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1. Quick motivation and overview

1.1. Motivation. The notion of a group is absolutely central and ubiquitous to
mathematics, be it for linear algebra (e.g. matrix groups), geometry (e.g. sym-
metry/isometry groups of regular solids or polygons; Möbius transformations of
the complex plane), mathematical physics (e.g. the Lorentz group of affine trans-
formations in space-time), topology (e.g. the fundamental group of a torus, or more
generally of any topological space), number theory (e.g. the set of integer solu-
tions (x, y) ∈ Z2 of Pell’s equation x2 − dy2 = 1, where d ∈ Z>0), Galois theory
(e.g. Galois groups of field extensions) or algebraic geometry (e.g. rational solutions
(x, y) ∈ Q2 of the elliptic curve x3 + y3 = p for a prime p ≡ 4 (mod 9)).

1.2. Overview. We give an outline of the topics that we will treat in this part of
the course:

— Revision and introduction of structural properties and of important families
of groups (e.g. Sn, An or Dn);

— Tools to distinguish groups from each other (numerical invariants, struc-
tural invariants);

— Methods to relate or even identify groups (homomorphisms, isomorphisms);
— How to break up a group into smaller pieces (distinguished subgroups,

quotient groups);
— Conversely, how to splice groups together (direct product);
— Methods to “visualise” groups (“action” of a group on a set);
— Classification theorems (e.g. classification, for p a prime, of all groups of

order p2, classification of (finitely generated)abelian groups);
— Structural theorems (“Orbit-Stabiliser”, “Cauchy” [if p | #G then ∃ sub-

group of G of order p], “Sylow”).

2. Reminders from last term

In Michaelmas term, a number of properties have already been discussed, we
summarise a few important ones here.

Recall that a subgroup H of a group G is a non-empty subset of G that is closed
under composition and under taking inverses. We then denote this fact by H < G
(rather than just by H ⊂ G).
Examples are nZ < Z for any n ∈ Z, or Z < Q < R < C , or Q∗ < R∗ < C∗, where
the R∗ denotes the units of the ring R (i.e. the elements that are invertible with
respect to the ring multiplication) which constitute a group by themselves.
There are always obvious subgroups (called “trivial”): {e} < G and G < G.
Another example is the group of rotations of a regular n-gon in the plane which
form a (cyclic) subgroup of the full symmetry group, the dihedral group Dn .
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Each element g of G generates a subgroup of G, which we denote by diamond
brackets: one puts

〈g〉 = {gn | n ∈ Z} .
Note that this set can well be a finite one—this happens precisely when two powers
of g agree, i.e. if gm = gn for some m 6= n .
We will often discuss subgroups of a group G generated by a subset S ⊂ G,
and the subgroup then consists of all the finite products of elements in S and of
their inverses.

A non-trivial example (in the case of a commutative group) of this notion is
given for S = { 1

2 , 3, 7} ⊂ Q∗, for which

〈S〉 = {2m3n7r | m,n, r ∈ Z} .

For non-commutative groups one needs to take into account many more products,
e.g. if there are two generators g, h , say, then one has

〈g, h〉 = {ga1hb1 · · · garhbr | ai, bj ∈ Z, r ∈ Z≥0} ,

and an explicit example is given by the following: the two matrices
(

1 1
0 1

)
and(

0 −1
1 0

)
generate the group SL2(Z) of integer 2× 2 matrices of determinant 1.

Recall that the order of an element g ∈ G is the smallest positive integer r such
that gr = e, where e denotes the identity element in G, provided such an r exists,
otherwise the order of g is ∞; another way to define the order of g is as the size
of the subgroup generated by g . A simple but useful fact is that the order of an
element always divides the group order #G.

Moreover, an important theorem of Lagrange states something more general:
H < G ⇒ #H | #G (i.e. the order of a subgroup H of G divides the order of
G ).

Here’s a somewhat more lyrical way to express that theorem:

Lagrange’s size insights
Take a subgroup, say H, of a given group G
with their sizes respectively called s and t.
Old Lagrange has refuted that “size does not matter”,
as the former one clearly divideth the latter.

H.G.

Recall that a normal subgroup H < G (denoted H C G) is characterised by its
satisfying gHg−1 ⊂ H for any g ∈ G; equivalently, gHg−1 = H for any g ∈ G; also
equivalently, gH = Hg for any g ∈ G (i.e. each left coset of H is also a right coset
of H); yet another equivalent way to phrase it is ghg−1 ∈ H for any h ∈ H, g ∈ G.
Normal subgroups are important, as they allow to give the set {gH | g ∈ G} of
cosets of H (i.e. the subsets of G given by gH = {gh | h ∈ H} for any g ∈ G )
the structure of a group. The group operation is defined as follows: multiplying the
cosets (with respect to H ) of g and g′ gives (gH)(g′H) = (gg′)H , the coset of
gg′ ; also, the inverse of gH is simply g−1H . (Note that this multiplication does
not make sense if H is not normal!)
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We write G/H = {gH | g ∈ G} . If H is normal then G/H is a group by the
above, and we call it the quotient group of G by H (it consists precisely of the
cosets in G w.r.t. H ).

Recall that the dihedral group Dn is the symmetry group of a regular n-
gon in the plane; it consists of 2n elements: n rotations (around its centre of
mass = barycentre) of angles 2πk/n (0 ≤ k ≤ n − 1) together with n reflections
along the lines through the barycentre and a median or vertex of the n-gon. Note
that we also consider the trivial element, corresponding to the rotation of angle 0,
as a (degenerate case of a) rotation. One can view Dn as a subgroup of O(2) ,
the 2 × 2-orthogonal matrices. In terms of proving things about Dn , a better—
albeit more abstract—way to view it is by writing it in terms of two generators
r (corresponding in the geometric picture to a rotation of angle 2π/n ) and s
(corresponding to any of the n reflections), subject to the relations rn = e , s2 = e
and srs−1 = r−1 . The latter relation implies sris−1 = (srs−1)i = (r−1)i = r−i

or, equivalently, sri = r−is (and hence allows one to swap s with any power
of r at the expense of a sign in that power or r ). Therefore we can write any
product of powers of r and s in the form rjsk [[ e.g. sr5sr3s can be rewritten
as r−5ssr3s = r−2s ]] and the former two relations then further allow to restrict to
rjsk with 0 ≤ j ≤ n − 1 and 0 ≤ s ≤ 1 . Hence we will often write Dn as a set
simply as {rjsk | 0 ≤ j ≤ n− 1, 0 ≤ s ≤ 1} .

3. Conjugacy classes and the centre

3.1. Conjugacy classes. An important notion closely connected with the one of a
normal subgroup is the one of conjugacy. We will get a first glimpse in this section
and will revisit the notion in due course.

Definition 3.1 (conjugate elements, conjugacy classes).
(1) Two elements g, g′ in a group G are called conjugate in G to each other

if there is an h ∈ G such that hgh−1 = g′ .
(2) The conjugacy class of an element g ∈ G is defined by

cclG(g) = {hgh−1 | h ∈ G} ,

i.e. by the set of all elements in G that are conjugate to g.

Example 3.2: (Conjugacy classes of D3)
There are three conjugacy classes in the dihedral group D3, which can be viewed as
the group of symmetries of an equilateral triangle in the plane. The group consists
of 6 elements: the identity e, two non-trivial rotations r and r2 (around 2π/3 and
4π/3, respectively) and three rotations s, rs and r2s (around the respective axes
defined by the vertices of the triangle and their opposite medians).

Recall that we have the following three basic relations among r and s (which are
complete in that they imply any relation among r and s):
r3 = e, s2 = e and srs−1 = r2.

(1) The conjugacy class of e is simply {e}, since geg−1 = e for any g ∈ D3.
(2) The conjugacy class of r is {r, r2}: we write

{grg−1 | g ∈ D3} = {ere−1, rrr−1, r2rr−2, srs−1, (sr)r(sr)−1, (sr2)r(sr2)−1}
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where the first three elements agree with r and the last three with r2. In
particular, r and r2 are conjugate in D3 .

(3) The conjugacy class of s is {s, rs, r2s}: we write

{gsg−1 | g ∈ D3} = {ese−1, sss−1, r2sr−2, (sr)s(sr)−1, rsr−1, (sr2)s(sr2)−1}
where the first two elements are equal to s, the following two equal to rs
and the final two equal to r2s. In particular, s , rs and r2s are conjugate
to each other in D3 .

Overall, we see that D3 partitions into 3 conjugacy classes of size 1, 2 and 3,
respectively.

Proposition 3.3. Let H be a subgroup of G . Then we have

H is normal in G ⇔ H is a union of conjugacy classes of G .

Proof. “⇒”: If H is normal in G then, by definition of being normal, whenever
h ∈ H we also have ghg−1 ∈ H for any g ∈ G. But this means that {ghg−1 | g ∈ G},
the conjugacy class of h in G, is a subset of H. So we can write H =

⋃
h∈H h ⊂⋃

h∈H{ghg−1 | g ∈ G}.
Now it remains to note that the latter expression is indeed a union of conjugacy
classes, that it obviously contains H, but also that it is contained in H (any of the
individual sets {ghg−1 | g ∈ G} does), so it actually agrees with H.
“⇐”: Suppose the subgroup H is the union of certain conjugacy classes in G. Then
we have to show that gHg−1 = H for any g ∈ G or, what is actually equivalent,
gHg−1 ⊂ H for any g ∈ G . But

gHg−1 =
⋃
h∈H

ghg−1 ⊂
⋃
h∈H

{ghg−1 | g ∈ G} = H .

In the last equality we have used that H is the union of conjugacy classes (neces-
sarily the conjugacy classes of all its elements). �

Proposition 3.4. Conjugate elements of a group G have the same order.

Proof. Compare x ∈ G and gxg−1 ∈ G for an arbitrary g ∈ G. First note that

(gxg−1)n = (gxg−1)(gxg−1) · · · · · (gxg−1)︸ ︷︷ ︸
n blocks

= gxng−1

as the intermediate g−1g drop out.
Now show that (gxg−1)n = e ⇔ xn = e , which then implies the claim (the
“order” of an element is the smallest positive such n). Indeed,

e = (gxg−1)n = gxng−1 ⇔ g = gxn ⇔ e = xn . �

Example 3.5: From Example 3.2 for the case G = D3 we know that r and r2

are conjugate to each other, as are s , rs and r2s . A simple check gives indeed
that the respective orders agree, i.e. we find that ordD3(r) = 3 = ordD3(r2) and
ordD3(s) = 2 = ordD3(rs) = ordD3(r2s) .

Remark 3.6: Let G be a group. Then G is abelian if and only if all the conjugacy
classes consist of a single element.
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Proof. For G abelian and any x ∈ G we have {gxg−1 | g ∈ G} = {gg−1x | g ∈
G} = {x | g ∈ G} = {x}. Conversely, if a conjugacy class {gxg−1 | g ∈ G} consists
of a single element, that means that this element must be x (specialise g = e, for
example) and hence we must have in particular gxg−1 = x, i.e. gx = xg, i.e. x
commutes with any element in G. As x was arbitrary, this shows that any two
elements of G commute, so G is indeed abelian. �

3.2. The centre of a group. Another important notion is the centre of a group
G, which consists of those elements in G which commute with all the other elements
in G (they clearly commute with themselves, anyway). The centre turns out to be
a group itself.

Definition 3.7. The centre Z(G) of a group G is defined by

Z(G) = {x ∈ G | xg = gx for all g ∈ G} ,
i.e. it consists of all elements in G which commute with all the others.

Example 3.8: (1) The centre of D3 can neither contain r nor s, as rs 6= sr. For
similar reasons, it cannot contain r2, rs or r2s. We conclude that Z(D3) = {e}.

(2) The centre of a cyclic group 〈g〉 is the group itself, as any gi commutes with
any gj . (This uses that the addition for the exponents (in Z) is commutative.)

Proposition 3.9. The centre Z(G) of a group G is a normal subgroup of G.

