trivial group, while in the case of D3 the
quotient is isomorphic to D3 itself.
For G = GL2(R), the quotient can be identified with the so-called fractional linear
transformations of the complex numbers: a typical fractional linear transformation
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looks as follows: for
(
a b
c d

)
∈ GL2(R), the map x 7→ ax+ b

cx+ d
defines a transfor-

mation of the complex numbers (minus the real numbers, to make sure it is well-
defined: we want to avoid x = −d/c which would introduce a pole) into themselves.
This assignment provides a group homomorphism (of a matrix group to a group of
functions) with kernel precisely the center Z(GL2(R)) (the diagonal entries cancel
in the fraction).

4. Permutation groups

How can we actually “pin down” a group? One of the most important sets of
groups is formed by permutation groups. In fact, we will see that, in a sense, any
group can be viewed as some kind of permutation group. This will often enable us
to get a reasonable grip on a group (or rather on its objects).

Definition. A permutation of a non-empty set X is a bijection (i.e. injective
and surjective map) from X to itself.

Notation. For X a non-empty set, we put

SX = {bijections : X → X} .

Fact. (SX , ◦) becomes a group where the binary operation “◦” is the composition
of functions.
[[ Associativity holds for composition of functions in general, the identity element of
that group is simply the identity function on X, and the inverse of a bijection is
given by reversing the association of objects: if σ(gi) = g′i, then for σ−1 we have
σ−1(g′i) = gi. ]]

In particular, we put Sn := S{1,...,n} for n ≥ 1, the usual symmetric group on n
letters.

Lemma. #Sn = n! for any n ≥ 1.
[[ How many choices do we have for a bijection σ : {1, . . . , n} → {1, . . . , n}? Fix the
image of “1” (we have n choices), then the image of “2” (only n − 1 choices left),
. . . , then finally the image of n (only one choice). ]]

Notations and definitions. Any permutation of {1, . . . , n} can be more concisely
written by inserting the image of each element below it: for instance the permuta-
tion σ : {1, 2, 3} → {1, 2, 3} given by σ(1) = 3, σ(2) = 1, σ(3) = 2, will often be
written as (

1
3

2
1

3
2

)
.

Specific permutations in Sn are cycles of length k or k-cycles (1 ≤ k ≤ n),
which are bijections for a given subset {i1, . . . , ik} of size k of {1, . . . , n} as follows:
σ(i1) = i2, σ(i2) = i3, . . . σ(ik−1) = ik, σ(ik) = i1.

We will write such a k-cycle in the above notation as(
i1
i2

i2
i3
. . .

ik
i1

)
,

or even more concisely as
(i1 i2 . . . ik) .
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Note that this is not unique, we could have also written it as (i2 i3 . . . ik i1) or
(i3 i4 . . . i1 i2) etc., overall there are precisely k ways to write the cycle in that
more concise form.

Cycles of length 2, i.e. of the form (i1 i2), are called transpositions.
Two cycles are called disjoint if their members do not intersect.
For example, the cycles (1 3 5) and (2 4) in S5 are disjoint, while (1 3 5) and (1 2 4)

are not (they share the common member “1”).

Facts.
(1) Disjoint cycles commute with each other.
(2) Every permutation is a product of disjoint cycles, and in an essentially

unique way. (“Essentially” meaning: up to ordering the individual cycles
and up to the k different ways to write a given k-cycle.)

[[ As to (1), bijections of two disjoint subsets of a given set do not affect each other;
this applies in particular to the product of two disjoint cycles. As to (2), each
bijection σ of {1, . . . , n} is subdivided into bijections of subsets; maybe think of
a graph with n vertices labelled by 1, . . . , n with two vertices i and j connected
by a directed edge from i to j whenever σ(i) = j, then the disjoint cycles of σ
correspond to the different components of the graph (there might be individual
vertices as components). ]]

Example. Write the following permutation as a product of disjoint cycles:(
1
5

2
3

3
2

4
1

5
4

6
8

7
9

8
7

9
6

10
10

)
= (1 5 4)(2 3)(7 9 6 8)(10) .

Another way to write it in the cycle notation would be (3 2)(6 8 7 9)(10)(5 4 1).

How to multiply two cycles? It is not completely obvious how to multiply
two cycles. We compose the two corresponding bijections to a new bijection. (The
notation we are using is slightly counterintuitive, as one needs to work “from right
to left”. Some authors use the opposite notation (going from left to right), but
then they need to write functions on the right, i.e. (x)f rather than f(x), as we
are used to.)

We give an example using the following permutations (of {1, . . . , 5}) denoted σ
and τ :

σ =
(

1
4

2
3

3
1

4
5

5
2

)
, τ =

(
1
2

2
3

3
4

4
1

5
5

)
.

Composing the two permutations σ ◦ τ corresponds to applying τ first and then σ,
i.e.

σ ◦ τ =
(

1
3

2
1

3
5

4
4

5
2

)
.

We can achieve this by first writing τ and then writing underneath σ, but rearranged
in such a way as to let the top line of σ agree with the bottom line of τ :(

1
2

2
3

3
4

4
1

5
5

)(
1
4

2
3

3
1

4
5

5
2

) rearranged to

(
1
2̆

2
3̆

3
4̆

4
1̆

5
5̆

)(
2̆
3

3̆
1

4̆
5

1̆
4

5̆
2

)
and then simply drop the intermediate (red) rows altogether.

One important simplifying convention is to drop all the 1-cycles (j). So the
cycle (1 3 5)(2)(4) in S5 will be henceforth denoted (1 3 5) only—in general, if it
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is clear in which group Sn we are working then the missing 1-cycles can easily be
reconstructed: simply add a 1-cycle for each number ≤ n missing in the product of
cycles.
Moreover, we will drop the ◦ signs.

Examples. Multiply σ = (1 2) and τ = (1 3) in S3 to

σ ◦ τ = (1 2)(1 3) =

(
1
3

2
2

3
1

)(
3
3

2
1

1
2

) =
(

1
3

2
1

3
2

)
and the latter can also be written in our even shorter notation as (1 3 2).

Proposition.
(1) Any σ ∈ Sn can be written (also called “factored”) as a product of trans-

positions.
(2) The parity of the number of transpositions needed in any factorization of

σ ∈ Sn is the same. In particular, this number is well-defined modulo 2.
(3) An element with disjoint cycles of lengths k1, . . . km has order lcm(k1, . . . , km).

Proof. (1) It suffices to write any given k-cycle (k ≥ 2) as a product of transposi-
tions. A possibility for the latter is as follows (cf. Sheet 2, Q1):

(1 2 · · · k) = (1 k)(1 k − 1) · · · (1 2) .

(2) For the second claim, one can introduce independent variables x1, . . . , xn, and
look at the expression

Pn =
∏

1≤i<j≤n

(xi − xj) .

For any permutation σ ∈ Sn we then consider

Pn,σ =
∏

1≤i<j≤n

(xσ(i) − xσ(j)) .

This quantity has the same factors as Pn, at least up to sign, and for a transposition
σ = (i j) we get Pn,σ = −Pn. Moreover, this procedure is multiplicative, so for σ a
product of r transpositions we have Pn,σ = (−1)rPn.
For (3) first check the case m = 1, then show that any element raised to L =
lcm(k1, . . . , km) indeed becomes the identity (use that disjoint cycles commute)
and then show that any proper divisor of L (i.e. different from L) does not suffice.
Here we have used the following notation: the lcm (=least common multiple) of a set
of integers is the smallest positive integer which is a multiple of each element in that
set, e.g. lcm(6, 8, 10) = 120. For two numbers, one has lcm(m,n) = n·m/ gcd(n,m).
�

Each Sn has a distinguished subgroup, denoted An (”A” for ”alternating”),
which has half the size of Sn. We can characterise it using the following numerical
invariant.

Definition. The sign of a permutation σ ∈ Sn is defined as

sgn(σ) = (−1)t ,

where t denotes the number of transpositions needed in a factorization of σ.

