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Abstract. We show that the entropy function—and hence the finite
1-logarithm—behaves a lot like certain derivations. We recall its coho-
mological interpretation as a 2-cocycle and also deduce 2n-cocycles for
any n. Finally, we give some identities for finite multiple polylogarithms
together with number theoretic applications.

1 Information theory, Entropy and Polylogarithms

It is well known that the notion of entropy occurs in many sciences. In thermo-
dynamics, it means a measure of the quantity of disorder, or more accurately, the
tendancy of a system to go toward a disorded state. In information theory, the
entropy measures (in terms of real positive numbers) the quantity of information
of a certain property [18],[21]. From a practical viewpoint, entropies play also
a key role in the study of random bit generators (deterministic or not) [8], in
particular due to the Maurer test [17]. A general definition of entropy has been
given by Rényi [19]: Let S = {s1, . . . , sn} be a set of discrete events for which
the probabilities are given by pi = P (s = si) for i = 1, . . . , n. The Rényi entropy
S is then defined for α > 0 and α ̸= 1 as

Hα(S) =
1

1− α
log

(
n∑

i=1

pαi

)
.

The Shannon entropy [21] can be recovered from the one of Rényi when α→ 1

H1(S) = lim
α→1

Hα(S) = −
n∑

i=1

pi log(pi) .

We also often use the minimal entropy which is related to the probability of the
most predictable event (while the Shannon entropy gives an averaged measure):

Hmin(S) = lim
α→∞

Hα(S) = − log( max
i=1,...,n

(pi)) .
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Those different entropies are related by the following inequalities

Hmin(S) ⩽ . . . ⩽ H2(S) ⩽ H1(S) ⩽ log(card(S)) = lim
α→0

Hα(S) .

The Shannon entropy can be characterised in the framework of information
theory, assuming that the propagation of information follows a Markovian model
[18],[21]. If H is the Shannon entropy, it fulfills the equation, often called the
Fundamental Equation of Information Theory (FEITH),

H(x) + (1− x)H

(
y

1− x

)
−H(y)− (1− y)H

(
x

1− y

)
= 0 . (FEITH)

In [2](section 5.4, pp.66-69), it is shown that if g is a real function locally in-
tegrable on ]0, 1[ and if, moreover, g fulfills FEITH, then there exists c ∈ R
such that g = cH (we can also restrict the hypothesis to Lebesgue measurable).
There are several papers (e.g., [1],[7]) on the equation FEITH and the under-
standing of its structural properties, with the motivation to weaken either the
probabilistic hypothesis or the analytical ones. The following generalisation of
the equation FEITH has also been considered [15], for β positive and x and y in
some admissible range,

H(x) + (1− x)βH

(
y

1− x

)
−H(y)− (1− y)βH

(
x

1− y

)
= 0 . (1)

It turns out that FEITH can be derived, in a precise formal sense [9], from the
5-term equation of the classical (or p-adic) dilogarithm. Cathelineau [5] found
that an appropriate derivative of the Bloch–Wigner dilogarithm coincides with
the classical entropy function, and that the five term relation satisfied by the
former implies the four term relation of the latter. Kontsevich [14] discovered
that the truncated finite logarithm over a finite field Fp, with p prime, defined
by

£1(x) =

p−1∑
k=1

xk

k
,

satisfies FEITH (or its generalisation for β = 1 or p). In [9], we showed how
one can expand this relationship for “higher analogues" in order to produce
and prove similar functional identities for finite polylogarithms from those for
classical polylogarithms. It was also shown that functional equations for finite
polylogarithms often hold even as polynomials identities over finite fields. In
particular, we have shown that the polynomial version of £1 fulfills (1) with
β = p. Another approach, due to Bloch and Esnault [3], gives a more geometric
version in terms of algebraic cycles, and further structural properties have been
investigated by Cathelineau [6].
In this paper, we propose to show some new formal characterisations of the
entropy from an algebraic viewpoint, using formal derivations and a relation to
cohomology (section 2), and we give complementary relations involving multiple
analogues of the finite polylogarithms with a few applications to number theory



(section 3). The details for this last work will appear in [10]. In the remainder
of the paper, rings are assumed to be commutative.
Acknowledgements: We would like to express our sincere gratitude to the
reviewers for their valuable comments who have helped improve this paper.

2 Algebraic interpretation of the entropy function

2.1 Formal entropy as formal derivations

Definition 1. Let R be a (commutative) ring and let D be a map from R to R.
We will say that D is a unitary derivation over R if the following axioms hold:

1. “Leibniz’s rule”: For all x, y ∈ R, we have D(xy) = xD(y) + yD(x).
2. “Additivity on partitions of the unity”: For all x ∈ R, we have D(x)+D(1−

x) = 0.