Proof. We first verify that Z(G) is indeed a subgroup (which is not quite obvious
from the way it is defined).
Let x and y be in Z(G), i.e. xg = gx and yg = gy for any g ∈ G.
Then xy ∈ Z(G) as well (we use alternating associativity and commutativity):
(xy)g = x(yg) = x(gy) = (xg)y = (gx)y = g(xy).
Also x−1 is in the centre: from inverting both sides of xg = gx for all g ∈ G we
find g−1x−1 = x−1g−1 for all g, but with g also g−1 runs through G.
Moreover, for each x ∈ Z(G) we have that its conjugacy class cclG(x) = {gxg−1 |
g ∈ G} equals {x} (cf. above remark). In particular Z(G), obviously equal to the
union of its elements, is also equal to the union of the corresponding conjugacy
classes. By Proposition 3.3 we find that Z(G) is normal in G. �

Example 3.10: (centres of abelian groups, of GL2(R) , of Sn , of Dn )
(1) The centre of an abelian group is the group itself. [[ Clearly, every element

is in the centre as it commutes with any other element. ]]
(2) A more ambitious example is the group G = GL2(R). The condition to

commute with all the other matrices in G can be pinned down by looking

at specific matrices, e.g. g =
(

1 1
0 1

)
and its transpose. Equating(

a b
c d

)(
1 1
0 1

)
=
(
a a+ b
c c+ d

)
and (

1 1
0 1

)(
a b
c d

)
=
(
a+ c b+ d
c d

)
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implies that we must have c = 0 and a = d.
In a similar way, we find that b = 0 must hold (use the inverse of g above).

Conversely, we can easily see that any matrix satisfying these three con-
ditions c = 0, a = d and b = 0, i.e. which is of the form a · Id for Id the
2 × 2–identity matrix, does indeed commute with every other matrix (all
entries are simply multiplied by a when multiplying with a · Id either on
the left or on the right).

Conclusion: Z(GL2(R)) = {a · Id | a 6= 0}. (Note that the zero matrix
does not lie in GL2(R).)

(3) (Foreshadowing.) The centre of the symmetric group (defined below in Def.
4.1) Sn is trivial whenever n ≥ 3 .

(4) (Foreshadowing.) The centre of the dihedral group Dn is trivial whenever
n ≥ 3 is odd, and equal to {e, rn/2} whenever n is even.

Aside. The last example gives rise to an interesting quotient: since Z(G) is a
normal subgroup of G, we can always form the quotient group G/Z(G). In the case
of an abelian group, this quotient is the trivial group, while in the case of D3 the
quotient is isomorphic to D3 itself.
For G = GL2(R), the quotient can be identified with the so-called fractional linear
transformations of the complex numbers: a typical fractional linear transformation

looks as follows: for
(
a b
c d

)
∈ GL2(R), the map x 7→ ax+ b

cx+ d
defines a transfor-

mation of the complex numbers (minus the real numbers, to make sure it is well-
defined: we want to avoid x = −d/c which would introduce a pole) into themselves.
This assignment provides a group homomorphism (of a matrix group to a group of
functions) with kernel precisely the centre Z(GL2(R)) (the diagonal entries cancel
in the fraction).

4. Permutation groups

How can we actually “pin down” a group? One of the most important sets of
groups is formed by permutation groups. In fact, we will see that, in a sense, any
group can be viewed as some kind of permutation group. This will often enable us
to get a reasonable grip on a group (or rather on its objects).

4.1. Permutations and cycles.

Definition 4.1 (permutation, symmetric group). A permutation of a non-empty
set X is a bijection (i.e. injective and surjective map) from X to itself. We put

SX = {bijections : X → X} .

In particular, we will use the shorthand

Sn := S{1,...,n}

for n ≥ 1, which is called the symmetric group on n letters.

Fact. (SX , ◦) becomes a group where the binary operation “◦” is the composition
of functions.
[[ Associativity holds for composition of functions in general, the identity element of
that group is simply the identity function on X, and the inverse of a bijection is
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given by reversing the association of objects: if σ(gi) = g′i, then for σ−1 we have
σ−1(g′i) = gi. ]]

Lemma 4.2. #Sn = n! for any n ≥ 1.

[[ How many choices do we have for a bijection σ : {1, . . . , n} → {1, . . . , n}? Fix the
image of “1” (we have n choices), then the image of “2” (only n − 1 choices left),
. . . , then finally the image of n (only one choice). All these choices are independent
of each other, hence the overall number of possibilities is the product of all of them,
i.e. equal to n(n− 1) · · · 2 · 1 = n! . ]]

Notation 4.3: Any permutation of {1, . . . , n} can be more concisely written by
inserting the image of each element below it: for instance the permutation σ :
{1, 2, 3} → {1, 2, 3} given by σ(1) = 3, σ(2) = 1, σ(3) = 2, will often be written
as (

1
3

2
1

3
2

)
.

Definition 4.4 (k-cycle, transposition). Specific permutations in Sn are cycles
of length k or k-cycles (1 ≤ k ≤ n), which are bijections for a given subset
{i1, . . . , ik} of size k of {1, . . . , n} as follows:

σ(i1) = i2, σ(i2) = i3, . . . σ(ik−1) = ik, σ(ik) = i1,
and which leave all the other elements in {1, . . . , n} \ {i1, . . . , ik} fixed.
We will write such a k-cycle in the above notation as(

i1
i2

i2
i3

. . .
ik
i1

)
,

or even more concisely as
(i1 i2 . . . ik) .

Cycles of length 2, i.e. of the form (i1 i2) , are called transpositions.

Remark 4.5: Note that the way to write a k-cycle is not unique, we could have
also written it as (i2 i3 . . . ik i1) or (i3 i4 . . . i1 i2) etc.; overall there are precisely
k ways to write the cycle in that more concise form.

Definition 4.6 (disjoint cycles). Two cycles are called disjoint if their members
do not intersect.

For example, the cycles (1 3 5) and (2 4) in S5 are disjoint, while (1 3 5) and (1 2 4)
are not (they share the common member “1”).

Lemma 4.7. (1) Disjoint cycles commute with each other.
(2) Every permutation is a product of disjoint cycles, and in an essentially

unique way. (“Essentially” meaning: up to ordering the individual cycles
and up to the k different ways to write a given k-cycle.)

[[ As to (1), bijections of two disjoint subsets of a given set do not affect each other;
this applies in particular to the product of two disjoint cycles. As to (2), each
bijection σ of {1, . . . , n} is subdivided into bijections of subsets; maybe think of
a graph with n vertices labelled by 1, . . . , n with two vertices i and j connected
by a directed edge from i to j whenever σ(i) = j, then the disjoint cycles of σ
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correspond to the different components of the graph (there might be individual
vertices as components). ]]

Example 4.8: (different ways to write a permutation in cycle form) The following
permutation on the left is written on the right as a product of disjoint cycles:(

1
5

2
3

3
2

4
1

5
4

6
8

7
9

8
7

9
6

10
10

)
= (1 5 4)(2 3)(7 9 6 8)(10) .

Another way to write it in the cycle notation would be (2 3)(7 9 6 8)(10)(1 5 4) , or
e.g. (3 2)(6 8 7 9)(10)(5 4 1). Overall, there are 3 · 2 · 4 · 1 · 4! different ways to write
the given permutation in cycle form (the first 4 factors coming from the ambiguity
of writing the individual k-cycles (for k = 3, 2, 4 and 1, respectively, and the final
4! coming from the fact that disjoint cycles commute).

4.2. How to compose/multiply two cycles? It is not completely obvious how
to multiply two cycles. We compose the two corresponding bijections to a new
bijection. (The notation we are using is slightly counterintuitive, as one needs to
work “from right to left”. Some authors use the opposite notation (going from left
to right), which has the disadvantage that in order to have a consistent notation
they then need to write functions on the right, i.e. (x)f rather than f(x) as we are
used to.)
Example 4.9: (for multiplying two cycles). We give an example using the following
permutations (of {1, . . . , 5}) denoted σ and τ :

σ =
(

1
4

2
3

3
1

4
5

5
2

)
, τ =

(
1
2

2
3

3
4

4
1

5
5

)
.

Composing the two permutations σ ◦ τ corresponds to applying τ first and then σ,
i.e.

σ ◦ τ =
(

1
3

2
1

3
5

4
4

5
2

)
.

We can achieve this by first writing τ and then writing underneath σ, but rearranged
in such a way as to let the top line of σ agree with the bottom line of τ :(

1
2

2
3

3
4

4
1

5
5

)(
1
4

2
3

3
1

4
5

5
2

) rearranged to

(
1
2

2
3

3
4

4
1

5
5

)(
2
3

3
1

4
5

1
4

5
2

)
and then simply drop the intermediate (red) rows altogether.

Notation 4.10: One important simplifying convention is to drop all the 1-cycles
(j) when writing a product of cycles. So the cycle (1 3 5)(2)(4) in S5 will be hence-
forth denoted (1 3 5) only—in general, if it is clear in which group Sn we are working
then the missing 1-cycles can easily be reconstructed: simply add a 1-cycle for each
number ≤ n missing in the product of cycles.
Moreover, we will drop the ◦ signs.

Example 4.11: (for multiplying two transpositions). Multiply σ = (1 2) and τ =
(1 3) in S3 to

σ ◦ τ = (1 2)(1 3) =

(
1
3

2
2

3
1

)(
3
3

2
1

1
2

) =
(

1
3

2
1

3
2

)
and the latter can also be written in our even shorter notation as (1 3 2).
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Lemma 4.12. The conjugate of a transposition is again a transposition.

Proof. Since we know that each permutation is a product of transpositions we can
immediately reduce the statement to showing that the conjugate of a transposition
(a b) by a transposition (c d) is another such.
There are three cases: (0) if {a, b} and {c, d} are disjoint then the cycles commute
and (c d)(a b)(c d)−1 = (a b), indeed a transposition.
(1) if {a, b} and {c, d} have exactly one member in common, say b = c , then we
can compute

(b d)(a b)(b d)−1 = (a d) ,
a transposition as claimed.
(2) if {a, b} and {c, d} agree (as sets) then obviously the result is (a b) . �

4.3. The sign of a permutation.

Proposition 4.13. (a) Any σ ∈ Sn can be written as (also called “factored
into”) a product of transpositions.

(b) The parity of the number of transpositions needed in any factorization of
σ ∈ Sn is the same. In particular, this number is well-defined modulo 2.
An element with disjoint cycles of lengths k1, . . .km has order lcm(k1, . . . , km).

Proof. (a) It suffices to write any given k-cycle (k ≥ 2) as a product of transposi-
tions. A possibility for the latter is as follows (cf. Sheet 2, Q1):

(1 2 · · · k) = (1 k)(1 k − 1) · · · (1 2) .

(b) Suppose there is an element σ ∈ Sn, which decomposes both into an even
number σ = τ1 · · · τ2r (r ≥ 1) and an odd number σ = τ ′1 · · · τ ′2s+1 (s ≥ 0) of
transpositions τi, τ ′j .
Then we can write the identity as a product of an odd number of transpositions.

e = σσ−1 = τ1 · · · τ2rτ ′2s+1 · · · τ ′1 .
(Here we used that a transposition is of order 2, hence is its own inverse.)
Hence we have reduced the claim to showing that e cannot be written as an odd
number of transpositions.
So let’s suppose, for a contradiction, that

(1) e = τ1 · · · τ2m+1 (τi transpositions) ,

and such that m is minimal with this property. Then we get successively the
following claims:
(i) Clearly m > 0 .
(ii) Up to relabelling permutation indices, we can assume τ1 = (1 2) .
(iii) Moreover, we can assume that the first transpositions τ1, . . . , τ` (` > 0) all
contain a “1” while the others τ`+1, . . . , τ2m+1 do not.
[[ If a, b, c ∈ {1, . . . , n} are mutually different and all 6= 1 then we have

(a b)(c 1) = (c 1)(a b) and (a b)(b 1) = (1 a)(a b) ,

which implies that we can shift all the transpositions containing a “1” to the left—
note that we do not change the number of transpositions involved, hence the min-
imality property of m is preserved under this. ]]
Summarising the above, we can write w.l.o.g. τ1 = (1 a1), . . . , τ` = (1 a`) .
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(iv) In the presentation just given (i.e. with τ1 = (1 a1), . . . , τ` = (1 a`) ) not all
the a1, . . . , a` can be mutually different.
[[ Otherwise we could combine them to an (`+ 1)–cycle τ1 . . . τ` = (1 a` a`−1 . . . a1)
which does not fix “1”, contradicting the fact that in Eq. (1) the left hand side e
and all the other τj (j = `+ 1, . . . ,m) on the right hand side fix “1”. ]]
(v) Hence we can assume ai = aj for some i, j with 1 ≤ i < j ≤ `, so we can write

(2) τ1 · · · τ` = (1 a1) · · · (1 ai−1)(1 ai)(1 ai+1) · · · (1 aj−1)(1 aj)(1 aj+1) · · · (1 a`) .