Remark. By the previous proposition, the number t is well-defined modulo 2,
hence sgn is indeed well-defined. We can obtain it in a slightly more economical
way as follows: let σ ∈ Sn be a permutation whose (essentially unique) cycle
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decomposition is a product of cycles of length k1, . . . , kr. Then the sign of the
permutation σ is given by

sgn(σ) = (−1)(k1−1)+···+(kr−1) ,

i.e. sgn(σ) is equal to 1if
∑r
i=1 ki has the same parity as r, and otherwise it is equal

to −1.

Examples.
(1) A transposition has the parity −1.
(2) Any k-cycle has the parity k−1: write (i1 i2 . . . ik) = (i1ik)(i1ik−1) · · · (i1 i2).

Lemma. For n ≥ 2, the function sgn provides a surjective homomorphism of
groups

sgn : Sn → {±1} .
Proof. Suppose we can write σi as a product of ti transpositions (i = 1, 2). We
need to check that sgn(σ1σ2) = sgn(σ1)sgn(σ2) for any σ1, σ2 ∈ Sn. But this
is simply a consequence of the fact that we can write σ1σ2 in terms of t1 + t2
transpositions by composing the t1 transpositions for σ1 with the t2 transpositions
for σ2.
Surjectivity is obvious as there is at least one transposition in Sn. �

Definition. A permutation σ in Sn is called even if sgn(σ) = 1, otherwise it is
called odd.
The kernel of sgn : Sn → {±1} is called the alternating group An, i.e.

An = {σ ∈ Sn | σ is even} .

Proposition.
(1) The group An is normal in Sn.

(2) #An =
n!
2
.

(3) The group An is generated by 3-cycles.
Proof. (1) Clear, as An is the kernel of a group homomorphism.
(2) Clearly multiplying an even permutation by a transposition gives an odd permu-
tation and vice versa. So a given fixed transposition produces a bijection between
even and odd permutations in Sn (and there are no others). This implies the state-
ment.
(3) Write σ ∈ An as a product of an even number of transpositions

(i1 j1)(i2 j2) . . . (i2r j2r) .

Then, starting from the left, combine two successive transpositions:
Case 1 (non-disjoint) can write (i j)(j k) = (j k i);
Case 2 (disjoint) can write (i j)(k `) = (i j)(j k)(j k)(k `) = (j k i)(k ` j). �

Examples (of subgroups of A4 and S4):
(1) Consider the group generated by the element (1 2)(3 4) ∈ A4:

〈(1 2)(3 4)〉 = {(1 2)(3 4), e} .

This group is isomorphic to the only group of order 2 up to isomorphism),
the cyclic group of that order.
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(2) Similarly, considering the 3-cycle (1 2 3) we find

〈(1 2 3)〉 = {e, (1 2 3), (1 3 2)} ,

isomorphic to the cyclic group of order 3.
(3) Consider the group generated by two elements

〈(1 2)(3 4), (1 3)(2 4)〉 = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} .

which is isomorphic to the Klein 4-group.
(4) Subgroups in S4 which are not in A4 are, e.g., 〈(1 2)〉 (cyclic of order 2),
〈(1 2 3 4)〉 (cyclic of order 4) or 〈(1 2), (1 2 3)〉 which is isomorphic to S3 (we
find the isomorphism from S3 to this subgroup of S4 simply by adding the
1-cycle (4) to each of the six permutations).

(5) A further subgroup of S4 but not of A4 is given by

〈r = (1 2 3 4) , h = (1 2)(3 4)〉 ,

which realises the symmetry group of a square, i.e. D4; we can check
r4 = e = h2 as well as hrh−1 = r−1 and then we can also verify that all
rihj for 0 ≤ i ≤ 3, 0 ≤ j ≤ 1 are mutually different.

5. Distinguishing and identifying groups.

Although we have encountered the definition of a direct product of groups and
of an isomorphism of groups, it is quite instructive to see how these notions can be
used to identify or to distinguish groups.

Let us list a few very useful ideas for distinguishing two groups, i.e. to show that
they are not isomorphic to each other.

An isomorphism preserves in particular
— the order of a group;
— the set of orders of elements (with multiplicity);
— the property of being abelian/non-abelian.

The former two can be categorised as “numerical invariants” of the group, while
the latter could be called a “structural invariant”.

Examples.
(1) S3 and Z6 are not isomorphic.

There is an element of order 6 in Z6, but not in S3 (orders there are 1, 2
or 3).

(2) Recall that A4 has order 1
24! = 12, as does D6, and both are not abelian.

Could they be isomorphic?
The set of orders of elements in A4 is 1, 2 or 3 (we can find eight 3-cycles
and three products of two disjoint transpositions), but in D6 there is an
element of order 6.
So A4 6∼= D6.

Recall that the direct (or Cartesian) product G×H of two groups G and H is simply
given by the pairs (g, h) with g ∈ G and h ∈ H. But there is a structure of group on
this product: simply work component-wise, i.e. (g, h)◦G×H(g′, h′) = (g◦Gg′, h◦Hh′)
where the subscript of a ◦ indicates in which group we take the composition. The
identity element in G×H is then the pair of respective identity elements (eG, eH).
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Recall also that the number of elements in the product is simply the product of the
number of elements in the groups from which we started.

Example. Consider Z2 × Z3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.
Note that (a, b) denotes (a (mod 2), b (mod 3)), i.e. the bars have a different mean-
ing in the first and second component!
Claim: This direct product is isomorphic to a group we know better: Z6. How
can we show this?
We could cook up an explicit isomorphism as follows, but we will give a better
“machinery” in the Theorem-Criterion below. Clearly, the latter group is generated
by the single element 1 = 1 mod 6. So we try to find a single generator of Z2 × Z3

as well: indeed, (1, 1) does it. One easily checks that all (a, a) (0 ≤ a ≤ 5) are
different [[ if (a, a) = (b, b) then comparing the first component gives that 2 divides
b − a while comparing the second component yields that 3 divides it, so overall 6
divides b−a; but both a and b are between 0 and 5, so must agree ]] , hence we have
listed all 2 ·3 elements of Z2×Z3. In fact, we have even described the isomorphism:

ϕ : Z6 → Z2 × Z3

a mod 6 7→ (a mod 2, a mod 3)

and it is clear that this map respects the group laws, i.e. is a homomorphism: we
have for any a, b ∈ Z

ϕ(a mod 6 + b mod 6) = ϕ((a+ b) mod 6) = ((a+ b) mod 2, (a+ b) mod 3) ,

while

ϕ(a mod 6) + ϕ(b mod 6) = (a mod 2, a mod 3) + (b mod 2, b mod 3) .

Both right hand sides give the same element, as we add component-wise.
Conclusion: we have found a surjective homomorphism of groups of the same size.
This already implies that we in fact have found a group isomorphism: we can just
define the inverse map by “going backwards”: for (a mod 2, b mod 3) we can find
a integer 0 ≤ c ≤ 5 such that (c mod 2, c mod 3) = (a mod 2, b mod 3) (see above),
and then we map this to c mod 6 in Z6 . More generally, we have

Theorem. For m,n ≥ 1 we have

Zmn ∼= Zm × Zn ⇐⇒ gcd(m,n) = 1 .

Proof. The implication “⇐” is actually a consequence of the Chinese Remainder
Theorem for rings: Look at the ideal (n)Z = nZ = {nk | k ∈ Z} in the ring Z and
similarly at (m)Z as well as (mn)Z, and realise that Zn is the same as the factor
ring (also called quotient ring) Z/nZ.
Now forget about the ring multiplication, i.e. pass from the ring Zn (more precisely
the triple (Zn,+, ·)) to the group Zn (more precisely the pair (Zn,+)).
For the other implication we can assume that d = gcd(m,n) > 1 and put m′ = m/d
and n′ = n/d. Then gcd(m′, n′) = 1 and one can show that the order of any element
in Zm × Zn = Zm′d × Zn′d is at most m′n′d:

m′n′d(a, b) =
(
m′d︸︷︷︸
=m

(n′a), n′d︸︷︷︸
=n

(m′b)
)
,

and both components are indeed 0 in the respective groups.
But the group order of Zm × Zn is mn = m′n′d2 > m′n′d, and a cyclic generator
of it would have to have this order, which cannot exist as we just checked. �
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Notation. For two subsets E1, E2 of a group G we put

E1 ◦ E2 := {e1 ◦ e2 | e1 ∈ E1, e2 ∈ E2} .

