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Our setting.

We consider two models of hyperbolic space
1) the usual upper half space model H3;
2) the upper sheet H+

d of a hyperboloid in 4-space
here we vary the latter one with d squarefree:
put fd(x , y , z ,w) = x2 + dy2 + z2 − w2, then

H+
d =

{
(x , y , z ,w) ∈ R4 | fd(x , y , z ,w) = 1

}
with its light cone L+d defined by fd(x , y , z ,w) = 0 (rather than 1);
it corresponds to the boundary ∂H3 (topologically an S2) of H3:
each point on ∂H3 corresponds to a ray through the origin in L+d .
(More freedom!)



For clarification, here is an analogous picture of 2) in the
3-dimensional case.



Isometry groups. Recall the isometry groups
1) for H3 we have PSL2(C);
2) for H+

d we have SO+(fd) ⊂ GL(4,R), a close relative of the
Lorentz group O(3, 1).

Rational structure. For 2) choose particular one:
for d squarefree, consider the number ring Od of F = Q(

√
−d).

For H+
d we have in principle a choice for every (equiv. class of)

cusp(s)
1:1←→ ideal classes in Od .

Our choice is uniform for all d : take “roughly primitive” solutions
of fd(x , y , z ,w), i.e. on the light cone L+d :
(x , y , z ,w) is roughly primitive if

gcd(x , y , z ,w) = 1 and z ≡ w (mod 2)
or gcd(x , y , z ,w) = 2 and z 6≡ w (mod 4).



Examples. (0, 0, 1, 1) and (2, 2, 1, 5) are roughly primitive
solutions (the latter for d = 5) while (1, 0, 0, 1) is not: we need to
take (2, 0, 0, 2) instead.

Proposition. SO(fd ,Z) acts (discretely) on the roughly primitive
solutions on L+d .

Epstein–Penner: Take the Euclidean convex hull of these points.
(This constitutes a piecewise linear approximation of H+

d .)

Then we pass to a torsionfree subgroup of SO(fd ,Z).
(Technical aside: we aim for such a subgroup of minimal index:

presumably a divisor of 24 is sufficient [A. Rahm, referring to a

corresponding result for PSL(2,Od) due to Hurwitz and/or Bianchi(?)].)

Upshot: We arrive at an ideal (i.e. all vertices lie on the boundary,
here the light cone) fundamental domain for that subgroup.



Results.

Agree for small d with known ideal tessellations found earlier by
Grunewald–Gushoff–Mennicke (’82) and Cremona (’85).
Sometimes, especially for Od of class number 1, also agree with
ideal hyperbolic tessellations found by D. Yasaki.

Examples. SL2(Z[i ]) (d = 1) gives a tessellation with octahedra.



Tessellation of the hyperbolic plane using SL2(Z[
√
−2])



A schematic 3D-picture of the half-spheres bounding the
polyhedron looks as follows:



Here’s how that fundamental domain looks from below:

Ideal fundamental domain arising from SL2(Z[
√
−2]) [uses Mathematica]



Different viewing angle, ‘pushing down’ vertex at ∞ to finite
height.

Approximate ideal fundamental domain arising from SL2(Z[
√
−2])



Euclidean counterpart for d = 2: a cuboctahedron

.



Implementations.
Fundamental domain implementation using the above recipe was
originally done in diploma thesis (Atari ST+, 1MB RAM...), cases
d ≡ 3(4), d ≤ 51; a few larger ones (83, 123,..) worked out, too.
M. Dutour-Sikirič recently also implemented it with far more
sophisticated tools (d < 700). Yasaki’s variant: d < 5000.

A mathematical puzzle app. If you are tempted by this ‘puzzle
game’ deducing a polytope from its projection, here is an app for
you (by former Durham student Josh Yaxley): Polyshadow...

A comparison game. When comparing our ideal tessellations
(many combinatorially different polytopes) to those arising from
Yasaki’s work (few types as building blocks) we get ‘scissors
congruence challenges’.
First such for d = 6:
1) we obtain a rhombicuboctahedron (Rubik’s snake);
2) Dan obtains a truncated tetrahedron and a couple of hexagonal
caps.

Student Josh Inoue has realised this as a puzzle, using a 3D-printer.



Surprising hidden symmetry:
The ‘first’ polyhedron arising this way contains the triangular face
with vertices 0, 1,∞ which correspond on the light cone to
(0, 0,−1, 0), (2, 0, 0, 2) and (0, 0, 1, 1), resp. (note the
independence of d as the second coordinate for these 3 vanishes).
It often exhibits surprisingly many somewhat hidden symmetries
(had emerged from Maple images produced by former DH student
Matthew Spencer).
Example. The first polytope for d = 17:



Inoue made the symmetries more explicit: he found affine
transformations which map the vertices of that first polytope on a
sphere centred at the origin.

Far more pleasing to the eye...



The affine transformation here is not obvious (for d = 17):
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A nice family.

Via cluster computations I determined most first polytopes with
d < 23000 squarefree.

The arguably most interesting polytopes arise for d of the form

d =
n2 + 1

8
, n 6≡ 0 (mod 3) (condition singled out by Inoue).

They all have a octahedral (i.e. extended A4-)symmetry, and for
d > 2 the number of vertices is a multiple of 24.

Apart from the first few, most of these do not seem to be in any
classification.



d = 41 (96 vertices):



d = 86 (120 vertices):



d = 97 (48 vertices):



d = 134 (168 vertices):



d = 646 (192 vertices):



d = 2242 (192 vertices):



d = 1977 (432 vertices):



d = 6257 (912 vertices):

Largest number of vertices found so far: 2496 (for d = 20009).



Possible application?

(NYT from today.)