Now insert the identity element in the form e = (1 ai)(1 ai) (the same index i) into
each slot between i+ 1 and j − 1 , to get

τ1 · · · τ` = (1 a1) · · · (1 ai−1) (1 ai)(1 ai+1)(1 ai)︸ ︷︷ ︸
=(ai ai+1)

(1 ai) · · · (1 ai) (1 ai)(1 aj−1)(1 aj)︸ ︷︷ ︸
=(ai aj−1)

(1 aj+1) · · · (1 a`) .

It remains to notice that this expression has two transpositions less than Eq. (2),
contradicting the minimality of m.

For (c) first check the case m = 1, then show that any element raised to L =
lcm(k1, . . . , km) indeed becomes the identity (use that disjoint cycles commute)
and then show that any proper divisor of L (i.e. different from L) does not suffice.
�

Each Sn has a distinguished subgroup, denoted An (“A” for ”alternating”),
which has half the size of Sn. We can characterise it using the following numerical
invariant.

Definition 4.14. The sign of a permutation σ ∈ Sn is defined as

sgn(σ) = (−1)t ,

where t denotes the number of transpositions needed in a factorization of σ.

Remark 4.15: By the previous proposition, the number t is well-defined modulo
2, hence sgn is indeed well-defined. We can obtain it in a slightly more economical
way as follows: let σ ∈ Sn be a permutation whose (essentially unique) cycle
decomposition is a product of cycles of length k1, . . . , kr. Then the sign of the
permutation σ is given by

sgn(σ) = (−1)(k1−1)+···+(kr−1) ,

i.e. sgn(σ) is equal to 1 if
∑r
i=1 ki has the same parity as r, and otherwise it is

equal to −1.

Example 4.16: (parity for cycles of a given length)

(1) A transposition has the parity −1.
(2) Any k-cycle has the parity k−1: write (i1 i2 . . . ik) = (i1ik)(i1ik−1) · · · (i1 i2).

Lemma 4.17. For n ≥ 2, the function sgn provides a surjective homomorphism of
groups

sgn : Sn → {±1} .
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Proof. Suppose we can write σi as a product of ti transpositions (i = 1, 2).
We need to check that sgn(σ1σ2) = sgn(σ1)sgn(σ2) for any σ1, σ2 ∈ Sn. But this
is simply a consequence of the fact that we can write σ1σ2 in terms of t1 + t2
transpositions by composing the t1 transpositions for σ1 with the t2 transpositions
for σ2.
Surjectivity is obvious as there is at least one transposition in Sn. �

4.4. Even permutations and the alternating group An .

Definition 4.18. A permutation σ in Sn is called even if sgn(σ) = 1, otherwise it
is called odd.
The kernel of sgn : Sn → {±1} is called the alternating group An, i.e.

An = {σ ∈ Sn | σ is even} .

Proposition 4.19. (1) The group An is normal in Sn.

(2) #An =
n!
2
.

(3) The group An is generated by 3-cycles.

Proof. (1) Clear, as An is the kernel of a group homomorphism.
(2) Clearly multiplying an even permutation by a transposition gives an odd permu-
tation and vice versa. So a given fixed transposition produces a bijection between
even and odd permutations in Sn (and there are no others). This implies the state-
ment.
(3) Write σ ∈ An as a product of an even number of transpositions

(i1 j1)(i2 j2) . . . (i2r j2r) .

Then, starting from the left, combine two successive transpositions:
Case 1 (non-disjoint) can write (i j)(j k) = (j k i);
Case 2 (disjoint) can write (i j)(k `) = (i j)(j k)(j k)(k `) = (j k i)(k ` j). �

4.5. Subgroups of S4 and A4 .

Example 4.20: (of subgroups of A4 and S4):
(1) Consider the group generated by the element (1 2)(3 4) ∈ A4:

〈(1 2)(3 4)〉 = {(1 2)(3 4), e} .
This group is isomorphic to the only group of order 2 (up to isomorphism),
the cyclic group of that order, which we denote by Z2 .

(2) Similarly, considering the 3-cycle (1 2 3) we find

〈(1 2 3)〉 = {e, (1 2 3), (1 3 2)} ,
isomorphic to the cyclic group of order 3.

(3) Consider the group generated by two elements

〈(1 2)(3 4), (1 3)(2 4)〉 = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} .
which is isomorphic to the Klein 4-group.

(4) Subgroups in S4 which are not in A4 are, e.g., 〈(1 2)〉 (cyclic of order 2),
〈(1 2 3 4)〉 (cyclic of order 4) or 〈(1 2), (1 2 3)〉 which is isomorphic to S3 (we
find the isomorphism from S3 to this subgroup of S4 simply by adding the
1-cycle (4) to each of the six permutations).
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(5) A further subgroup of S4 but not of A4 is given by

〈r = (1 2 3 4) , h = (1 2)(3 4)〉 ,

which realises the symmetry group of a square, i.e. D4; we can check
r4 = e = h2 as well as hrh−1 = r−1 and then we can also verify that all
rihj for 0 ≤ i ≤ 3, 0 ≤ j ≤ 1 are mutually different.

5. Direct products of groups

One of the simplest way to build larger groups from smaller ones is by using the
direct (or Cartesian) product.

Lemma 5.1. The direct (also called Cartesian) product G × H of two groups G
and H is also a group.

Proof. Recall that the direct (or Cartesian) product G×H of two groups G and
H is simply given by the pairs (g, h) with g ∈ G and h ∈ H. (Recall also that the
number of elements in the product is simply the product of the number of elements
in the groups from which we started.)
A structure of group on this product is given simply by working component-wise,
i.e. (g, h) ◦G×H (g′, h′) = (g ◦G g′, h ◦H h′) where the subscript of a ◦ indicates in
which group we take the composition.
The identity element in G × H is then the pair (eG, eH) of respective identity
elements eG ∈ G and eH ∈ H .
The inverse element of (g, h) ∈ G×H is given by (g−1, h−1) which obviously also
lies in G×H (since g−1 ∈ G as G is a group, and similarly h−1 ∈ H since H is
a group.). Check: (g−1, h−1) ◦G×H (g, h) = (g−1 ◦G g, h−1 ◦H h) = (eG, eH) which
is the identity element in G×H .

Example 5.2: (the direct product of two cyclic groups of the form Zn ).
The direct product of Z2 and Z3 is Z2 × Z3, which is given as a set by
{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.
Note that (a, b) denotes (a (mod 2), b (mod 3)) , i.e. the bars have a different
meaning in the first and second component!

The direct product given in the previous example is isomorphic to a group we
know better: Z6. How can we show this?

Lemma 5.3. There is an isomorphism between the groups Z2 ×Z3 and the group
Z6 .

Claim: We could cook up an explicit isomorphism as follows (note that we will
give a better general purpose “machinery” for testing if a group is isomorphic to a
product of two of its subgroup in the Theorem-Criterion below).
Clearly, the latter group Z6 is a cyclic group as it is generated by the single element
1 = 1 mod 6. So we try to find a single generator of the former group Z2 × Z3 as
well: indeed, (1, 1) does it. One easily checks that all (a, a) (0 ≤ a ≤ 5) are different
[[ if (a, a) = (b, b) for some a, b ∈ {0, . . . , 5} representing the respective cosets a and
b then comparing the first component gives that 2 divides b − a while comparing
the second component yields that 3 divides it, so overall 6 divides b− a; but both
a and b are between 0 and 5, so must agree ]] , hence we have listed all 2 · 3 elements
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of Z2 × Z3. In fact, we have even described the isomorphism:

ϕ : Z6 → Z2 × Z3

a mod 6 7→ (a mod 2, a mod 3)

and it is clear that this map respects the group laws, i.e. is a homomorphism: we
have for any a, b ∈ Z

ϕ(a mod 6 + b mod 6) = ϕ((a+ b) mod 6) = ((a+ b) mod 2, (a+ b) mod 3) ,

while

ϕ(a mod 6) + ϕ(b mod 6) = (a mod 2, a mod 3) + (b mod 2, b mod 3) .

Both right hand sides give the same element, as we add component-wise.
Conclusion: we have found a surjective homomorphism of groups of the same size.
This already implies that we in fact have found a group isomorphism: we can just
define the inverse map by “going backwards”: for (a mod 2, b mod 3) we can find
a integer 0 ≤ c ≤ 5 such that (c mod 2, c mod 3) = (a mod 2, b mod 3) (see above),
and then we map this to c mod 6 in Z6 . �

More generally, we have

Theorem 5.4. For m,n ≥ 1 we have

Zmn ∼= Zm × Zn ⇐⇒ gcd(m,n) = 1 .

Proof. The implication “⇐” is actually a consequence of the Chinese Remainder
Theorem for rings: Look at the ideal (n)Z = nZ = {nk | k ∈ Z} in the ring Z and
similarly at (m)Z as well as (mn)Z, and realise that Zn is the same as the factor
ring (also called quotient ring) Z/nZ.
Now forget about the ring multiplication, i.e. pass from the ring Zn (more precisely
the triple (Zn,+, ·)) to the group Zn (more precisely the pair (Zn,+)).
For the other implication we can assume that d = gcd(m,n) > 1 and put m′ = m/d
and n′ = n/d. Then gcd(m′, n′) = 1 and one can show that the order of any element
in Zm × Zn = Zm′d × Zn′d is at most m′n′d:

m′n′d(a, b) =
(
m′d︸︷︷︸
=m

(n′a), n′d︸︷︷︸
=n

(m′b)
)
,

and both components are indeed 0 in the respective groups.
But the group order of Zm × Zn is mn = m′n′d2 > m′n′d, and a cyclic generator
of it would have to have this order, which cannot exist as we just checked. �

6. Distinguishing and identifying groups

6.1. Using invariants under isomorphisms to distinguish groups. Although
we have encountered the definition of a direct product of groups and of an isomor-
phism of groups, it is quite instructive to see how these notions can be used to
identify or to distinguish groups.

Let us list a few very useful ideas for distinguishing two groups, i.e. to show that
they are not isomorphic to each other.

Lemma 6.1. An isomorphism preserves in particular
— the order of a group;
— the set of orders of elements (with multiplicity);



ALGEBRA II LECTURE NOTES EPIPHANY TERM 2014 15

— the property of being abelian/non-abelian.
The former two can be categorised as “numerical invariants” (under isomorphisms)
of the group, while the latter could be called a “structural invariant” (under isomor-
phisms).

Example 6.2: (of groups that have the same order but are not isomorphic to each
other)

(1) S3 and Z6 are not isomorphic.
There is an element of order 6 in Z6, but not in S3 (orders there are 1, 2
or 3).

(2) Recall that A4 has order 1
24! = 12, as does D6, and both are not abelian.

Could they be isomorphic?
The set of orders of elements in A4 is 1, 2 or 3 (we can find eight 3-cycles
and three products of two disjoint transpositions), but in D6 there is an
element of order 6.
So A4 6∼= D6.

6.2. Identifying a group as a product of subgroups. Another way to get a
grip on a given group (e.g. to reduce it to smaller building blocks) is two try and
write it as a direct product of two (or more) of its subgroups. For this we introduce
the following

Notation 6.3: For two subsets E1, E2 of a group (G, ◦) we put

E1 ◦ E2 := {e1 ◦ e2 | e1 ∈ E1, e2 ∈ E2} .

This allows us to formulate a very useful criterion for checking if a group is the
direct product of two of its subgroups. In fact, the implication “⇐” in the above
theorem can be proved easily using it.

Theorem-Criterion 6.4. Let H and K be subgroups of a group G such that the
following three conditions hold:

(1) H ◦K = G;
(2) H ∩K = {e};
(3) hk = kh ∀h ∈ H,∀k ∈ K.

Then we have
G ∼= H ×K .

Example 6.5: (1) The Klein 4-group V is given by the 4-element set V =
{e, a1, a2, a3} with the relations a2

i = e (1 ≤ i ≤ 3) and aiaj = ak if
{i, j, k} = {1, 2, 3} (*).
We will show that it is the direct product of two subgroups of order 2. Put
Hi = {e, ai} (1 ≤ i ≤ 3). Clearly each Hi is a subgroup [[ a−1

i = ai, so it
is closed under taking inverses ]] . In fact, there is only one group of order 2
up to isomorphism, and each Hi is isomorphic to it.
Moreover, Hi ∩Hj = {e} if i 6= j, and e.g. H1 ·H2 = {e, a1, a2, a1a2}, but
this equals V as a1a2 = a3.
By (*), elements in H1 and H2 commute with each other, so we can apply
the criterion to obtain

V ∼= H1 ×H2
∼= Z2 × Z2 .
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(2) We want to show that D6
∼= Z2 ⊗D3.