We will denote by Deru(R) the set of unitary derivations over R.

Applying analogous arguments as for derivations (see for instance [16], chap. 9),
we have

Proposition 1. The set of unitary derivations over R, Deru(R), is an R-
module, which has DerZ(R) as a submodule. If D and D′ are two unitary deriva-
tions, then the composition D ◦D′ and the Lie bracket [D,D′] = D ◦D′−D′ ◦D
are unitary derivations.
Let D be a unitary derivation over R.

1. For all x ∈ R and all n ∈ N we have D(xn) = nxn−1D(x). Furthermore if
x ∈ R× the rule is also true for n ∈ Z.

2. For all n ∈ N, D((n+ 1)1R) =
n(n+1)

2 D(−1), and 2D(−1) = 0.
3. If R has no 2-torsion or if 2(−1) = 0 in R, then for all x ∈ R and all n ∈ Z,

we have D(nx) = nD(x).
4. Suppose that R has no 2-torsion, or that 2(−1) = 0 in R, and let m ∈ Z

with m ∈ R×, then D( 1
m ) = 0. If moreover Q ⊂ R, then D(Q) = 0.

Proof. 1. Works as the classical proof for derivations.
2. First, using the standard fact that 0 = 0 · 0, we deduce that D(0) = 0, and

thenD(1) = 0. Then we can see that 2D(−1) = 0 and thatD(n+1)−D(n) =
nD(−1). Thus an induction argument proves the formula.

3. If R has no 2-torsion, or if 2(−1) = 0 in R, then D(−1) = 0, and using the
previous result with the fact that D(−n) = −D(1+n), we deduce D(n) = 0
for all n ∈ Z. Then the desired formula follows.

4. Direct consequence of the previous rules.
⊓⊔

Remark 1. We can get nicer statements by working in Deru(R)/⟨D(−1)⟩, where
⟨D(−1)⟩ denotes the submodule of Deru(R) spans by D(−1).



Corollary 1. Suppose that nR = 0, for a given n ∈ N − {0}. Then if D is a
unitary derivation over R and if λn : R −→ R is defined by λn(x) = xn, we then
have D ◦ λn = 0. In particular if p is a prime number, ν ∈ N− {0} and q = pν ,
then D(Fq) = 0.

Recall the following definition from [13].
Definition 2. Let R be a commutative ring and k be a natural number. We say
that R is k-fold stable if for any family of k unimodular vectors (ai, bi)1⩽i⩽k ∈ R2

(i.e. aiR+ biR = R), there exists t ∈ R, such that ai + tbi ∈ R× for all i.

Proposition 2. “Unitary Derivations are almost Derivations”
Let R be a 2-fold stable ring, and suppose that R is of characteristic 2 (i.e.
2R = 0) or that R has no 2-torsion. Then DerZ(R) = Deru(R).

Proof. According to Proposition 1, we have to show that any unitary derivation
is additive. Let D ∈ Deru(R) and let x, y ∈ R. Suppose first that x is invertible.
Then x+y = x(1+ y

x ), and by Leibniz’s rule, we have D(x+y) = xD(1+ y
x )+(1+

y
x )D(x). Using the additivity on partitions of the unity, D(1+ y

x ) = −D(− y
x ) and

also D(− y
x ) = −D( yx ). Hence we deduce D(x+ y) = D(x)+D(y). Now suppose

that x is not invertible. Then applying the 2-fold stability to the unimodular
vectors (0, 1), (x, 1), we deduce the existence of t ∈ R× such that x + t is
invertible. Setting x′ = x + t and y′ = y − t, we have D(x + y) = D(x′ + y′).
Then we can apply the previous arguments to x′, y′, and deduce that D(x+y) =
D(x+ t)+D(y− t). Now we again apply the same arguments to x, t, and y, −t.
Using the rules of Proposition 1, we conclude that D(x+y) = D(x)+D(y), and
the claim follows. ⊓⊔
Example 1. As any semilocal ring R such that any of its residue fields has at
least 3 elements is 2-fold stable [13], we then deduce that DerZ(R) = Deru(R).

2.2 Unitary Derivations and Symmetric Information Function of
degree 1

For more details on this section related to information theory see [15].
Definition 3. Let R be a commutative ring. We will say that a map f : R→ R
is an abstract symmetric information function of degree 1 if the two following
conditions hold: For all x, y ∈ R such that x, y, 1− x, 1− y ∈ R×, the functional
equation FEITH holds and for all x ∈ R, we have f(x) = f(1− x).
Denote by IF1(R) the set of abstract symmetric information functions of degree 1
over R. Then IF1(R) is an R-module. Let Leib(R) be the set of Leibniz functions
over R (i.e. which fulfill the “Leibniz rule”), then it is also an R-module (in fact
the composition and the Lie bracket still hold in Leib(R)). The proof of the
following proposition is a straightforward computation.
Proposition 3. We have a morphism of R-modules H : Leib(R) → IF1(R),
defined by H(φ) = φ+φ◦τ , with τ(x) = 1−x. Furthermore Ker(H) = Deru(R).