This allows us to formulate a very useful criterion for checking if a group is the
direct product of two of its subgroups. In fact, the implication “⇐” in the above
theorem can be proved easily using it.

Theorem-Criterion. Let H and K be subgroups of a group G such that the
following three conditions hold:

(1) H ◦K = G;
(2) H ∩K = {e};
(3) hk = kh ∀h ∈ H,∀k ∈ K.

Then we have
G ∼= H ×K .

Examples.

(1) The Klein 4-group V is given by the 4-element set V = {e, a1, a2, a3} with
the relations a2

i = e (1 ≤ i ≤ 3) and aiaj = ak if {i, j, k} = {1, 2, 3} (*).
We will show that it is the direct product of two subgroups of order 2. Put
Hi = {e, ai} (1 ≤ i ≤ 3). Clearly each Hi is a subgroup [[ a−1

i = ai, so it
is closed under taking inverses ]] . In fact, there is only one group of order 2
up to isomorphism, and each Hi is isomorphic to it.
Moreover, Hi ∩Hj = {e} if i 6= j, and e.g. H1 ·H2 = {e, a1, a2, a1a2}, but
this equals V as a1a2 = a3.
By (*), elements in H1 and H2 commute with each other, so we can apply
the criterion to obtain

V ∼= H1 ×H2
∼= Z2 × Z2 .

(2) We want to show that D6
∼= Z2 ⊗D3.

Recall that D6 is generated by two elements r and s of orders 6 and 2,
respectively, with the further relation (rs)2 = e or, equivalently, srs = r−1.
One shows that it consists of 12 elements, which we can choose as written
in the form risj (0 ≤ i ≤ 5, 0 ≤ s ≤ 1).
Choose the following two subgroups:
H = 〈r3〉, a subgroup of order 2, and
K = 〈r2, s〉 = {e, r2, r4, s, r2s, r4s}, a subgroup of order 6 which is a group
generated by r̃ = r2 and s with the relation (induced from D6) sr̃s = r̃−1

which we can obviously identify with D3 .

Let us check the three conditions of the criterion:
(a) Multiply each member of K from the left by r3, this will produce the

six elements in D6 which are not in K.
(b) H ∩K = {e} is clear.
(c) To show: r3 · (r2jsi) = (r2jsi) · r3 for any 0 ≤ j ≤ 2, 0 ≤ i ≤ 1.

But sr3 = r−3s = r3s, so any power of s commutes with r3, as clearly
does every power of r.

Conclusion: In light of our Theorem-Criterion we find D6
∼= H × K ∼=

Z2 ×D3
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Our next aim is to “uniformise” groups in a certain sense, in order to treat them
all from a common point of view, if needed. In fact, we will write every group
as a subgroup of some permutation group SX (the bijections of some (non-empty)
set X). In order to motivate this, let us consider a more geometric occurrence of
groups.

Theorem. The group of rotational symmetries of the unit cube in R4 is isomorphic
to S4.

Proof (idea): The following rotations of the cube exist. (We can view any rotation
as represented by an orthogonal 3×3–matrix, more precisely by an element γ of
SO3(R), and from Linear Algebra we obtain that one of the eigenvalues of γ is 1,
hence there is line through the origin which is fixed point-wise by γ. This will give
our rotation axis.)

(i) Rotation axis through two opposite face centers by an angle π/2, π or 3π/2
(and 0, of course).
This gives us 6

2 (face pairs) · 3 (non-trivial rotations) = 9 non-trivial
rotations.

(ii) Rotation axis through two opposite vertices by an angle 2π/3 or 4π/3 (and
0).
This gives us 8

2 (vertex pairs) · 2 (non-trivial rotations) = 8 non-trivial
rotations.

(iii) Rotation axis through two opposite edges by an angle π (and 0).
This gives us 12

2 (edge pairs) · 1 (non-trivial rotations) = 6 non-trivial
rotations.

Overall, we find 9 + 8 + 6 = 23 non-trivial rotations; adding the trivial one, we
get 24 such rotations.

We can now “realize” this group as a permutation group, in several different ways.
For example, we can try to keep track of what is happening to an indicative subset
of the cube, all elements should be somehow of a similar nature, for example the
set V of its vertices; or else the set F of its faces; or else the set E of its edges.

In the first case, we will recover the reflection group of the cube as a subset of
SV ∼= S8, in the second case as a subset of SF ∼= S6, and in the third case as a
subset of SE ∼= S12.

An even more economical way ensues if we take the set D of principal diagonals
of the cube, as we can recover the cube reflections as a subset of SD ∼= S4, and for
reasons of size—both sets are of order 24—we get that the two must agree.

The above are all instances of the following general fact.

Theorem (Cayley): Each group (G, ·) is isomorphic to a subgroup of some per-
mutation group (SX , ◦).
In fact, we can take X to be the underlying set G.

Proof. To each element g ∈ G we assign a permutation Lg (the “left translation
by g”) defined by

Lg : G→ G

h 7→ gh

[[ Check the claim that Lg is indeed a bijection:
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• injectivity: if Lg(h) = Lg(h′), then gh = gh′, and by left cancellation (of g) in
G we find h = h′;
• surjectivity: for any k ∈ G we find g−1k whose image under Lg is indeed

Lg(g−1k) = k. ]]

Now put
G′ = {Lg ∈ SG | g ∈ G} ,

i.e. collect all left translations by elements in g ∈ G. This forms (so far only) a
subset G′ of SG.

Claim: G′ is indeed a group (in fact, a subgroup of (SG, ◦)).
• G′ is non-empty: the identity permutation Le represents the identity element

in SG (multiplying by e leaves each element in G invariant).
• closure under composition: for each Lg and Lh in G′ also have Lg ◦ Lh ∈ G′

(here the composition ◦ is taken in SG, i.e. this is a composition of bijections).
Indeed, it coincides with Lgh:

Lg ◦ Lh(k) = Lg(hk) = ghk = Lgh(k) ∀k ∈ G .

• G′ is closed under taking inverses as L−1
g = Lg−1 :

Lg−1 ◦ Lg(k) = g−1gk = k = Le(k) ∀k ∈ G .

This settles the claim.

So far we have shown that the map

ψ : G→ G′

g 7→ Lg

is a homomorphism of groups.

Claim: ψ is in fact an isomorphism.
[[ Surjectivity holds by construction—note that ψ is a map with target G′, not SG.
Injectivity is straightforward, using right cancellation in G: suppose Lg = Lh,
i.e. Lg(k) = Lh(k) for any k ∈ G; then in particular can take k = e and find
g = Lg(e) = Lh(e) = h. ]]
This completes proof of the theorem.

Example. Consider the Klein 4-group G = V = {e, a1, a2, a3}, where the elements
ai are subject to the relations a2

i = e, as well as aiaj = ak if {i, j, k} = {1, 2, 3}.
We want to show that G is isomorphic to a subgroup of the bijections SX where

X = {x1 = e, x2 = a1, x3 = a2, x4 = a3}.
The proof of Cayley’s Theorem suggests to take the following: if g = a1, then

Lg = La1 : e 7→ a1 · e = a1

a1 7→ a1 · a1 = e

a2 7→ a1 · a2 = a3

a3 7→ a1 · a3 = a2 .

Hence La1 simply corresponds to the permutation (x1 x2)(x3 x4).
In a similar way, La2 corresponds to (x1 x3)(x2 x4) and La3 corresponds to

(x1 x4)(x2 x3).
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Now G′ = {Le, La1 , La2 , La3} forms a group by the theorem and is indeed a
subgroup of SX ∼= S4.

In the example of the group of rotations of a cube, we had found natural homo-
morphisms of that group into SX where X had the cardinality 4, 6, 8 or 12. All of
the above are instances of the following notion.

Definition. An action of a group G on a (non-empty) set X is a homo-
morphism

ϕ : G→ SX .

In other words, for each g ∈ G there is assigned a permutation ϕ(g) of the set X
such that

ϕ(g) ◦ ϕ(h) = ϕ(gh) ∀g, h ∈ G .

Note. We neither assume ϕ to be injective nor surjective.
We will also say “the group G acts on X”.