Recall that D6 is generated by two elements r and s of orders 6 and 2,
respectively, with the further relation (rs)2 = e or, equivalently, srs = r−1.
One shows that it consists of 12 elements, which we can choose as written
in the form risj (0 ≤ i ≤ 5, 0 ≤ s ≤ 1).
Choose the following two subgroups:
H = 〈r3〉, a subgroup of order 2, and
K = 〈r2, s〉 = {e, r2, r4, s, r2s, r4s}, a subgroup of order 6 which is a group
generated by r̃ = r2 and s with the relation (induced from D6) sr̃s = r̃−1

which we can obviously identify with D3 .

Let us check the three conditions of the criterion:
(a) Multiply each member of K from the left by r3, this will produce the

six elements in D6 which are not in K.
(b) H ∩K = {e} is clear.
(c) To show: r3 · (r2jsi) = (r2jsi) · r3 for any 0 ≤ j ≤ 2, 0 ≤ i ≤ 1.

But sr3 = r−3s = r3s, so any power of s commutes with r3, as clearly
does every power of r.

Conclusion: In light of our Theorem-Criterion we find D6
∼= H × K ∼=

Z2 ×D3 .

7. Permutation groups

Our next aim is to “uniformise” groups in a certain sense, in order to treat them
all from a common point of view, if needed. In fact, we will write every group
as a subgroup of some permutation group SX (the bijections of some (non-empty)
set X). In order to motivate this, let us consider a more geometric occurrence of
groups.

7.1. Cayley’s Theorem. In this subsection we want to make the statement precise
that each group can be seen as a permutation group. We will motivate this with
the following geometric example which allows us to view the rotational symmetries
of the cube in different ways as a permutation group.

Theorem 7.1. The group of rotational symmetries of the unit cube in R4 is iso-
morphic to S4.

Proof (idea): The following rotations of the cube exist. (We can view any
rotation as represented by an orthogonal 3×3–matrix, more precisely by an element
γ of SO3(R), and from Linear Algebra we obtain that one of the eigenvalues of γ
is 1, hence there is line through the origin which is fixed point-wise by γ. This will
give our rotation axis.)

(i) Rotation axis through two opposite face centres by an angle π/2, π or 3π/2
(and 0, of course).
This gives us 6

2 (face pairs) · 3 (non-trivial rotations) = 9 non-trivial
rotations.

(ii) Rotation axis through two opposite vertices by an angle 2π/3 or 4π/3 (and
0).
This gives us 8

2 (vertex pairs) · 2 (non-trivial rotations) = 8 non-trivial
rotations.
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(iii) Rotation axis through two opposite edges by an angle π (and 0).
This gives us 12

2 (edge pairs) · 1 (non-trivial rotations) = 6 non-trivial
rotations.

Overall, we find 9 + 8 + 6 = 23 non-trivial rotations; adding the trivial one, we
get 24 such rotations. �

We can now “realize” this group as a permutation group, in several different
ways. For example, we can try to keep track of what is happening to an indicative
subset of the cube, all elements should be somehow of a similar nature, for example
the set V of its vertices; or else the set F of its faces; or else the set E of its edges.

In the first case, we will recover the rotation group of the cube as a subset of
SV ∼= S8, in the second case as a subset of SF ∼= S6, and in the third case as a
subset of SE ∼= S12.

An even more economical way ensues if we take the set D of principal diagonals
of the cube, as we can recover the cube rotations as a subset of SD ∼= S4, and for
reasons of size—both sets are of order 24—we get that the two must agree.

The above are all instances of the following general fact.

Theorem 7.2. (Cayley) Each group (G, ·) is isomorphic to a subgroup of some
permutation group (SX , ◦).
In fact, we can take X to be the underlying set G.

Proof. The key idea is to assign to each element g ∈ G a permutation Lg (the
“left translation by g”) defined by

Lg : G→ G

h 7→ gh .

We are done if we can show that this assignment defines a group homomorphism
and moreover is injective.

[[ Check the claim that Lg is indeed a bijection:
• injectivity: if Lg(h) = Lg(h′), then gh = gh′, and by left cancellation (of g) in

G we find h = h′;
• surjectivity: for any k ∈ G we find g−1k whose image under Lg is indeed

Lg(g−1k) = k. ]]

Now put
G′ = {Lg ∈ SG | g ∈ G} ,

i.e. collect all left translations by elements in g ∈ G. This forms (so far only) a
subset G′ of SG.

Claim: G′ is indeed a group (in fact, a subgroup of (SG, ◦)).
• G′ is non-empty: the identity permutation Le represents the identity element

in SG (multiplying by e leaves each element in G invariant).
• closure under composition: for each Lg and Lh in G′ also have Lg ◦ Lh ∈ G′

(here the composition ◦ is taken in SG, i.e. this is a composition of bijections).
Indeed, it coincides with Lgh:

Lg ◦ Lh(k) = Lg(hk) = ghk = Lgh(k) ∀k ∈ G .
• G′ is closed under taking inverses as L−1

g = Lg−1 :

Lg−1 ◦ Lg(k) = g−1gk = k = Le(k) ∀k ∈ G .
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This settles the claim.

So far we have shown that the map

ψ : G→ G′

g 7→ Lg

is a homomorphism of groups.

Claim: ψ is in fact an isomorphism.
[[ Surjectivity holds by construction—note that ψ is a map with target G′, not SG.
Injectivity is straightforward, using right cancellation in G: suppose Lg = Lh,
i.e. Lg(k) = Lh(k) for any k ∈ G; then in particular can take k = e and find
g = Lg(e) = Lh(e) = h. ]]

This completes proof of the theorem. �

Example 7.3: (the Klein 4-group as a permutation group). Consider the Klein
4-group G = V = {e, a1, a2, a3}, where the elements ai are subject to the relations
a2
i = e, as well as aiaj = ak if {i, j, k} = {1, 2, 3}.

We want to show that G is isomorphic to a subgroup of the bijections SX where
X = {x1 = e, x2 = a1, x3 = a2, x4 = a3}.

The proof of Cayley’s Theorem suggests to take the following: if g = a1, then

Lg = La1 : e 7→ a1 · e = a1

a1 7→ a1 · a1 = e

a2 7→ a1 · a2 = a3

a3 7→ a1 · a3 = a2 .

Hence La1 simply corresponds to the permutation (x1 x2)(x3 x4).
In a similar way, La2 corresponds to (x1 x3)(x2 x4) and La3 corresponds to

(x1 x4)(x2 x3).
Now G′ = {Le, La1 , La2 , La3} forms a group by the theorem and is indeed a

subgroup of SX ∼= S4. �

(K LE)
A theorem of Cayley
announces rather gaily:
Any group can be seen—how astute!—
as consisting of things that permute.

H.G.

8. Group actions

8.1. The action of a group on a set. In the example of the group of rotations
of a cube, we had found natural homomorphisms of that group into SX where X
had the cardinality 4, 6, 8 or 12. All of the above are instances of the following
notion.
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Definition 8.1. An action of a group G on a (non-empty) set X is a homo-
morphism

ϕ : G→ SX .

In other words, for each g ∈ G we choose a permutation ϕ(g) of the set X such
that

ϕ(g) ◦ ϕ(h) = ϕ(gh) ∀g, h ∈ G .
In this case we will also say “the group G acts on X”.

Note 8.2: We neither assume ϕ to be injective nor surjective.

Example 8.3: (three examples of group actions) We give two rather different
examples of actions of Z on R.

(1) Let (Z,+) act on R by translation (using the usual addition in R):

ψ : Z→ SR

n 7→ Ln : R→ R , where Ln(r) = n+ r.

We check that this is indeed a group action: for any m, n ∈ Z we have

Lm ◦ Ln(r) = Lm(n+ r) = m+ (n+ r) ,

on the other hand we have

Lm+n(r) = (m+ n) + r .

Hence indeed Lm ◦ Ln = Lm+n by associativity in R.
[[ Note the different binary operations in Z(< R) and in SR. ]]

(2) Let (Z,+) act on R by multiplication of its “parity” (using the usual ring
multiplication in R):

ϕ : Z→ SR

n 7→Mn : R→ R , where Mn(r) = (−1)nr.

We check that this is indeed a group action: for any m, n ∈ Z we have

Mm ◦Mn(r) = Mm((−1)nr) = (−1)m((−1)nr) ,

on the other hand we have

Mm+n(r) = (−1)(m+n)r .

Hence indeed Mm ◦Mn = Mm+n by the usual exponentiation rules.
Note that ϕ is not injective here: M2k = M2` and M2k+1 = M2`+1 for
any k, ` ∈ Z .

(3) A more geometric example is the following: we define a group action of
(Z4,+) on X = {vertices v1, . . . , v8 of a cube} by fixing an axis through
two opposite face centres and denote by r the rotation by an angle of π

2 .
Then ϕ : Z4 → SX induces the following permutations (after suitable
labeling of the vertices): 1 maps to the permutation induced by the rotation
r, i.e.

1 7→ (v1 v2 v3 v4)(v5 v6 v7 v8)
2 7→ (v1 v3)(v2 v4)(v5 v7)(v6 v8)
3 7→ (v4 v3 v2 v1)(v8 v7 v6 v5)
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while the identity element in Z4, i.e. 0, under a group homomorphism must
maps to the identity pelement in the target group which here is the identity
permutation e = (v1)(v2)(v3)(v4)(v5)(v6)(v7)(v8) in SX .

In this last example we have seen that, for any of the images, the vi
for i = 1, . . . , 4 never mingle with the ones for i = 5, . . . , 8. So in a sense
we have taken a set X of “unnecessarily large” size, as we could have
easily made do with v1 . . . , v4 and would have obtained almost the same
assignment as above except that we would simply forget v5, . . . , v8.

8.2. Orbits and stabilisers.

Definition 8.4. Let ϕ : G → SX be a group action (of G on the set X), then for
any x ∈ X define

(1) G(x) := { ϕ(g)︸︷︷︸
a permut.

(x) | g ∈ G}, called the (G–)orbit of x inside X;

(2) Gx := {g ∈ G | ϕ(g)(x) = x}, called the stabiliser of x in G.

Lemma 8.5. For any x ∈ X the stabiliser subgroup Gx is a subgroup of G.

Proof. We check the following properties: • Gx is non-empty: ϕ(e) , the identity
permutation, clearly fixes any x ∈ X ; hence e ∈ Gx .
• Gx is closed under taking products: let g, h ∈ Gx , show gh ∈ Gx .

[[ϕ(g)(x) = ϕ(h)(x) = x imply ϕ(g)
(
ϕ(h)(x)︸ ︷︷ ︸

=x

)
= ϕ(g)(x) = x, whose left hand side

is ϕ(gh)(x) since ϕ is a homomorphism. ]]
• Gx is closed under taking inverses: for g ∈ Gx show g−1 ∈ Gx.

[[ϕ(g−1)(x) = ϕ(g−1)
(
ϕ(g)(x)︸ ︷︷ ︸

=x

)
= ϕ(g−1g)(x) = x. ]]

By the subgroup criterion we have shown the claim. �

Example 8.6: (revisited)
(1) Let G = Z act on X = R by translation as above.

ψ : Z→ SR

n 7→ Ln : R→ R , Ln(r) = n+ r .

Find the orbits and stabilisers under this action:
for any x ∈ R we get its orbit as

G(x) = {ψ(n)(x) | n ∈ Z} = {n+ x | n ∈ Z} ⊂ R ;

and its stabiliser as

Gx = {n ∈ Z | n+ x = x} = {0} .
(2) G = Z acts on X = R via

ϕ : Z→ SR

n 7→ ϕ(n) : R→ R , ϕ(n)(r) = (−1)nr

and gives rise to orbits

G(x) = {ϕ(n)(x) | n ∈ Z} = {(−1)nx | n ∈ Z} = {x,−x} .
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Case x 6= 0: this set has two elements.
Case x = 0: this set has a single element.
Stabilisers: Gx = {n ∈ Z | ϕ(n)(x) = x} = {n ∈ Z | (−1)nx = x}.
Case x 6= 0: Gx = {n ∈ Z | n even} = 2Z.
Case x = 0: G0 = {n ∈ Z} = Z.

(3) In our more geometric example let G be the rotations of the cube around
a fixed axis through two opposite face centres (at left and right, say) and,
for a change, X the edges of a cube, we find three orbits: for x any edge
“on the left”: G(x) consists of all edges on the left, similarly for the edges
“on the right”, and for the edges “in the middle”.
• All orbits are of size 4.
• The stabilisers are all Gx = {e}, as no edge is fixed by any of the non-
trivial rotations.