Remark 2. The morphism H is not necessarily onto. If R = Fq, a finite field,
then Leib(Fq) = 0, but IF1(Fq) ̸= 0.



2.3 Cohomological interpretation of formal entropy functions

The following results are classical in origin (see [4], pp.58–59, and also the ref-
erences cited there, and also [14]). We try in this section to render the proofs
(for the finite case) more transparent, and also emphasize the derivation aspect
of the previous sections.

Theorem 1. Let F be a finite prime field and H : F → F a function which ful-
fills the following conditions: H(x) = H(1−x), the functional equation (FEITH)
holds for H and H(0) = 0. Then the function φ : F × F → F defined by
φ(x, y) = (x+ y)H( x

x+y ) if x+ y ̸= 0 and 0 otherwise, is a non-trivial 2-cocycle.

Proof. The fact that φ is a 2-cocycle is a straightforward consequence of the
properties on H. In order to see this, we use the inversion relation, which in turn
one can deduce from (FEITH), and the relation H(x) = H(1 − x). By setting
Y = x

x+y+z and X = y
x+y+z (assuming some suitable admissibility conditions

on x, y and z), and modulo some modifications using the other relations, the
2-cocycle condition is deduced from (FEITH). For the non-triviality, notice that
φ is homogeneous and recall that as F is a field we can endow the cochains with
a structure of F -vector space. Suppose that φ is a 2-coboundary. Then, there
exists a map Q : F → F , such that φ(x, y) = Q(x+y)−Q(x)−Q(y). Notice that
Q(0) = 0. As φ is homogeneous, we have φ(λx, λy) = λQ(x+y)−λQ(x)−λQ(y).
Thus the function ψλ(x) = Q(λx)−λQ(x) is an additive morphism F → F , hence
entirely determined by ψλ(1). The map ψλ(1) fulfills the Leibniz chain rule on
F×. Indeed, assuming F = Z/pZ, if λ, µ are arbitrary elements of F , as µψλ(1) =
ψλ(µ), by a straightforward computation we deduce ψλµ(1) = ψλ(µ) + λψµ(1).
Thus we formally have ψλm(1) = mλm−1ψλ(1). But F× is generated by a prim-
itive root, say ω. Let p = card(F ). Then ωp−1 = 1. Moreover 0 = ψ1(1) =
(p − 1)ωp−2ψω(1) . Hence ψω(1) = 0 and then Q(λx) = λQ(x) for all λ, x ∈ F .
This implies that Q is an additive map and thus φ = 0, which contradicts the
fact that it is a non-zero 2-cochain. ⊓⊔

Remark 3. We should notice that H(λ) = φ(λ, 1−λ) = ψλ(1)+ψ(1−λ)(1), which
is very similar to the results of Maksa [15].

Corollary 2. The map F → H2(F, F ), given by λ 7→ λφ, is an isomorphism
and, up to a constant, £1 is unique.

Using the (cup) product structure on the cohomology ring H∗(F, F ) (cf. [11],
chap. 3), we can check the following property:

Corollary 3. Let n be a positive integer. The map

φ(x1, . . . , x2n) =
2n−1∏

i=1, i even

φ(xi, xi+1)

induces a non-trivial cocycle in H2n(F, F ), which corresponds to the cup products
induced by φ. This cocycle corresponds to the product of n functions H, and is
unique up to a constant.



3 Finite multiple polylogarithms

While classical polylogarithms play an important role in the theory of mixed
Tate motives over a field, it turns out that it is often preferable to also consider
the larger class of multiple polylogarithms (e.g., [12]). In a similar way it is useful
to investigate their finite analogues. We are mainly concerned with finite double
polylogarithms which are given as functions Z/p× Z/p→ Z/p by

£a,b(x, y) =
∑

0<m<n<p

xm

ma

yn

nb
.

3.1 Expressing £1,1 via £2

Our arguably most interesting result, from which we will deduce a couple of
consequences, is the following.

Theorem 2. The finite (1, 1)-logarithm £1,1(x, y) can be expressed in terms of
£2. More precisely, we have

y£1,1(x,
1

y
) = £2

(
− yp

[x
y

]
− (1− y)p

[1− x

1− y

]
+ [1− x] + [1− y]

)
. (2)

The proof of this result takes (1− y)p£2

(
1−x
1−y

)
and decomposes the (triangular)

domain over which the summation variables run into an “open” part (a trian-
gle) and three “boundary” parts (one diagonal, a vertical and a horizontal line)
and identifies the former with the £1,1-expression and the latter with the three
remaining terms in the equation. At a crucial step one uses the binomial identity

N∑
r=0

(
N − r

s

)(
r

t

)
=

(
N + 1

s+ t+ 1

)
.