Example. We give two rather different examples of actions of Z on R.
(1) Let (Z,+) act on R by translation (using the usual addition in R):

ψ : Z→ SR

n 7→ Ln : R→ R , where Ln(r) = n+ r.

We check that this is indeed a group action: for any m, n ∈ Z we have

Lm ◦ Ln(r) = Lm(n+ r) = m+ (n+ r) ,

on the other hand we have

Lm+n(r) = (m+ n) + r .

Hence indeed Lm ◦ Ln = Lm+n by associativity in R.
[[ Note the different group operations in Z(< R) and in SR. ]]

(2) Let (Z,+) act on R by multiplication of its “parity” (using the usual ring
multiplication in R):

ϕ : Z→ SR

n 7→ Ln : R→ R , where Ln(r) = (−1)nr.

We check that this is indeed a group action: for any m, n ∈ Z we have

Lm ◦ Ln(r) = Lm((−1)nr) = (−1)m((−1)nr) ,

on the other hand we have

Lm+n(r) = (−1)(m+n)r .

Hence indeed Lm ◦ Ln = Lm+n by the usual exponentiation rules.

(3) A more geometric example is the following: we define a group action of
(Z4,+) on X = {vertices v1, . . . , v8 of a cube} by fixing an axis through
two opposite face centres and denote by r the rotation by an angle of π

2 .
Then ϕ : Z4 → SX induces the following permutations (after suitable
labeling of the vertices): 1 maps to the permutation induced by the rotation
r, i.e.
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1 7→ (v1 v2 v3 v4)(v5 v6 v7 v8)
2 7→ (v1 v3)(v2 v4)(v5 v7)(v6 v8)
3 7→ (v4 v3 v2 v1)(v8 v7 v6 v5)

while the identity in Z4, i.e. 0, of course maps to the identity permutation
e = (v1)(v2)(v3)(v4)(v5)(v6)(v7)(v8) in SX .

In this last example we have seen that, for any of the images, the vi
for i = 1, . . . , 4 never mingle with the ones for i = 5, . . . , 8. So in a sense
we have taken a set X of “unnecessarily large” size, as we could have
easily made do with v1 . . . , v4 and would have obtained almost the same
assignment as above except that we would simply forget v5, . . . , v8.

Definition. Let ϕ : G→ SX be a group action (of G on the set X), then for any
x ∈ X define

(1) G(x) := { ϕ(g)︸︷︷︸
a permut.

(x) | g ∈ G}, called the (G–)orbit of x inside X;

(2) Gx := {g ∈ G | ϕ(g)(x) = x}, called the stabiliser of x in G.

Lemma. Any Gx is a subgroup of G.
Proof. • Gx is non-empty: ϕ(e), the identity permutation, clearly fixes any x ∈ X;
hence e ∈ Gx.
• Gx is closed under taking products: let g, h ∈ Gx, show gh ∈ Gx.

[[ϕ(g)(x) = ϕ(h)(x) = x imply ϕ(g)
(
ϕ(h)(x)︸ ︷︷ ︸

=x

)
= ϕ(g)(x) = x, whose left hand side

is ϕ(gh)(x) since ϕ is a homomorphism. ]]
• Gx is closed under taking inverses: for g ∈ Gx show g−1 ∈ Gx.

[[ϕ(g−1)(x) = ϕ(g−1)
(
ϕ(g)(x)︸ ︷︷ ︸

=x

)
= ϕ(g−1g)(x) = x. ]] �

Example (revisited).
(1) Let G = Z act on X = R by translation as above.

ψ : Z→ SR

n 7→ Ln : R→ R , Ln(r) = n+ r .

Find the orbits and stabilisers under this action:
for any x ∈ R we get its orbit as

G(x) = {ψ(n)(x) | n ∈ Z} = {n+ x | n ∈ Z} ⊂ R ;

and its stabiliser as

Gx = {n ∈ Z | n+ x = x} = {0} .

(2) G = Z acts on X = R via

ψ : Z→ SR

n 7→ ψ(n) : R→ R , ψ(n)(r) = (−1)nr

and gives rise to orbits

G(x) = {ψ(n)(x) | n ∈ Z} = {(−1)nx | n ∈ Z} = {x,−x} .
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Case x 6= 0: this set has two elements.
Case x = 0: this set has a single element.
Stabilisers: Gx = {n ∈ Z | ψ(n)(x) = x} = {n ∈ Z | (−1)nx = x}.
Case x 6= 0: Gx = {n ∈ Z | n even} = 2Z.
Case x = 0: G0 = {n ∈ Z} = Z.

(3) In a more geometric example G the rotations of the cube around a fixed
axis through two opposite face centres (at left and right, say) and, for a
change, X the edges of a cube, we find three orbits: for x any edge “on the
left”: G(x) consists of all edges on the left, similarly for the edges “on the
right”, and for the edges “in the middle”.
• All orbits are of size 4.
• The stabilisers are all Gx = {e}, as no edge is fixed by any of the non-
trivial rotations.

(4) Check for yourself the following example: Let R act on C by letting r ∈ R
act as the rotation ϕ(r) : C→ C mapping x to ϕ(r)(x) := eirx. What are
the orbits and stabilisers for a given x ∈ C (treat x = 0 separately)?
[Note that the orbits under this action probably agree with the colloquial
meaning of “orbits” (e.g. of planets around a star etc..]

The above is a rather clumsy notation, so we introduce an important shortcut:
We usually leave out the homomorphism ϕ : G → SX in the notation when we
compute with group actions, so we will replace

ϕ(g)(x) simply by g(x) ∀g ∈ G,∀x ∈ X .

In particular, we rewrite
Gx = {g ∈ G | g(x) = x} and ϕ(g)

(
ϕ(h)(x)

)
= g
(
h(x)

)
.

Proposition. Let G act on a set X (and ϕ : G → SX be the action). Then the
distinct orbits G(x) where x runs through X, partition X, i.e.

(1) each orbit is a non-empty subset of X;
(2) the union of all orbits is the whole set X;
(3) orbits are either disjoint or they coincide.

Proof.
(1) Clearly ϕ(e) is the identity permutation, so G(x) must contain ϕ(e)(x), i.e.

x itself.
(2) Any x ∈ X is in at least one orbit (in fact, in G(x)).
(3) Suppose z ∈ G(x) ∩ G(y) for some x, y ∈ X, in particular we can write

z = g1(x) and z = g2(y). Then

x = g−1
1

(
g1(x)

)
= g−1

1

(
g2(y)

)
∈ G(y) .

What is more, any w ∈ G(x) also lies in G(y):
w ∈ G(x) means w = g3(x) for some g3 ∈ G, so w = g3(x) = g3

(
g−1

1 (g2(y))
)

=
(g3g

−1
1 g2)(y) ∈ G(y).

Hence G(x) ⊂ G(y), and swapping roles of x and y we obtain the reverse
inclusion.
Conclusion: G(x) = G(y).

Remark. To be in the same orbit under a group action defines an equivalence
relation.
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There are two important ways in which a group G acts on itself, i.e. we can put
X = G.

(1) by left translation (as in the proof of Cayley’s Theorem):
g ∈ G acts on h ∈ G by g(h) = gh.
The orbit of any h is given by G(h) = {gh | g ∈ G} = G.
The stabiliser of any h is given by Gh = {g ∈ G | g(h)︸︷︷︸

=gh

= h} = {e}.

(2) by conjugation:
Here we have the homomorphism ϕ : G→ SG sending g ∈ G to the bijection

ϕ(g) : G→ G

h 7→ ghg−1 .

Using our new shorthand, this expresses as follows: g ∈ G acts on h ∈ X(=
G) by

g(h) = ghg−1 .

Check: this really gives a homomorphism.
[[ gg′(h) = (gg′)h(gg′)−1 = g

(
g′hg′−1

)
g−1 = g

(
g′(h)

)
. ]]

Note that here the parentheses in red have a different meaning from the paren-
theses in black.

Conjugacy (and normality) revisited

Recall that two elements g and g′ in a group G are conjugate (to each other) if
there is an h ∈ G such that g′ = hgh−1. The above example shows that a group
acts on itself by conjugation. Hence we are led to

Definition. The orbit under conjugation of g ∈ G is called the conjugacy class
of g (in G), and is denoted by cclG(g):

cclG(g) := {hgh−1 | h ∈ G} .