(4) Check for yourself the following example: Let R act on C by letting r ∈ R
act as the rotation ϕ(r) : C→ C mapping x to ϕ(r)(x) := eirx. What are
the orbits and stabilisers for a given x ∈ C (treat x = 0 separately)?
[Note that the orbits under this action probably agree with the colloquial
meaning of “orbits” (e.g. of planets around a star, or a satellite around the
earth etc.).]

Notation 8.7: The above is a rather clumsy notation, so we introduce an impor-
tant shortcut:
We usually leave out the homomorphism ϕ : G → SX in the notation when we
compute with group actions, so we will replace

ϕ(g)(x) simply by g(x) ∀g ∈ G,∀x ∈ X .

Example 8.8: (for how the shorthand notation is typically used) In particular, we
rewrite
Gx = {g ∈ G | g(x) = x} and ϕ(g)

(
ϕ(h)(x)

)
= g
(
h(x)

)
.

8.3. Orbits partition the underlying set X .

Proposition 8.9. Let G act on a set X (and ϕ : G → SX be the action). Then
the distinct orbits G(x) where x runs through X, partition X, i.e.

(1) each orbit is a non-empty subset of X;
(2) the union of all orbits is the whole set X;
(3) orbits are either disjoint or they coincide.

Proof.
(1) Clearly ϕ(e) is the identity permutation, so G(x) must contain ϕ(e)(x), i.e.

x itself.
(2) Any x ∈ X is in at least one orbit (in fact, in G(x)).
(3) Suppose z ∈ G(x) ∩ G(y) for some x, y ∈ X, in particular we can write

z = g1(x) and z = g2(y). Then

x = g−1
1

(
g1(x)

)
= g−1

1

(
g2(y)

)
∈ G(y) .

What is more, any w ∈ G(x) also lies in G(y):
w ∈ G(x) means w = g3(x) for some g3 ∈ G, so w = g3(x) = g3

(
g−1
1 (g2(y))

)
=

(g3g−1
1 g2)(y) ∈ G(y).

Hence G(x) ⊂ G(y), and swapping roles of x and y we obtain the reverse
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inclusion.
Conclusion: G(x) = G(y). �

Remark 8.10: To be in the same orbit under a group action defines an equivalence
relation.

8.4. Actions of a group on itself. There are two important ways in which a
group G acts on itself, i.e. we can put X = G.

(1) by left translation (as in the proof of Cayley’s Theorem):
g ∈ G acts on h ∈ G by g(h) = gh.
The orbit of any h is given by G(h) = {gh | g ∈ G} = G.
The stabiliser of any h is given by Gh = {g ∈ G | g(h)︸︷︷︸

=gh

= h} = {e}.

(2) by conjugation:
Here we have the homomorphism ϕ : G→ SG sending g ∈ G to the bijection

ϕ(g) : G→ G

h 7→ ghg−1 .

Using our new shorthand, this expresses as follows: g ∈ G acts on h ∈ X(=
G) by

g(h) = ghg−1 .

Check: this really gives a homomorphism.
[[ gg′(h) = (gg′)h(gg′)−1 = g

(
g′hg′−1

)
g−1 = g

(
g′(h)

)
. ]]

Note that here the parentheses in red have a different meaning from the paren-
theses in black.

8.5. Conjugacy revisited. Recall that two elements g and g′ in a group G are
conjugate (to each other) if there is an h ∈ G such that g′ = hgh−1. The above
example shows that a group acts on itself by conjugation. Hence we find

Lemma 8.11. The orbit under conjugation of g ∈ G is the conjugacy class of g
(in G).

Example 8.12 (Conjugacy classes in abelian groups):
(0) (the conjugacy class of the identity element)

The set {e} consisting of the identity element e in a group G forms a
conjugacy class of its own:

G(e) = {g(e) | g ∈ G}
= {geg−1 | g ∈ G}
= {e | g ∈ G} = {e} .

(1) (conjugacy classes of a cyclic group, written multiplicatively)
Consider the cyclic group of order n ≥ 1 as a subgroup of C:

Cn = {e2πik/n | k ∈ Z}
= {e2πik/n | k ∈ Z}
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Cn is abelian (as a subgroup of the group (C∗, ·), the units in the field
(hence also ring) C), and so by the item (2) below its conjugacy classes are
given by

{e0}, {e2πi/n}, . . . , {e2πi(n−1)/n} .
(2) (the conjugacy classes in an abelian group)

In an abelian group G, any conjugacy class is of size equal to 1: fix g ∈ G,
then

G(g) = {g′(g) | g′ ∈ G}
= {g′gg′−1 | g′ ∈ G}
= {gg′g′−1 | g′ ∈ G} (g′g = gg′ as G is abelian)
= {g | g′ ∈ G} = {g} .

Conversely, suppose G acts on itself by conjugation and each conjugacy
class is of size 1, then G must be abelian.

[[ Pf: Take g, h ∈ G, we have to prove gh = hg, i.e. ghg−1 = h.
But ghg−1 is in the orbit

G(h) = {g′(h) | g′ ∈ G} = {g′hg′−1 | g′ ∈ G}
of h, as in particular we can take g′ = g.
By assumption, this orbit has a single element, and putting g′ = e, we
conclude that this element must be h, so ghg−1 and h have to agree. ]]

In summary, we get

Proposition 8.13. Conjugacy classes of G are all of size 1 ⇔ G is abelian.

Example 8.14: (ctd).
(3) (the conjugacy classes in S3 )

We have seen already much earlier that the symmetric group S3 has two
non-trivial conjugacy classes, one consisting of the order 3 elements {(1 2 3), (3 2 1)}
and another one of the elements of order 2, i.e. by {(1 2), (2 3), (3 1)}. One
easily checks that G(1 2 3) = G(3 2 1) = 〈(1 2 3)〉 = {e, (1 2 3), (3 2 1)} and
that G(1 2) = 〈(1 2)〉 and similar for G(2 3) and G(3 1) .

(4) (the conjugacy classes and stabiliser groups of D5 )
The dihedral group

D5 = 〈r, h | r5 = e = h2, hrh−1 = r−1〉
has its elements listed as {rjhi | 0 ≤ j ≤ 4, 0 ≤ i ≤ 1}.
The conjugacy class of rk in D5 for any fixed k (0 ≤ k ≤ 4) can be computed
as follows

cclD5(rk) = {(rjhi)rk(rjhi)−1 | 0 ≤ j ≤ 4, 0 ≤ i ≤ 1}
= {rjhirkh−ir−j | 0 ≤ j ≤ 4, 0 ≤ i ≤ 1}
= {rjrkr−j | 0 ≤ j ≤ 4}︸ ︷︷ ︸

i=0

∪{rjhrkh−1r−j | 0 ≤ j ≤ 4}︸ ︷︷ ︸
i=1

= {rk} ∪ {rj hrkh−1︸ ︷︷ ︸
r−k

r−j | 0 ≤ j ≤ 4}

= {rk} ∪ {r−k} .
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This latter set has two elements for 1 ≤ k ≤ 4, and one element for k = 0.
Similarly, any other element in D5 can be written as rkh, with k fixed,

and we find for the conjugacy class

cclD5(rkh) = {(rjhi)rkh(rjhi)−1 | 0 ≤ j ≤ 4, 0 ≤ i ≤ 1}
= {rjhirkhh−ir−j | 0 ≤ j ≤ 4, 0 ≤ i ≤ 1}
= {rjrkhr−j | 0 ≤ j ≤ 4}︸ ︷︷ ︸

i=0

∪{rjhrkr−j | 0 ≤ j ≤ 4}︸ ︷︷ ︸
i=1

= {rjrkrjh | 0 ≤ j ≤ 4} ∪ {rjrj−kh | 0 ≤ j ≤ 4}

and both sets on the right hand side agree; they can be written as

{rih | 0 ≤ i ≤ 4} .

Summary: the conjugacy classes of D5 are

{e}, {r, r−1} = {r4, r−4}, {r2, r−2} = {r3, r−3}, {h, rh, r2h, r3h, r4h} .

These are the orbits under conjugation.
The corresponding stabilisers are

Ge = {g ∈ G | geg−1 = e} = D5 ,

Gr = 〈r〉 = Gr2 = Gr3 = Gr4 (5 elements in each)

Grkh = {e, rkh} (2 elements in each).

If we consider the size of the stabilisers in the above example and compare
them with the size of the respective orbits, we are led to the following pairs
(#G(e),#Ge) = (1, 10), (#G(r),#Gr) = (2, 5), (#G(rh),#Grh) = (5, 2),
and in each case the two numbers multiply to 10.

Let us also note for the record that some stabilisers are closely related to each
other.

Proposition 8.15. Suppose x lies in the G-orbit of y; then Gx and Gy are conju-
gate to each other, i.e.

Gx = hGyh
−1 for some h ∈ G .

Proof. By assumption x = h(y) for some y ∈ G. Now rewrite Gx in several steps:

Gx = {g ∈ G | g(x) = x}
= {g ∈ G | g(h(y)) = h(y)}
= {g ∈ G | h−1(g(h(y))) = h−1(h(y))︸ ︷︷ ︸

=y

} .

Now put g′ = h−1gh, so that g = hg′h−1. Then the right hand side can be written

= {hg′h−1 ∈ G | g′(y) = y}
= h{g′ ∈ G | g′(y) = y}h−1

= hGyh
−1 . �
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8.6. The Orbit-Stabiliser Theorem. In Example 8.14 we had seen that orbit
size |G(x)| times stabiliser size |Gx| seems to be the same, independent of x ∈ X.
This is an illustration of (a consequence of) a general phenomenon, which we are
aiming at: the Orbit-Stabiliser Theorem. For this, recall the notion of equivalence
relation on a set X: it is a binary relation ∼ on X (i.e. we attach a value [here
Boolean, “true” or “false”] to each pair of elements in X), satisfying the following
three conditions (R) “reflexivity”: x ∼ x, (S) “symmetry”: if x ∼ y then y ∼ x and
(T) “transitivity”: if x ∼ y and y ∼ z then x ∼ z.

Fact 8.16: Now note that being in the same left coset with respect to a subgroup
H in a group G defines an equivalence relation, and that the cosets w.r.t. H all
have the same size.

Hence we can formulate:

Theorem 8.17. (Orbit-Stabiliser Theorem.) Suppose G acts on a set X . Then
for any x ∈ X there is a bijection

β : G(x) 1:1−→ {left cosets of Gx in G}
g(x) 7→ gGx .

Proof. The proof becomes rather straightforward once we realise the following
equivalence: for any g and h ∈ G

g(x) = h(x) ⇔ g−1g(x) = g−1h(x) (multiply on the left by g−1)
⇔ x = g−1h(x)
⇔ g−1h ∈ Gx (by definition of stabiliser)
⇔ g−1hGx = Gx (as Gx is a subgroup)
⇔ hGx = gGx .

Now we use the above equivalence to establish the following two statements.
(i) Well-definedness of β (simply use implication “⇒” from the above).
(ii) Injectivity of β (use implication “⇐” from the above).

It remains to verify surjectivity of the map given. So suppose that we are given a
coset C, then we need to write it in the form g̃Gx for some g̃ in G.
For g̃ we take any element of C (which is non-empty) and then show that C = g̃Gx:
Clearly g̃ = g̃e lies in g̃Gx, and hence C = g̃Gx [[ cosets either are disjoint or agree ]]
Then the element g̃(x) of G(x) is indeed mapped under β to β

(
g̃(x)

)
= g̃Gx = C,

establishing surjectivity of β. �

We will often use the following important consequence of the Orbit-Stabiliser The-
orem:

Corollary 8.18. If G is finite, acting on a finite set X, then for any x ∈ X we
have

|G(x)| · |Gx| = |G| ,
i.e. the size of its orbit G(x) is “complementary” to the size of its stabiliser Gx.

Proof. Taking sizes in the statement of the Orbit-Stabiliser Theorem we have

|G(x)| = |{left cosets of Gx in G}| . (∗)
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But all the cosets with respect to Gx have the same size, i.e.

|Gx| = |eGx| = |gGx| for any g ∈ G .

Hence |G|/|Gx| is the number of cosets w.r.t. Gx in G, and by (∗) above we find
indeed

|G(x)| = |G|
|Gx|

,

and the claim follows. �

Remark 8.19: Note that the statement of the corollary still makes sense if the set
X or the group G is infinite, by the usual rules of calculus of cardinal numbers, e.g.
∞ · n =∞ ·∞ =∞ (n > 0).

Corollary 8.20. If the finite group G acts on the finite set X, then the orbit lengths
divide the group order, i.e.

|G(x)| divides |G| for any x ∈ X .

In particular, the size of each conjugacy class in G divides |G|.

Example 8.21: (orbits and stabilisers under the action of Dn on itself by conju-
gation).
The dihedral group Dn, for n odd, has orbits and stabilisers as follows:

Elements e r r−1 r2 r−2 . . . r
n−1

2 r−
n−1

2 h rh . . . rn−1h

Orbits {e} {r, r−1} {r2, r−2} . . . {r n−1
2 , r−

n−1
2 } {h, rh, . . . , rn−1h}

Orb. sizes 1 2 2 . . . 2 n
Stabilisers Dn 〈r〉 〈r2〉 . . . 〈r n−1

2 〉 〈h〉, 〈rh〉, . . . , 〈rn−1h〉
Stab. sizes 2n n n . . . n 2

9. First structural results (Cauchy’s Theorem; groups of order 2p)

9.1. Cauchy’s Theorem. We are now aiming at our first structural results on
groups, using the notion of a group action. In one of the previous homeworks, we
have seen that the converse to Lagrange’s Theorem does not hold. Nevertheless,
we get a “partial converse” in the following statement, due to Cauchy.

Theorem 9.1 (Cauchy’s Theorem.). Let G be a finite group and p a prime such
that p

∣∣|G|. Then there is a subgroup of G of order p.

Proof. For the proof, we want to find an element x ∈ G such that xp = e, x 6= e.
The strategy is as follows: we will construct out of G a certain set having an order
divisible by p on which Zp acts. This action provides at least one non-trivial orbit
of length 1, and such an orbit will give an element of order p in G .

The clever idea is to look at

G×G× · · · ×G︸ ︷︷ ︸
p factors

[
:=
((

(G×G)×G
)
× . . .

)
×G

]
,
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which forms a group itself. (Why?) Moreover, we look at the subset

Ω := {(x1, x2, . . . , xp) | x1x2 · · ·xp = e} .

There is an action of the group Zp on G×G× · · · ×G by “cyclically shifting”,
i.e.

1 : (x1, x2, . . . , xp) 7→ (x2, x3, . . . , xp, x1)
and more generally

m : (x1, x2, . . . , xp) 7→ (xm+1, xm+2, . . . , xp, x1, . . . , xm) .

This action induces an action of Zp also on Ω.
[[ If (x1, x2, . . . , xp) ∈ Ω then x1x2 · · ·xp = e but then also x2 · · ·xp = x−1

1 and hence
x2 · · ·xpx1 = e, i.e. (x2, x3, . . . , xp, x1) ∈ Ω.
Inductively, one shows that (xm+1, xm+2, . . . , xp, x1, . . . , xm) ∈ Ω for any m =
1, . . . , p. ]]
Now we use that the order of any Zp-orbit in Ω divides the order of the group Zp
itself, i.e. divides p, so is either 1 or p.

There is one obvious orbit of size 1, given by

(e, e, . . . , e) ∈ Ω ⊂ G× · · · ×G .

We will now establish that there must be another such size-1-orbit, and this will
then provide an x with the desired properties (i.e. with xp = e, x 6= e).

First we determine the size of Ω in relation to the size of G.

|Ω| = |G|p−1 . (∗)

[[ This holds simply because we can choose x1, . . . , xp−1 independently in G and
then xp is already determined by the condition x1x2 · · ·xp = e (in fact, xp =
(x1x2 · · ·xp−1)−1). ]]
We know that Ω is partitioned into orbits under the Zp-action, and the correspond-
ing orbits have size 1 or p (as they need to divide the order of the group that is
acting), so we get a disjoint union of orbits

Ω =
⋃
{orbits of size 1} ∪

⋃
{orbits of size p} .

Taking sizes, this becomes

|Ω| =
∑

orbits of size 1

1 +
∑

orbits of size p

p ,

and the left hand side is divisible by p by (∗). Hence p also divides the left term on
the right hand side which counts the number of orbits of size 1 under the Zp-action.
For this to be possible, there must be at least one (in fact p− 1) such orbits of size
1 different from the one given above.
Any such orbit is necessarily of the form {(g, g, . . . , g)} for some g ∈ G, g 6= e.
Now we are done, as such a g satisfies (g, g, . . . , g) ∈ Ω, i.e. g · g · · · g︸ ︷︷ ︸

p factors

= e. �.

Here is a haiku (i.e.,with measure 5-7-5) that tries to capture the theorem’s content
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p, a lonely prime,
factor of a group G’s size,
claims a sub–Zp.

H.G.

9.2. Groups of order 2p . As a nice application of Cauchy’s Theorem, we get:

Theorem 9.2. Any group G of order 2p, where p is an odd prime, is either cyclic
or dihedral.

Proof. Cauchy’s Theorem immediately gives us the existence of an element a
of order 2 and an element b of order p. Putting B = 〈b〉, we see that B has order p
and so G partitions into two cosets of order p.
In fact, we claim that aB is a coset different from B [[ Clearly, any element in B
has odd order, while a is of order 2, so a /∈ B and hence aB 6= B. ]]
In order to check the dihedral relation which here amounts to aba−1 = b−1 we try
to find ba in any of the two cosets B and aB.
It cannot lie in the former, otherwise ba = bk for some k ∈ Z, whence a = bk−1 ∈ B
which we already excluded.
Hence there must be a k ∈ {1, . . . , p} such that ba = abk. We now find the
restrictions on k:

ba = abk

⇒ aba = bk multiply by a on left
⇒ b = abka multiply by a on right

= (aba) · · · (aba)︸ ︷︷ ︸
k factors

= bk as b = abka by the above

= (bk)k = bk
2

Hence (as b is of order p) we get for the exponents that k2 − 1 ≡ 0 (mod p), so p
divides one of the factors k − 1 or k + 1, hence k = 1 or k = p− 1.
In the first case, the group is cyclic, in the second case it is dihedral. �

Note 9.3: This result also holds for the prime p = 2 if we introduce D2 as the
group given by generators and relations Dn with formally putting n = 2. [[ Some
authors in fact do so. ]]
Now this D2 happens to be isomorphic to V , the Klein 4-group [[ try to establish
the relations that hold for the elements in V from the ones for D2, for example ]] ,
so is a bit different from the other dihedral groups in that it is commutative.

Why not celebrate our new structure theorem on groups with a limerick?

Twoxp
If a group has the size two times p
for that p a prime not less than 3,
apply ou-r sly trick
to show that it’s cyclic
or dihedral; what else could it be?

H.G.
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10. Conjugacy classes of Sn and An.

10.1. Cycle shapes. Recall that we had determined the conjugacy classes of S3

which are given by

{e}, {(1 2), (2 3), (3 1)} and {(1 2 3), (3 2 1)} .

We can see that each element in a given conjugacy class here has the same “shape”.
This is an instance of a more general phenomenon:

Definition 10.1 (cycles). Let x ∈ Sn , x 6= e , be written as a product of disjoint
cycles, i.e.

x = (a1 a2 . . . ak1) (b1 b2 . . . bk2) . . . (t1 t2 . . . tkr ) ,

where r ≥ 1, k1 ≤ k2 ≤ · · · ≤ kr, and of course n ≥ k1 + · · ·+ kr.
Then we say that x has cycle shape [k1, k2, . . . , kr].

Example 10.2: 1. The cycle shape of x = (1 2)(3 5 7)(8 9 4) is [2, 3, 3].
2. The cycle shape of x = (1 2)(3 5 7)(8 9 3) is not [2, 3, 3], as it is not a product
of disjoint cycles; instead we have x = (1 2)(5 7 3 8 9) , and so it is of cycle shape
[2, 5] .

Proposition 10.3. Let (i1 i2 . . . ik) be a k-cycle in Sn (n ≥ k). Then for any
g ∈ Sn we can read off the action of g on x by conjugation as

gxg−1 =
(
g(i1) g(i2) . . . g(ik)

)
,

where we view g as a permutation of {1, . . . , n} on the RHS.

Example 10.4: (reading off the action by conjugation on a cycle) Let x = (2 5 4) ∈
S5 and let g = (1 2 3 5 4) . Then, as a permutation, g satisfies g(2) = 3 , g(5) = 4
and g(4) = 1 , so the proposition implies that

g x g−1 =
(
g(2) g(5) g(4)

)
= (3 4 1) .

Indeed, we can check in our usual cycle notation that (1 2 3 5 4)(2 5 4)(4 5 3 2 1) =
(1 3 4), which agrees with the above.

Proof. Write T = {i1, . . . , ik} (i.e. the set of indices in the cycle form of x ). We
distinguish two cases.
Case 1: Let j ∈ T , then j = ir for some r ∈ {1, . . . , k} and we find

gxg−1
(
g(ir)

)
= g x(ir)︸ ︷︷ ︸

=ir+1

=

{
g(ir+1) if 1 ≤ r < k ,

g(i1) if r = k .

Case 2: Let j /∈ T , then gxg−1 leaves g(j) fixed:

gxg−1
(
g(j)

)
= g x(j)︸︷︷︸

=j

= g(j) .

Hence gxg−1 is the bijection of {1, . . . , n} that is given in cycle form by(
g(i1) g(i2) . . . g(ik)

)
. �
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10.2. Conjugacy classes and cycle shapes. Putting the above together for a
product of disjoint cycles gives:

Theorem 10.5. For x ∈ Sn the conjugacy class cclSn
(x) consists of all permu-

tations which have the same cycle shape as x .

Proof. Let x = (a1 a2 . . . ak1) (b1 b2 . . . bk2) . . . (t1 t2 . . . tkr
) be the product of

disjoint cycles of cycle shape [k1, k2, . . . , kr]. Then

gxg−1 = g(a1 a2 . . . ak1) (b1 b2 . . . bk2) . . . (t1 t2 . . . tkr
) g−1

= g(a1 a2 . . . ak1)g−1︸ ︷︷ ︸
=(g(a1) g(a2)...g(ak1 ))

g(b1 b2 . . . bk2)g−1︸ ︷︷ ︸
=(g(b1) g(b2)...g(bk2 ))

. . . g(t1 t2 . . . tkr
)g−1︸ ︷︷ ︸

=(g(t1) g(t2)...g(tkr ))

= (g(a1) g(a2) . . . g(ak1)) (g(b1) g(b2) . . . g(bk2)) . . . (g(t1) g(t2) . . . g(tkr )) ,

which has the same cycle shape as x [[ note that all cycles on the RHS are disjoint
as g is a bijection of {1, . . . , n} . ]]

On the other hand, given x and y of the same cycle shape,

x = (a1 a2 . . . ak1) (b1 b2 . . . bk2) . . . (t1 t2 . . . tkr ) ,
y = (a′1 a

′
2 . . . a

′
k1) (b′1 b

′
2 . . . b

′
k2) . . . (t′1 t

′
2 . . . t

′
kr

) ,

there is a bijection of {1, . . . , n} that sends a1 7→ a′1,. . . tkr 7→ t′kr
since all the

indices in the above product of cycles for x are mutually different (as well as for
y ). Hence we can view such a bijection (which in general is not unique) as an
element g ∈ Sn and we have gxg−1 = y (where we use the above proposition for
each of the cycles involved). �

Example 10.6: (Conjugacy classes in S4 ,S5 and S6 )
1. The conjugacy classes in S4 are given by

{e}, {(1 2), (1 3), (1 4), (2 3), (2 4), (3 4)},
{(1 2 3), (3 2 1), (2 3 4), (4 3 2), (3 4 1), (1 4 3), (4 1 2), (2 1 4)},
{(1 2 3 4), (1 2 4 3), (1 3 4 2), (1 3 2 4), (1 4 2 3), (1 4 3 2)},
{(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} .

Their cycle shapes are [1], [2], [3], [4], [2, 2] , respectively.
2. In S5 we get the same cycle shapes as for S4 , together with two new ones: [5]
and [2, 3] .
3. In S6 we get the same cycle shapes as for S5 , together with four new ones:
[6] , [4, 2] , [3, 3] and [2, 2, 2] .

Remark 10.7: For general n , we can enumerate the cycle shapes simply by run-
ning through all non-decreasing partitions of n and dropping the “1”s (except in
the degenerate case [1] ). So this gives us a complete list of conjugacy classes.