Examples.

(0) The set {e} consisting of the identity element e in a group G forms a
conjugacy class of its own:

G(e) = {g(e) | g ∈ G}
= {geg−1 | g ∈ G}
= {e | g ∈ G} = {e} .

(1) In an abelian group G, any conjugacy class is of size equal to 1: fix g ∈ G,
then

G(g) = {g′(g) | g′ ∈ G}
= {g′gg′−1 | g′ ∈ G}
= {gg′g′−1 | g′ ∈ G} (g′g = gg′ as G is abelian)
= {g | g′ ∈ G} = {g} .

Conversely, suppose G acts on itself by conjugation and each conjugacy
class is of size 1, then G must be abelian.
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[[ Pf: Take g, h ∈ G, we have to prove gh = hg, i.e. ghg−1 = h.
But ghg−1 is in the orbit

G(h) = {g′(h) | g′ ∈ G} = {g′hg′−1 | g′ ∈ G}
of h, as in particular we can take g′ = g.
By assumption, this orbit has a single element, and putting g′ = e, we
conclude that this element must be h, so ghg−1 and h have to agree. ]]

In summary, we get

Proposition. Conjugacy classes of G are all of size 1 ⇔ G is abelian.

Examples (ctd).
(2) Consider the cyclic group of order n ≥ 1 as a subgroup of C:

Cn = {e2πik/n | k ∈ Z}
= {e2πik/n | k ∈ Z}

Cn is abelian (as a subgroup of the group (C∗, ·), the units in the field
(hence also ring) C), and so its conjugacy classes are given by

{e0}, {e2πi/n}, . . . , {e2πi(n−1)/n} .
(3) We have seen already much earlier that the symmetric group S3 has two

non-trivial conjugacy classes, one consisting of the order 3 elements {(1 2 3), (3 2 1)}
and another one of the elements of order 2, i.e. by {(1 2), (2 3), (3 1)}.

(4) The dihedral group

D5 = 〈r, h | r5 = e = h2, hrh−1 = r−1〉
has its elements listed as {rjhi | 0 ≤ j ≤ 4, 0 ≤ i ≤ 1}.
The conjugacy class of rk in D5 for any fixed k (0 ≤ k ≤ 4) can be computed
as follows

cclD5(rk) = {(rjhi)rk(rjhi)−1 | 0 ≤ j ≤ 4, 0 ≤ i ≤ 1}
= {rjhirkh−ir−j | 0 ≤ j ≤ 4, 0 ≤ i ≤ 1}
= {rjrkr−j | 0 ≤ j ≤ 4}︸ ︷︷ ︸

i=0

∪{rjhrkh−1r−j | 0 ≤ j ≤ 4}︸ ︷︷ ︸
i=1

= {rk} ∪ {rj hrkh−1︸ ︷︷ ︸
r−k

r−j | 0 ≤ j ≤ 4}

= {rk} ∪ {r−k} .
This latter set has two elements for 1 ≤ k ≤ 4, and one element for k = 0.

Similarly, any other element in D5 can be written as rkh, with k fixed,
and we find for the conjugacy class

cclD5(rkh) = {(rjhi)rkh(rjhi)−1 | 0 ≤ j ≤ 4, 0 ≤ i ≤ 1}
= {rjhirkhh−ir−j | 0 ≤ j ≤ 4, 0 ≤ i ≤ 1}
= {rjrkhr−j | 0 ≤ j ≤ 4}︸ ︷︷ ︸

i=0

∪{rjhrkr−j | 0 ≤ j ≤ 4}︸ ︷︷ ︸
i=1

= {rjrkrjh | 0 ≤ j ≤ 4} ∪ {rjrj−kh | 0 ≤ j ≤ 4}
and both sets on the right hand side agree; they can be written as

{rih | 0 ≤ i ≤ 4} .
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Summary: the conjugacy classes of D5 are

{e}, {r, r−1} = {r4, r−4}, {r2, r−2} = {r3, r−3}, {h, rh, r2h, r3h, r4h} .
These are the orbits under conjugation.
The corresponding stabilisers are

Ge = {g ∈ G | geg−1 = e} = D5 ,

Gr = 〈r〉 = Gr2 = Gr3 = Gr4 (5 elements in each)

Grkh = {e, rkh} (2 elements in each).

If we consider the size of the stabilisers in the above example and compare
them with the size of the respective orbits, we are led to the following pairs
(#G(e),#Ge) = (1, 10), (#G(r),#Gr) = (2, 5), (#G(rh),#Grh) = (5, 2),
and in each case the two numbers multiply to 10. This is an illustration
of a general phenomenon, which we are aiming at: the Orbit-Stabiliser
Theorem. For this, recall the notion of equivalence relation on a set X: it
is a binary relation ∼ on X (i.e. we attach a value [here Boolean, “true”
or “false”] to each pair of elements in X), satisfying the following three
conditions (R) “reflexivity”: x ∼ x, (S) “symmetry”: if x ∼ y then y ∼ x
and (T) “transitivity”: if x ∼ y and y ∼ z then x ∼ z.

Now note that being in the same left coset with respect to a subgroup H in a group
G defines an equivalence relation, and that the cosets w.r.t. H all have the same
size. Hence we can formulate:

Orbit-Stabiliser Theorem. Suppose G acts on a set X. Then for any x ∈ X
there is a bijection

β : G(x) 1:1−→ {left cosets of Gx in G}
g(x) 7→ gGx .

The proof becomes rather straightforward once we realise the following equiva-
lence: for any g and h ∈ G

g(x) = h(x) ⇔ g−1g(x) = g−1h(x) (multiply on the left by g−1)
⇔ x = g−1h(x)
⇔ g−1h ∈ Gx (by definition of stabiliser)
⇔ g−1hGx = Gx (as Gx is a subgroup)
⇔ hGx = gGx .

Now we use the above equivalence to establish the following two statements.
(i) Well-definedness of β (simply use implication “⇒” from the above).
(ii) Injectivity of β (use implication “⇐” from the above).

It remains to verify surjectivity of the map given. So suppose that we are given a
coset C, then we need to write it in the form g̃Gx for some g̃ in G.
For g̃ we take any element of C (which is non-empty) and then show that C = g̃Gx:
Clearly g̃ = g̃e lies in g̃Gx, and hence C = g̃Gx [[ cosets either are disjoint or agree ]]
Then the element g̃(x) of G(x) is indeed mapped under β to β

(
g̃(x)

)
= g̃Gx = C,

establishing surjectivity of β.

We will often use the following important consequence of the Orbit-Stabiliser The-
orem:
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Corollary. If G is finite, acting on a finite set X, then for any x ∈ X we have

|G(x)| · |Gx| = |G| ,

i.e. the size of its orbit G(x) is “complementary” to the size of its stabiliser Gx.

Proof. Taking sizes in the statement of the Orbit-Stabiliser Theorem we have

|G(x)| = |{left cosets of Gx in G}| . (∗)

But all the cosets with respect to Gx have the same size, i.e.

|Gx| = |eGx| = |gGx| for any g ∈ G .

Hence |G|/|Gx| is the number of cosets w.r.t. Gx in G, and by (∗) above we find
indeed

|G(x) =
|G|
|Gx|

,

and the claim follows. �

Remark. Note that the statement of the corollary still makes sense if the set X
or the group G is infinite, by the usual rules of calculus of cardinal numbers, e.g.
∞ · n =∞ ·∞ =∞ (n > 0).

Corollary. If the finite group G acts on the finite set X, then the orbit lengths
divide the group order, i.e.

|G(x)| divides |G| for any x ∈ X .

In particular, the size of each conjugacy class in G divides |G|.

Example. The dihedral group Dn, for n odd, has orbits and stabilisers as follows:

Elements e r r−1 r2 r−2 . . . r
n−1

2 r−
n−1

2 h rh . . . rn−1h

Orbits {e} {r, r−1} {r2, r−2} . . . {r n−1
2 , r−

n−1
2 } {h, rh, . . . , rn−1h}

Orb. Sizes 1 2 2 . . . 2 n
Stabilisers Dn 〈r〉 〈r2〉 . . . 〈r n−1

2 〉 〈h〉, 〈rh〉, . . . , 〈rn−1h〉
Stab. Sizes 2n n n . . . n 2

The stabilisers for elements of the same orbit are related in a simple way to each
other.