10.3. Number of elements in a conjugacy class of Sn . How many elements
are there in a given conjugacy class of Sn ?
Claim 1: For an m-cycle x = (a1 . . . am) ∈ Sn we get

|cclSn
(x)| = n(n− 1) . . . (n−m+ 1)

m
.
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[[ Pf: Counting all the possibilities for writing (a1 . . . am) with different ai ∈
{1, . . . , n}, we find n(n − 1) . . . (n − m + 1) [we have n choices for the first en-
try, then only n− 1 choices left for the second entry, etc.].
Then we realise that we overcounted by a factor of m since there are precisely m
ways to write a given m-cycle. ]]
Claim 2: If x ∈ Sn is of cycle shape [m1, . . . ,mr] with m1 < m2 < · · · < mr (in
particular all the mi are mutually different) then the number of elements for that
cycle shape is given by

γ(n;m1, . . . ,mr) := n(n−1)...(n−m1+1)
m1

· (n−m1)(n−m1−1)...(n−m1−m2+1)
m2

· · ·

· · ·
(
n−

Pr−1
i=1 mi

)(
n−(

Pr−1
i=1 mi)−1

)
...
(
n−(

Pr
i=1mi)+1

)
mr

.

[[ The proof is essentially the same as for Claim 1, together with induction on r . ]]
Claim 3: If x ∈ Sn is of general cycle shape [m1, . . . ,m1︸ ︷︷ ︸

s1

,m2, . . . ,m2︸ ︷︷ ︸
s2

, . . . ,mr, . . . ,mr︸ ︷︷ ︸
sr

] ,

still with m1 < m2 < · · · < mr (and s1, . . . , sr ≥ 1), then the number of elements
for that cycle shape is given by

γ(n;m1, . . . ,m1︸ ︷︷ ︸
s1

,m2, . . . ,m2︸ ︷︷ ︸
s2

, . . . ,mr, . . . ,mr︸ ︷︷ ︸
sr

)

s1! s2! · · · sr!
.

The reason for these factorial terms comes from the fact that disjoint cycles com-
mute, so if there are, e.g., s1 cycles of length m1 we have overcounted by a factor
of s1! since we can arbitrarily permute these cycles without changing the cycle
shape.

Example 10.8: (Sizes of conjugacy classes for S4 .) A conjugacy class consists of
all elements of a given cycle shape, hence we find the sizes of different conjugacy
classes by enumerating all the elements of a given cycle shape.
For S4 we get the following table.

Cycle shapes of S4 [1] [2] [3] [4] [2, 2]

Sizes 1 4·3
2 = 6 4·3·2

3 = 8 4·3·2·1
4 = 6

4·3
2

2·1
2

2 = 3

10.4. Sizes of conjugacy classes in An . Recall that An < Sn (i.e. An is a
subgroup of Sn , more precisely An consists of the even permutations in Sn and
|An| = 1

2 |Sn| =
n!
2 .

For any x ∈ An we have cclAn(x) ⊂ cclSn(x) ; just write down the definition of a
conjugacy class in each case.
We claim that both cases ( and = can occur.

Example 10.9: (1) For ( consider n = 3 and x = (1 2 3). We know that
cclS3(x) = {(1 2 3), (3 2 1)}.
But we have cclA3(x) = {(1 2 3)} 4 (A3 is abelian [why?], so all its conjugacy
classes have size 1).

(2) For = consider n = 5 and again x = (1 2 3) ; we know that cclS5(x) =
{all 3-cycles in S5} .
It turns out that cclA5(x) is the same. All we need to check by the following
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proposition is that x commutes with an odd permutation—we simply can
use (4 5) .

Proposition 10.10. Let x ∈ An with n ≥ 2.
(1) If x commutes with some odd permutation, then

cclAn(x) ⊂ cclSn(x) .

(2) If x does not commute with any odd permutation then

cclSn
(x) = cclAn

(x) ∪ cclAn

(
(1 2)x (1 2)

)
,

i.e. the conjugacy class in Sn splits into two conjugacy classes in An of
equal size with representatives x and (1 2)x (1 2) .

Pf. (i) Suppose x commutes with g ∈ Sn , g odd; i.e. we have g x = x g or,
equivalently, gxg−1 = x .
To show: any y ∈ cclSn

(x) (i.e. y = hxh−1 for some h ∈ Sn) we already have
y ∈ cclAn(x).
Clearly either h or hg is in An (one is even, one is odd), and both conjugate x into y
[[ for the former this is obvious, for the latter we use (hg)x(hg)−1 = h gxg−1︸ ︷︷ ︸

=x

h−1 =

hxh−1 = y . ]]
Conclusion: cclSn

(x) = cclAn
(x) in this case.

(ii) Assume now that x does not commute with any odd g ∈ Sn .
Claim: Then the stabiliser of x ∈ Sn is the same as in An : we can write the
stabiliser of x as

(Sn)x = {g ∈ Sn | gxg−1 = x}
but the assumption guarantees that there is no odd permutation contributing to
that set in the RHS, so we identify it with

{g ∈ Sn | g even, gxg−1 = x} = {g ∈ An | gxg−1 = x} = (An)x ,

as claimed.
The corollary to the Orbit-Stabiliser Theorem now gives

|cclAn
(x)| = |An|

|(An)x|
=

1
2 |Sn|
|(Sn)x|

=
1
2
|cclSn(x)| .

10.5. Normal subgroups of Sn and An. As an application of the determination
of cycle shapes (and their orders) for Sn and for An we can sometimes easily de-
termine all their normal subgroups. For this, we recall a previous characterization
of normal subgroups.

Proposition 10.11. Let H be a subgroup of G. Then we have

H is normal in G ⇔ H is a union of conjugacy classes of G .

But we should keep in mind the following
� Note. Suppose there is a sum of conjugacy class order which divides the group

order. Then this is in general not sufficient for a normal subgroup to exist!
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Example 10.12: (1) Find all the normal subgroups of S4: from the above
table we get all the conjugacy classes for S4.

By the above proposition, a normal subgroup N of S4 is the union of
conjugacy classes, hence its size is a sum of the sizes 1, 6, 8, 6 and 3, i.e.
|N | = ε1 · 1 + ε2 · 6 + ε3 · 8 + ε4 · 6 + ε5 · 3, with εj ∈ {0, 1} (j = 1, . . . , 5).

Clearly, ε1 must be 1, as the identity element must lie in any subgroup.
By Lagrange, the sizes of contributing conjugacy classes must add up to a
divisor of |G| = 24.

The only such possibilities are 1 + 3 and 1 + 3 + 8.
In the first case, we get cclS4

(
(1)
)
∪ cclS4

(
(1 2)(3 4)

)
, which indeed form

a group, the Klein 4-group. Note that we need to check closure under
composition.

In the second case, we find cclS4

(
(1)
)
∪ cclS4

(
(1 2)(3 4)

)
∪ cclS4

(
(1 2 3)

)
;

but these are precisely the 12 even permutations in S4 which we already
know to form a subgroup, denoted A4.

In summary, we get that there are two non-trivial normal subgroups for
S4 (the trivial subgroups being {e} and S4 itself).

(2) Find all the normal subgroups of A4: Recall that a conjugacy class c of
an even element in Sn either forms a single conjugacy class in An (in case
any representative of c commutes with an odd permutation in Sn), or else
it decomposes into two conjugacy classes of the same size.

For S4, the first and last conjugacy classes in the above table have an
odd size and hence cannot split into two classes of the same size; the second
and fourth classes contain odd elements and hence are not in An; finally,
the third conjugacy class splits into two, as (1 2 3) does not commute with
any 2-cycle or 4-cycle (check!). So we get the following table

Representative of A4 (1) (1 2 3) (3 2 1) (1 2)(3 4)

Sizes 1 8
2 = 4 8

2 = 4 3

The only possibility for a (non-trivial) normal subgroup now results from
taking the sizes 1 + 3, again resulting in the Klein 4-group.

11. Classification of groups of order p2 for a prime p

11.1. Groups of order p2 are abelian. Our next classification result concerns
groups of order p2 where p is a prime; again, there will be only two types.

Of crucial help for this task is the notion of a centre Z(G) of a group G (cf. §3).
Recall that it consists of all the elements in G which commute with all the others.
We know from previous lectures that

a) Z(G) is a group;
b) it can also be characterised as the union of all conjugacy classes of size 1;
c) Z(G) = G if and only if G is abelian.

Moreover, we see immediately that

Lemma 11.1. Z(G) ⊂ Gh for any stabiliser Gh under conjugation of an element
of h ∈ G.

[[ Pf.: zh = hz for z ∈ Z(G) can be rewritten as zhz−1 = h, i.e. z(h) = h ]] .
In other words, Z(G) is contained in any stabiliser (under conjugation).
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Proposition 11.2. Let p be a prime and G a group of order |G| = pr, for some
r ≥ 1. Then the centre Z(G) is non-trivial.

Proof. The argument is similar to the one in the proof of Cauchy’s Theorem 9.1.
As G is the disjoint union of its conjugacy classes, by taking sizes we find

|G| =
∑
|cclG(x)| (∗)

where on the RHS the sum runs through the different conjugacy classes.
We know that the orbit sizes of a group action (here we have the conjugacy

classes) have to divide the group order, i.e. are of the form pi (i = 0, . . . , r).
Assuming Z(G) = {e}, we find by b) above that all other conjugacy classes must

have order > 1, but then p divides the LHS of (∗) while the RHS is ≡ 1 (mod p),
a contradiction.

Conclusion: Z(G) is not trivial. �

Corollary 11.3. Let p be a prime and G a group of order p2. Then G is abelian.

Proof. By Proposition 11.2, we get Z(G) 6= {e}.
As Z(G) is a subgroup of G, its order must divide |G| = p2, hence is of size p or p2.

Case 1: |Z(G)| = p2, then indeed Z(G) and G have the same order, hence must
agree.

Case 2: |Z(G)| = p, then there is an h ∈ G \ Z(G).
In particular, we have |cclG(h)| > 1 (again, by b) above), and |cclG(h)| divides
the group order p2. Furthermore, Z(G) ⊂ Gh implies |Z(G)| ≤ |Gh|, and by the
Orbit-Stabiliser-Theorem we have

|cclG(h)|︸ ︷︷ ︸
≥p

· |Gh|︸︷︷︸
≥p

= |G|︸︷︷︸
≥p2

.

So we conclude |cclG(h)| = p = |Gh|.
But then Z(G) ⊂ Gh implies Z(G) = Gh, as both groups have the same order.
From this we get that Z(G) contains h [[ clearly Gh always contains h ]] , a contra-
diction.
Hence Case 2 is not possible, and we have proved the corollary. �

Corollary 11.4. Let p be a prime and G a group of order p2. Then we have

G ∼= Zp2 or G ∼= Zp × Zp .

Proof. Case 1: there is an element in G of order p2; then clearly G ∼= Zp2 .
Case 2: no element in G has order p2; then each element different from e has in
fact order p.
Now take any element h of G \ {e} and any k ∈ G \ 〈h〉, and show that

G ∼= 〈h〉 × 〈k〉 .
To this end, use the usual criterion for writing a group G as two of its subgroups
H = 〈h〉 and K〈k〉.
(i) HK = {hikj | 0 ≤ i, j ≤ p− 1} [[ check that these are all different ]] ;
(ii) H ∩K = {e} [[ha = kb for 1 ≤ a, b ≤ p− 1 implies that h is also a power of k,
using the Euclidean algorithm to write 1 = x a+ y p ]] ;
(iii) hk = kh for any h ∈ H, k ∈ K;
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the latter uses our previous corollary that any group of size p2 is abelian.
Conclusion: applying the criterion alluded to above we get

G ∼= H ×K ∼= Zp × Zp . �

Here is a possible way to memorise the statement of the corollary.

pxp
If a group has the order p squared
where a prime number p was declared,
then we know from our source
that it’s cyclic, of course,
or Zp with itself has been paired.

H.G.

We state (without proof, but note that Q.12∗ on Sheet of Week 17 gives a guide
to a proof of the first statement below) a further structural result which includes
Cauchy’s Theorem as a special case.

Theorem 11.5. Sylow Let G be a group of order prm where gcd(p,m) = 1. Then
there is a subgroup of order pr.
Moreover, there is a subgroup of order pi for any 1 ≤ i ≤ r.

12. Classification of finitely generated abelian groups

12.1. Finitely generated abelian groups. Our final section provides the classi-
fication of a reasonably large class of groups, the abelian groups—more specifically,
of all abelian groups which are finitely generated.