Proposition. Suppose x lies in the G-orbit of y; then Gx and Gy are conjugate to
each other, i.e.

Gx = hGyh
−1 for some h ∈ G .

Proof. By assumption x = h(y) for some y ∈ G. Now rewrite Gx in several steps:

Gx = {g ∈ G | g(x) = x}
= {g ∈ G | g(h(y)) = h(y)}
= {g ∈ G | h−1(g(h(y))) = h−1(h(y))︸ ︷︷ ︸

=y

} .
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Now put g′ = h−1gh, so that g = hg′h−1. Then the right hand side can be written

= {hg′h−1 ∈ G | g′(y) = y}
= h{g′ ∈ G | g′(y) = y}h−1

= hGyh
−1 .

6. First structural results (Cauchy’s Theorem; groups of order 2p)

We are now aiming at our first structural results on groups, using the notion of
a group action. In one of the previous homeworks, we have seen that the converse
to Lagrange’s Theorem does not hold. Nevertheless, we get a “partial converse” in
the following statement, due to Cauchy.

Cauchy’s Theorem. Let G be a finite group and p a prime such that p
∣∣|G|. Then

there is a subgroup of G of order p.

Proof. For the proof, we want to find an element x ∈ G such that xp = e, x 6= e.
The clever idea is to look at

G×G× · · · ×G︸ ︷︷ ︸
p factors

[
:=
((

(G×G)×G
)
× . . .

)
×G

]
,

which forms a group itself. (Why?) Moreover, we look at the subset

Ω := {(x1, x2, . . . , xp) | x1x2 · · ·xp = e} .

There is an action of the group Zp on G×G× · · · ×G by “cyclically shifting”,
i.e.

1 : (x1, x2, . . . , xp) 7→ (x2, x3, . . . , xp, x1)
and more generally

m : (x1, x2, . . . , xp) 7→ (xm+1, xm+2, . . . , xp, x1, . . . , xm) .

This action induces an action of Zp also on Ω.
[[ If (x1, x2, . . . , xp) ∈ Ω then x1x2 · · ·xp = e but then also x2 · · ·xp = x−1

1 and hence
x2 · · ·xpx1 = e, i.e. (x2, x3, . . . , xp, x1) ∈ Ω.
Inductively, one shows that (xm+1, xm+2, . . . , xp, x1, . . . , xm) ∈ Ω for any m =
1, . . . , p. ]]
Now we use that the order of any Zp-orbit in Ω divides the order of the group Zp
itself, i.e. divides p, so is either 1 or p.

There is one obvious orbit of size 1, given by

(e, e, . . . , e) ∈ Ω ⊂ G× · · · ×G .

We will now establish that there must be another such size-1-orbit, and this will
then provide an x with the desired properties (i.e. with xp = e, x 6= e).

First we determine the size of Ω in relation to the size of G.

|Ω| = |G|p−1 . (∗)

[[ This holds simply because we can choose x1, . . . , xp−1 independently in G and
then xp is already determined by the condition x1x2 · · ·xp = e (in fact, xp =
(x1x2 · · ·xp−1)−1). ]]
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We know that Ω is partitioned into orbits under the Zp-action, and the correspond-
ing orbits have size 1 or p (as they need to divide the order of the group that is
acting), so we get a disjoint union of orbits

Ω =
⋃
{orbits of size 1} ∪

⋃
{orbits of size p} .

Taking sizes, this becomes

|Ω| =
∑

orbits of size 1

1 +
∑

orbits of size p

p ,

and the left hand side is divisible by p by (∗). Hence p also divides the left term on
the right hand side which counts the number of orbits of size 1 under the Zp-action.
For this to be possible, there must be at least one (in fact p− 1) such orbits of size
1 different from the one given above.
Any such orbit is necessarily of the form {(g, g, . . . , g)} for some g ∈ G, g 6= e.
Now we are done, as such a g satisfies (g, g, . . . , g) ∈ Ω, i.e. g · g · · · g︸ ︷︷ ︸

p factors

= e. �.

As a nice application of Cauchy’s Theorem, we get:

Theorem. Any group G of order 2p, where p is an odd prime, is either cyclic or
dihedral.

Proof. Cauchy’s Theorem immediately gives us the existence of an element a of
order 2 and an element b of order p. Putting B = 〈b〉, we see that B has order p
and so G partitions into two cosets of order p.
In fact, we claim that aB is a coset different from B [[ Clearly, any element in B
has odd order, while a is of order 2, so a /∈ B and hence aB 6= B. ]]
In order to check the dihedral relation which here amounts to aba−1 = b−1 we try
to find ba in any of the two cosets B and aB.
It cannot lie in the former, otherwise ba = bk for some k ∈ Z, whence a = bk−1 ∈ B
which we already excluded.
Hence there must be a k ∈ {1, . . . , p} such that ba = abk. We now find the
restrictions on k:

ba = abk

⇒ aba = bk multiply by a on left
⇒ b = abka multiply by a on right

= (aba) · · · (aba)︸ ︷︷ ︸
k factors

= bk as b = abka by the above

= (bk)k = bk
2

Hence (as b is of order p) we get for the exponents that k2 − 1 ≡ 0 (mod p), so p
divides one of the factors k − 1 or k + 1, hence k = 1 or k = p− 1.
In the first case, the group is cyclic, in the second case it is dihedral. �

Note: This result also holds for the prime p = 2 if we introduce D2 as the group
given by generators and relations Dn with formally putting n = 2. [[ Some authors
in fact do so. ]]
Now this D2 happens to be isomorphic to V , the Klein 4-group [[ try to establish
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the relations that hold for the elements in V from the ones for D2, for example ]] ,
so is a bit different from the other dihedral groups in that it is commutative.

7. Conjugacy classes of Sn and An.

Normal subgroups of Sn and An.
As an application of the determination of cycle shapes (and their orders) for Sn

and for An we can sometimes easily determine all their normal subgroups. For this,
we recall a previous characterization of normal subgroups.

Proposition. Let H be a subgroup of G. Then we have

H is normal in G ⇔ H is a union of conjugacy classes of G .

But we should keep in mind the following
� Note. Suppose there is a sum of conjugacy class order which divides the group

order. Then this is in general not sufficient for a normal subgroup to exist!

Find all the normal subgroups of S4: a conjugacy class consists of all elements
of a given cycle shape, hence we find the sizes of different conjugacy classes by
enumerating all the elements of a given cycle shape.

Cycle shapes of S4 [1] [2] [3] [4] [2, 2]

Sizes 1 4·3
2 = 6 4·3·2

3 = 8 4·3·2·1
4 = 6

4·3
2

2·1
2

2 = 3

By the above proposition, a normal subgroup N of S4 is the union of conjugacy
classes, hence its size is a sum of the sizes 1, 6, 8, 6 and 3, i.e. |N | = ε1 · 1 + ε2 ·
6 + ε3 · 8 + ε4 · 6 + ε5 · 3, with εj ∈ {0, 1} (j = 1, . . . , 5).

Clearly, ε1 must be 1, as the identity element must lie in any subgroup. By
Lagrange, the sizes of contributing conjugacy classes must add up to a divisor of
|G| = 24.

The only such possibilities are 1 + 3 and 1 + 3 + 8.
In the first case, we get cclS4

(
(1)
)
∪cclS4

(
(1 2)(3 4)

)
, which indeed form a group,

the Klein 4-group. Note that we need to check closure under composition.
In the second case, we find cclS4

(
(1)
)
∪ cclS4

(
(1 2)(3 4)

)
∪ cclS4

(
(1 2 3)

)
; but

these are precisely the 12 even permutations in S4 which we already know to form
a subgroup, denoted A4.

In summary, we get that there are two non-trivial normal subgroups for S4 (the
trivial subgroups being {e} and S4 itself).

Find all the normal subgroups of A4: Recall that a conjugacy class c of an even
element in Sn either forms a single conjugacy class in An (in case any representative
of c commutes with an odd permutation in Sn), or else it decomposes into two
conjugacy classes of the same size.

For S4, the first and last conjugacy classes in the above table have an odd size
and hence cannot split into two classes of the same size; the second and fourth
classes contain odd elements and hence are not in An; finally, the third conjugacy
class splits into two, as (1 2 3) does not commute with any 2-cyle or 4-cycle (check!).
So we get the following table
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Representative of A4 (1) (1 2 3) (3 2 1) (1 2)(3 4)

Sizes 1 8
2 = 4 8

2 = 4 3

The only possibility for a (non-trivial) normal subgroup now results from taking
the sizes 1 + 3, again resulting in the Klein 4-group.

8. Classification of groups of order p2 for a prime p

Our next classification result concerns groups of order p2 where p is a prime;
again, there will be only two types.

Of crucial help for this task is the notion of a centre Z(G) of a group G. Recall
that it consists of all the elements in G which commute with all the others. We
know from previous lectures that

a) Z(G) is a group;
b) it can also be characterised as the union of all conjugacy classes of size 1;
c) Z(G) = G if and only if G is abelian.

Moreover, we see immediately that Z(G) ⊂ Gh for any stabiliser Gh under con-
jugation of an element of h ∈ G [[ zh = hz for z ∈ Z(G) can be rewritten as
zhz−1 = h, i.e. z(h) = h ]] . In other words, Z(G) is contained in any stabiliser
(under conjugation).

Proposition. Let p be a prime and G a group of order |G| = pr, for some r ≥ 1.
Then the centre Z(G) is non-trivial.

Proof. The argument is similar to the one in the proof of Cauchy’s Theorem.
As G is the disjoint union of its conjugacy classes, by taking sizes we find

|G| =
∑
|cclG(x)| (∗)

where on the RHS the sum runs through the different conjugacy classes.
We know that the orbit sizes of a group action (here we have the conjugacy

classes) have to divide the group order, i.e. are of the form pi (i = 0, . . . , r).
Assuming Z(G) = {e}, we find by b) above that all other conjugacy classes must

have order > 1, but then p divides the LHS of (∗) while the RHS is ≡ 1 (mod p),
a contradiction.

Conclusion: Z(G) is not trivial.

Corollary. Let p be a prime and G a group of order p2. Then G is abelian.

Proof. By the previous proposition, we get Z(G) 6= {e}.
As Z(G) is a subgroup of G, its order must divide |G| = p2, hence is of size p or p2.

Case 1: |Z(G)| = p2, then indeed Z(G) and G have the same order, hence must
agree.

Case 2: |Z(G)| = p, then there is an h ∈ G \ Z(G).
In particular, we have |cclG(h)| > 1 (again, by b) above), and |cclG(h)| divides
the group order p2. Furthermore, Z(G) ⊂ Gh implies |Z(G)| ≤ |Gh|, and by the
Orbit-Stabiliser-Theorem we have

|cclG(h)|︸ ︷︷ ︸
≥p

· |Gh|︸︷︷︸
≥p

= |G|︸︷︷︸
≥p2

.
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So we conclude |cclG(h)| = p = |Gh|.
But then Z(G) ⊂ Gh implies Z(G) = Gh, as both groups have the same order.
From this we get that Z(G) contains h [[ clearly Gh always contains h ]] , a contra-
diction.
Hence Case 2 is not possible, and we have proved the corollary.

Corollary. Let p be a prime and G a group of order p2. Then we have

G ∼= Zp2 or G ∼= Zp × Zp .

Proof. Case 1: there is an element in G of order p2; then clearly G ∼= Zp2 .
Case 2: no element in G has order p2; then each element different from e has in
fact order p.
Now take any element h of G \ {e} and any k ∈ G \ 〈h〉, and show that

G ∼= 〈h〉 × 〈k〉 .
To this end, use the usual criterion for writing a group G as two of its subgroups
H = 〈h〉 and K〈k〉.
(i) HK = {hikj | 0 ≤ i, j ≤ p− 1} [[ check that these are all different ]] ;
(ii) H ∩K = {e} [[ha = kb for 1 ≤ a, b ≤ p− 1 implies that h is also a power of k,
using the Euclidean algorithm to write 1 = x a+ y p ]] ;
(iii) hk = kh for any h ∈ H, k ∈ K;
the latter uses our previous corollary that any group of size p2 is abelian.
Conclusion: applying the criterion alluded to above we get

G ∼= H ×K ∼= Zp × Zp . �

We state (without proof, but note that Q.8∗ on Sheet of Week 16 gives a guide
to a proof of the first statement below) a further structural result which includes
Cauchy’s Theorem as a special case.

Theorem (Sylow). Let G be a group of order prm where gcd(p,m) = 1. Then
there is a subgroup of order pr.
Moreover, there is a subgroup of order pi for any 1 ≤ i ≤ r.

9. Finitely generated abelian groups

Our final section provides the classification of a reasonably large class of groups,
the abelian groups—more specifically, of all abelian groups which are finitely gen-
erated.

Definition. A groupG is finitely generated if there exists a finite set {g1, . . . , gr}
(r ≥ 1) such that G = 〈g1, . . . , gr〉, i.e. any g ∈ G can be represented as a finite
product of the gi and their inverses.

Examples.
(1) Z = 〈1〉 = 〈2,−3〉 = 〈6, 15, 20〉 = . . .
(2) for any n ≥ 1, we have Zn = 〈1〉;
(3) any finite group is finitely generated (we can take the set of its elements as

the (finite) set of generators).
E.g., for any n ≥ 1, the group Z∗n is finitely generated, for example

Z∗15 ≡ Z2 × Z4 = 〈(1, 0), (0, 1)〉 .
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(4) Z × Z5 × Z is finitely generated, we can take as generators g1 = (1, 0, 0),
g2 = (0, 1, 0) and g3 = (0, 0, 1).

Non-example. Q is not finitely generated.
[[ Suppose Q = 〈p1q1 , . . . ,

pr

qr
〉 for some r ≥ 1, pi, qi ∈ Z. Then any element generated

by the pi/qi is a (finite) Z-linear combination of these, and hence has a denominator
dividing lcm(q1, . . . , qr), so can never generate all of Q. ]]

Notation. From now on, will only deal with abelian groups, and we will write
them additively, i.e.

G = 〈g1, . . . , gr〉 = {a1g1 + · · ·+ argr | ai ∈ Z, 1 ≤ i ≤ r} .

Our first insight is that we can write any such group as a homomorphic image of
some Zm, where we can choose m as the number of some set of generators, via

ϕ : Zr −→ G = 〈g1, . . . , gr〉
a = (a1, . . . , ar) 7→ a1g1 + · · ·+ argr .

Theorem. Any finitely generated abelian group can be written as a quotient

G ∼= Zn/K
for some n ≥ 0, where K is a subgroup of Zn.

Proof. Use F.I.T.

Definition. In the situation of the theorem, we call a ∈ K a relation and K the
relation subgroup of G.
Moreover, if there are no non-trivial relations in K, i.e. if a1g1 + · · · + argr = 0
implies a1 = · · · = ar = 0, then G is called a free abelian group of rank n.
[[ In the latter case we have G ∼= Zn/{0}, which is clearly isomorphic to Zn. ]]

Proposition. Every subgroup H of Zn is itself a free abelian group generated by
r ≤ n elements; in particular it is of rank ≤ n.

Proof. (Idea) Case n = 1: For Z, the statement is clear from previous results (any
subgroup is of the form nZ, for some n ≥ 0).

Case n ≥ 2: use induction on n; the crucial idea is to look at subgroups H0 ≤ H
with

H0 = {(a1, . . . , an) ∈ H | an = 0}.
Either H0 = H (the whole subgroup H) or H ∼= H0×〈b〉, with b = (b1, . . . , bn) and
bn 6= 0.
In either case we have reduced the statement to one about the group H0 of rank at
most n− 1, and we only need to notice that the product of two free abelian groups
is itself a free abelian group.

Remark. By the proposition, any H ≤ Zn is finitely generated, i.e. is of the form

H = 〈a1, . . . , am〉
for some ai ∈ Zn, m ≤ n.
This is best expressed in terms of a matrix

A = A(H) =

a1
...
am

 .
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Definition. If G ∼= Zn/H then A = A(H) is called a relation matrix for G.