Definition 12.1. A group G is finitely generated if there exists a finite set
{g1, . . . , gr} (r ≥ 1) such that G = 〈g1, . . . , gr〉, i.e. any g ∈ G can be represented
as a finite product of the gi and their inverses.

Example 12.2: (1) Z = 〈1〉 = 〈2,−3〉 = 〈6, 15, 20〉 = . . .
(2) for any n ≥ 1, we have Zn = 〈1〉;
(3) any finite group is finitely generated (we can take the set of its elements as

the (finite) set of generators).
E.g., for any n ≥ 1, the group Z∗n is finitely generated, for example

Z∗20 ' 〈3〉 × 〈−1〉 ' Z4 × Z2 ,

with two generators 3 and −1 .
(4) Z × Z5 × Z is finitely generated, we can take as generators g1 = (1, 0, 0),

g2 = (0, 1, 0) and g3 = (0, 0, 1).

Non-example 12.3. Q is not finitely generated.
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[[ Suppose Q = 〈p1q1 , . . . ,
pr

qr
〉 for some r ≥ 1, pi, qi ∈ Z. Then any element

generated by the pi/qi is a (finite) linear combinations with integer coefficients of
these, and hence has a denominator dividing lcm(q1, . . . , qr), so can never generate
all of Q. ]]

Notation 12.4: From now on, will only deal with abelian groups, and we will
write them additively, i.e.

G = 〈g1, . . . , gr〉 = {a1g1 + · · ·+ argr | ai ∈ Z, 1 ≤ i ≤ r} .

Our first insight is that we can write any such group as a homomorphic image of
some Zm, where we can choose m as the number of some set of generators, via

ϕ : Zn −→ G = 〈g1, . . . , gr〉(3)
a = (a1, . . . , an) 7−→ a1g1 + · · ·+ angn .(4)

Theorem 12.5. Any finitely generated abelian group can be written as a quotient

G ∼= Zn/K

for some n ≥ 0, where K is a subgroup of Zn.

Proof. Use the First Isomorphism Theorem for groups for the map ϕ in (3). �

12.2. Subgroups of finitely generated abelian groups.

Definition 12.6. In the situation of the theorem, we call a ∈ K a relation and K
the relation subgroup of G.
Moreover, if there are no non-trivial relations in K, i.e. if a1g1 + · · · + argr = 0
implies a1 = · · · = ar = 0, then G is called a free abelian group of rank n.

[[ In the latter case we have G ∼= Zn/{0}, which is clearly isomorphic to Zn. ]]

Proposition 12.7. Every subgroup H of Zn is itself a free abelian group generated
by r ≤ n elements; in particular it is of rank ≤ n.

Proof. (Idea) Case n = 1: For Z, the statement is clear from previous results (any
subgroup is of the form nZ, for some n ≥ 0).

Case n ≥ 2: use induction on n; the crucial idea is to look at subgroups H0 ≤ H
with

H0 = {(a1, . . . , an) ∈ H | an = 0}.

Either H0 = H (the whole subgroup H) or H ∼= H0×〈b〉, with b = (b1, . . . , bn) and
bn 6= 0.
In either case we have reduced the statement to one about the group H0 of rank
at most n − 1, and we only need to notice that the product of two free abelian
groups is itself a free abelian group (taking the direct product does not introduce
new relations). �
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12.3. Relation Matrices and (a restricted) Gauss–Jordan elimination.

Remark 12.8: By Proposition 12.7, any H ≤ Zn is finitely generated, i.e. is of
the form

H = 〈a1, . . . , am〉
for some ai ∈ Zn, m ≤ n.
This is best expressed in terms of a matrix

A = A(H) =

a1
...
am

 .

Definition 12.9. If G ∼= Zn/H then A = A(H) is called a relation matrix for G.

Proposition 12.10. (i) Any matrix A ∈Matn×m(Z) can be transformed into
a matrix Ã ∈ Matn×m(Z) in “diagonal form” using only elementary row
and column operations.

Here elementary row and column operations are of the following kind:
1) multiply a column by −1;
2) swap two columns;
3) add an integer multiple of some column to another one.

And similarly with elementary row operations.

Here Ã is in diagonal form if its entries ãjk = 0 whenever j 6= k.
(ii) Moreover, we can achieve that the entries ãii in Ã successively divide each

other:
ã11 | ã22 | . . . | ãmm .

Note that these are very close to row and column operations for Gauss–Jordan
elimination in Linear Algebra, except that we are only allowed to multiply a column
(or row) by a unit in Z (of which there are very few) rather than a unit in Q or R.

Example 12.11:

A =
(

8 −4 22
4 −8 8

)
r1↔r2∼

(
4 −8 8
8 −4 22

)
r2→r2−2r1∼

(
4 −8 8
0 12 6

)
c2→c2+2c1∼

(
4 0 8
0 12 6

)
c3→c3−2c1∼

(
4 0 0
0 12 6

)
c2↔c3∼

(
4 0 0
0 6 12

)
c3→c3−2c2∼

(
4 0 0
0 6 0

)
= Ã .
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This is now in diagonal form. Note that this does not satisfy the requirements
in ii) since 4 - 6.
We manipulate this further:

Ã =
(

4 0 0
0 6 0

)
c2→c2+c1∼

(
4 4 0
0 6 0

)
r1→r1−r2∼

(
4 −2 0
0 6 0

)
c1↔c2∼

(
−2 4 0
6 0 0

)
r1→r1+3r2∼

(
−2 4 0
0 12 0

)
c2→c2+2c1∼

(
−2 0 0
0 12 0

)
and now indeed 2 | 12.

This elimination process is used in the following typical setting.

Example 12.12: Let G be the group generated by n = 3 generators x, y and z,
subject to the following relations

8x− 4y + 22z = 0
4x− 8y + 8z = 0 .

Find a product of cyclic groups to which G is isomorphic.

To solve this, we write G = Z3/H where

H = 〈(8,−4, 22), (4,−8, 8)〉

with the relation matrix as above

A = A(H) =
(

8 −4 22
4 −8 8

)
.

We have seen that we can diagonalise A to Ã, and from this we can read off, after
completing Ã to a square matrix (by possibly adding zeros [given in red])

−→

4 0 0
0 6 0
0 0 0


so that

G ∼= Z/4Z× Z/6Z× Z/0Z︸ ︷︷ ︸
∼=Z

.
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12.4. The Fundamental Theorem of Finitely Generated Abelian Groups.
The above is an example of the following classification theorem:

Theorem 12.13. (Fundamental Theorem of Finitely Generated Abelian Groups):
Let G be a finitely generated abelian group, then G is isomorphic to a group of the
following form

Zd1 × Zd2 × · · · × Zdk
× Zr

with r ≥ 0, k ≥ 0, dj ≥ 1 for 1 ≤ j ≤ k.
Moreover, if we require

d1 | d2 | d3 | · · · | dk , and d1 > 1 (∗)
then this form is in fact unique.

Definition 12.14. The number r as in the theorem is called the rank of G, and
the d1, . . . , dk are called the torsion invariants or torsion coefficients of G
provided they satisfy (∗).

Remark 12.15: (1) G (as in the theorem) is finite ⇔ r = 0.
(2) The conditions r = k = 0 mean that G is the trivial group.
(3) Whenever we have an entry in the (diagonalised) relation matrix Ã which

is ±1, then we can ignore the corresponding factor in the direct product of
cyclic factors:

Z/ (1 · Z) ∼= {e} .
In particular, “1” never occurs in the torsion invariants.

(4) The torsion invariants have to be given with repetitions (“multiplicities”),
i.e.

Z7 × Z7 × Z105

has torsion invariants 7, 7, 105, not 7, 105.

12.5. Applications.

12.5.1. Classifying all abelian of a given order. The above theorem allows to classify
all abelian groups of a given order, up to isomorphism.
Example 12.16: (1) Classify all abelian groups of order 8.

By the theorem, any such is isomorphic to a product of the form Zd1×· · ·×
Zdk

with d1 | · · · | dk and d1 · · · dk = 8 = 23, hence k ≤ 3.

Rephrase condition d1 | d2 as:

“exponent of 2 in d1 ≤ exponent of 2 in d2”

and similarly for any other di | di+1.

Hence looking for d1 | · · · | dk such that d1 · · · dk = 8 is equivalent to
looking for non-decreasing partitions of 3 (the exponent of 2 in 8), i.e.

1, 1, 1 or 1, 2 or 3 .

So we get the following scheme

n1 = n2 = n3 = 1 n1 = 1, n2 = 2 n1 = 3

non-decreasing partition 1, 1, 1 1, 2 3

corresponding dj 21, 21, 21 21, 22 23
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corresponding group Z2 × Z2 × Z2 Z2 × Z4 Z8

This now gives the complete list, up to to isomorphism.

(2) Classify all abelian groups of order 200 = 23 × 52.
The only primes involved are 2 and 5. By the theorem we need to find all
possibilities

d1, . . . , dk such that d1 · · · dk = 200, and d1 | · · · | dk, and d1 > 1 .

The condition d1 | d2 translates as

“exponent of 2 in d1 ≤ exponent of 2 in d2”, and

“exponent of 5 in d1 ≤ exponent of 5 in d2”
and similarly for any other di | di+1.

Hence we need to find all
— non-decreasing partitions of 3 (the exponent of 2), i.e. 1,1,1; 1,2 and 3,
and
— non-decreasing partitions of 2 (the exponent of 5), i.e. 1,1 and 2.

These partitions are independent, hence overall we get 3 × 2 = 6 possi-
bilities for a pair (non-decreasing partitions of 3, non-decreasing partitions
of 2).

So we get the following scheme

exponent of 2 1, 1, 1 1, 1, 1 1, 2 1, 2 0, 3 3

exponent of 5 0, 1, 1 0, 0, 2 1, 1 0, 2 1, 1 2

d1, . . . , dk 2150, 2151, 2151 2150, 2150, 2152 2151, 2251 2150, 2252 2051, 2351 2352

corresp. group Z2 × Z10 × Z10 Z2 × Z2 × Z50 Z10 × Z20 Z2 × Z100 Z5 × Z40 Z200

12.5.2. The number of elements of a given order in any given abelian group. An-
other application is that we can very easily determine the number of elements of a
given order in any given abelian group.

Definition 12.17. Let G be a finite group. Then we put

Am(G) = |{g ∈ G | mg = 0}| = |{g ∈ G | order of g divides m}| ,

Om(G) = |{g ∈ G | mg = 0, kg 6= 0 for 1 ≤ k < m}| = |{g ∈ G | order of g is precisely m}| .

Lemma 12.18. The function Am is multiplicative, i.e., for abelian groups G and
H

Am(G×H) = Am(G)Am(H) .

Warning: The corresponding statement for Om is not true (in general).

It is easy to determine the elements of order m in Zn . We have

Proposition 12.19. Am(Zn) = gcd(m,n) .
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Pf: Let d = gcd(m,n) . Then mx ≡ 0 (mod n) ⇔ m
d x ≡ 0 (mod n

d ) ⇔ x ≡ 0
(mod n

d ), but the latter just means that x = k · nd .
Hence an x ∈ Zn (which we can represent by an integer between 1 and n ) has
order dividing m if it is a multiple of n

d , say `nd . There are precisely d such:
` = 0, 1, . . . , d− 1. �

12.5.3. Relating Am and Om. For a prime p, and r ≥ 0, we have, for G abelian

{g ∈ G | prg = 0} = {g ∈ G | order of g is pr}⋃
{g ∈ G | order of g is pr−1}

. . .⋃
{g ∈ G | order of g is p0 = 1} ,

a disjoint union, so:

Apr (G) = Opr (G) +Opr−1(G) + · · ·+Op0(G) .

Therefore
Opr (G) = Apr (G)−Apr−1(G) .

Example 12.20: Find the number of elements of order 8 in

Z12 × Z40 × Z102 .

The proposition, together with multiplicativity, gives for

A8(Z12 × Z40 × Z102) = A8(Z12)A8(Z40)A8(Z102)
= gcd(8, 12) gcd(8, 40) gcd(8, 102)
= 4× 8× 2 = 64 .

Similarly, A4(Z12 × Z40 × Z102) = 4× 4× 2 = 32, and so

O8(Z12 × Z40 × Z102) = A8(Z12 × Z40 × Z102)−A4(Z12 × Z40 × Z102) = 32 .

So there are 32 elements of order exactly 8.

Remark 12.21: For non-prime powersm, one can use a kind of inclusion–exclusion
principle, e.g. if m = pq for two primes p and q:

Opq(G) = Apq(G)−Ap(G)−Aq(G) +A1(G) .