Proposition.

(i) Any matrix A ∈ Matn×m(Z) can be transformed into a matrix Ã ∈
Matn×m(Z) in “diagonal form” using only elementary row and column
operations.

Here elementary row and column operations are of the following kind:
1) multiply a column by −1;
2) swap two columns;
3) add an integer multiple of some column to another one.

And similarly with elementary row operations.

Here Ã is in diagonal form if its entries ãjk = 0 whenever j 6= k.
(ii) Moreover, we can achieve that the entries ãii = 0 in Ã successively divide

each other:

ã11 | ã22 | . . . | ãmm .

Note that these are very close to row and column operations for Gauss–Jordan
elimination in Linear Algebra, except that we are only allowed to multiply a column
(or row) by a unit in Z (of which there are very few) rather than a unit in Q or R.

Example.

A =
(

8 −4 22
4 −8 8

)
r1↔r2∼

(
4 −8 8
−8 4 22

)
r2→r2−2r1∼

(
4 −8 8
0 12 6

)
c2→c2+c1∼

(
4 0 8
0 12 6

)
c3→c3−2c1∼

(
4 0 0
0 12 6

)
c2↔c3∼

(
4 0 0
0 6 12

)
c3→c3−2c2∼

(
4 0 0
0 6 0

)
= Ã .

This is now in diagonal form. Note that this does not satisfy the requirements
in ii) since 4 - 6.



28 ALGEBRA II LECTURE NOTES EPIPHANY TERM 2012

We manipulate this further:

Ã =
(

4 0 0
0 6 0

)
c2→c2+c1∼

(
4 4 0
0 6 0

)
r1→r1−r2∼

(
4 −2 0
0 6 0

)
c1↔c2∼

(
−2 4 0
6 0 0

)
r1→r1+3r2∼

(
−2 4 0
0 12 0

)
c2→c2+2c1∼

(
−2 0 0
0 12 0

)
and now indeed 2 | 12.

This elimination process is used in the following typical setting.

Example. Let G be the group generated by n = 3 generators x, y and z, subject
to the following relations

8x− 4y + 22z = 0
4x− 8y + 8z = 0 .

Find a product of cyclic groups to which G is isomorphic.

To solve this, we write G = Z3/H where

H = 〈(8,−4, 22), (4,−8, 8)〉
with the relation matrix as above

A = A(H) =
(

8 −4 22
4 −8 8

)
.

We have seen that we can diagonalise A to Ã, and from this we can read off, after
completing Ã to a square matrix (by possibly adding zeros)

−→

4 0 0
0 6 0
0 0 0


so that

G ∼= Z/4Z× Z/6Z× Z/0Z︸ ︷︷ ︸
∼=Z

.

The above is an example of the following classification theorem:

Theorem (Fundamental Theorem of Finitely Generated Abelian Groups):
Let G be a finitely generated abelian group, then G is isomorphic to a group of the
following form

Zd1 × Zd2 × · · · × Zdk
× Zr

with r ≥ 0, k ≥ 0, dj ≥ 1 for 1 ≤ j ≤ k.
Moreover, if we require

d1 | d2 | d3 | · · · | dk , and d1 > 1 (∗)
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then this form is in fact unique.

Definition. The number r as in the theorem is called the rank of G, and the d1,
. . . dk are called the torsion invariants of G provided they satisfy (∗).
Remark.

(1) G (as in the theorem) is finite ⇔ r = 0.
(2) The conditions r = k = 0 mean that G is the trivial group.
(3) Whenever we have an entry in the (diagonalised) relation matrix Ã which

is ±1, then we can ignore the corresponding factoring the direct product of
cyclic factors:

Z/1 · Z ∼= {e} .
(4) The torsion invariants have to be given with repetitions, i.e.

Z7 × Z7 × Z105

has torsion invariants 7, 7, 105, not 7, 105.

Applications. The above theorem allows to classify all abelian groups of a given
order, up to isomorphism.

Examples. 1. Classify all abelian groups of order 8.
By the theorem, any such is isomorphic to a product of the form Zd1 × · · · × Zdk

with d1 | · · · | dk and d1 · · · dk = 8 = 23, hence k ≤ 3.

Rephrase condition d1 | d2 as:

“exponent of 2 in d1 ≤ exponent of 2 in d2”

and similarly for any other di | di+1.

Hence looking for d1 | · · · | dk such that d1 · · · dk = 8 is equivalent to looking for
non-decreasing partitions of 3 (the exponent of 2 in 8), i.e.

1, 1, 1 or 1, 2 or 3 .

So we get the following scheme

n1 = n2 = n3 = 1 n1 = 1, n2 = 2 n1 = 3

as a partition 1, 1, 1 1, 2 3

corresponding dj 21, 21, 21 21, 22 23

corresponding group Z2 × Z2 × Z2 Z2 × Z4 Z8

This now gives the complete list, up to to isomorphism.

2. Classify all abelian groups of order 200 = 23 × 52.
The only primes involved are 2 and 5. By the theorem we need to find all possibil-
ities

d1, . . . , dk such that d1 · · · dk = 200, and d1 | · · · | dk, and d1 > 1 .

The condition d1 | d2 translates as

“exponent of 2 in d1 ≤ exponent of 2 in d2”, and

“exponent of 5 in d1 ≤ exponent of 5 in d2”
and similarly for any other di | di+1.
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Hence we need to find all
— non-decreasing partitions of 3 (the exponent of 2), i.e. 1,1,1; 1,2 and 3
— non-decreasing partitions of 2 (the exponent of 5), i.e. 1,1 and 2.

These partitions are independent, hence overall we get 3× 2 = 6 possibilities for
a pair (non-decreasing partitions of 3, non-decreasing partitions of 2).

So we get the following scheme

n1 = n2 = n3 = 1 n1 = 1, n2 = 2 n1 = 3

exponent of 2 1, 1, 1 1, 2 3

corresponding dj 21, 21, 21 21, 22 23

corresponding group Z2 × Z2 × Z2 Z2 × Z4 /Z8

Another application is that we can very easily determine the number of elements
of a given order in any given abelian group.

Definition. Let G be a finite group. Then we put

Am(G) = |{g ∈ G | mg = 0}| = |{g ∈ G | order of g divides m}| ,
Om(G) = |{g ∈ G | mg = 0, kg 6= 0 for 1 ≤ k < m}| = |{g ∈ G | order of g is precisely m}| .

Exercise: The function Am is multiplicative, i.e., for abelian groups G and H

Am(G×H) = Am(G)Am(H) .

Warning: The corresponding statement for Om is not true (in general).

Proposition. Am(Zn) = gcd(m,n)
Pf: mx ≡ 0 (mod n) ⇔ m

d x ≡ 0 (mod n
d ) ⇔ x ≡ 0 (mod n

d ), but the latter
just means that x = k · nd for 0 ≤ k < d. �

Relating Am and Om:
for a prime p, and r ≥ 0, we have, for G abelian

{g ∈ G | prg = 0} = {g ∈ G | order of g is pr}⋃
{g ∈ G | order of g is pr−1}

. . .⋃
{g ∈ G | order of g is p0 = 1} ,

a disjoint union, so:

Apr (G) = Opr (G) +Opr−1(G) + · · ·+Op0(G) .

Therefore
Opr (G) = Apr (G)−Apr−1(G) .

Example. Find the number of elements of orer 8 in

Z12 × Z40 × Z102 .

The proposition, together with multiplicativity, give for

A8(Z12 × Z40 × Z102) = A8(Z12)A8(Z40)A8(Z102)
= gcd(8, 12) gcd(8, 40) gcd(8, 102)
= 4× 8× 2 = 64 .
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SImilarly, A4(Z12 × Z40 × Z102) = 4× 4× 2 = 32, and so

O8(Z12 × Z40 × Z102) = A8(Z12 × Z40 × Z102)−A4(Z12 × Z40 × Z102) = 32 .

So there are 32 elements of order exactly 8.

Remark. For non-prime powers m, one can use a kind of inclusion–exclusion
principle, e.g. if m = pq for two primes p and q:

Opq(G) = Apq(G)−Ap(G)−Aq(G) +A1(G) .