3.2 Cathelineau’s £2-identity

Combining the well-known shuffle identity £a,b(x, y) +£b,a(y, x) +£a+b(xy) =
£a(x)£b(y) for a = b = 1 with the above we find that the product £1(x)£1(y)
can indeed be expressed as a sum of £2-terms. In fact, the resulting expression
is precisely Cathelineau’s “double bracket” [[x, y]] ([5], p.1344, Déf. 4). Now in-
serting the four terms of (FEITH) for one of the two arguments and leaving the
second argument fixed ensures that the products of £1-terms vanish and that
we are left with only £2-terms, hence we have proved a functional equation—in
fact, Cathelineau’s 22-term equation in ([5], p.1346, (2)).

3.3 Further identities

We can prove an inversion formula for finite multiple polylogarithms

T p
1 · · ·T p

ℓ £mℓ,...,m1

( 1

Tℓ
, . . . ,

1

T1

)
= (−1)m1+···+mℓ £m1,...,mℓ

(T1, . . . , Tℓ) ,

and we can also build a four variable identity for £1,1.



Proposition 4. Define [x, y]s = £1,1(x, y) + £1,1(y, x) and consider the fol-
lowing linear combination

K(x, y) =[x, y]s + xp
[ 1
x
, y
]
s
− (1− y)p

[
1− x,

y

y − 1

]
s
+ (1− y)p

[
1− x,

1

1− y

]
s

− xp(1− y)p
[
1− 1

x
,

y

y − 1

]
s
+ xp(1− y)p

[
1− 1

x
,

1

1− y

]
s
.

Then the following functional equation (purely in £1,1 ) holds:

I(x, y; z, w)− I(x, z; y, w) = 0 ,

where

I(x, y; z, w) = (1 + z) (1 + w)K(x, y) + (1 + x) (1 + y)K(z, w) .

3.4 Finite polylogarithms and Fermat’s last theorem

Several classical criteria used by Kummer, Mirimanoff and Wieferich to prove
certain cases of Fermat’s Last Theorem can be rephrased in terms of functional
equations and evaluations of finite (multiple) polylogarithms. For example, Mi-
rimanoff was led to the study of (nowadays called) Mirimanoff polynomials (cf.
[20], VIII, (1.11))

φj(T ) =

p−1∑
j=1

kj−1T k ,

which are nothing else but finite polylogarithms:

φj(T ) ≡ £p−j(T ) (mod p) .

(Note that Mirimanoff’s original polynomials correspond to −φj(−T ).)
Part of the groundwork for Mirimanoff’s congruences was formed by the

crucial identity

−1

2

[
φp−1(T )

]2 ≡ φp−2(T ) + (T − 1)2pφp−2

( T

T − 1

)
(mod p)

([20], VIII, (1.29)) which is nothing but the special case product formula x =
y (= T ) in our identity for £1(x)£1(y) above.

The Mirimanoff congruences ([20], VIII, (1B)) can be reformulated as follows:
for any solution (x, y, z) of xp+yp+zp = 0 in pairwise prime integers not divisible
by p (i.e. a Fermat triple) and for t = −x

y we have

£1(t) = 0 , £j(t)£p−j(t) = 0 (j = 2, . . . ,
p− 1

2
) .

One can prove these congruences using an identity expressing £p−j−1,j+1(1, T )
in terms of £k(T ): denoting the Bernoulli numbers by Bk, we have

£p−j−1,1+j(1, T ) ≡
1

j + 1

j∑
n=0

(
j + 1

n

)
Bn£n(T ) j = 1, . . . , p− 2 . (3)



Also, Wieferich’s criterion states that if the first case of FLT for the prime p
is false then p2 divides 2p − 1 (only two such primes are known for which that
latter holds: p = 1093 and p = 3511). This criterion can be rephrased in terms
of finite polylogarithms as saying £1(−1) = 0 for such primes.

References

1. Aczél, J., Entropies Old and New (and Both New and Old) and Their Charac-
terizations, CP707, Bayesian Inference and Maximum Entropy Methods in Science
and Engineering: 23rd International Workshop, edited by G. Erickson and Y. Zhai,
American Institute of Physics, 2004.

2. Aczél, J. and J. Dhombres, Functional equations in several variables, Encyclopedia
of Math. and its Applications, Vol 31, Cambridge Univ. Press 1989.

3. S. Bloch and H. Esnault, An additive version of higher Chow groups, Ann. Sci.
École Norm. Sup. (4) 36 (2003), p. 463-477.

4. Cathelineau, J.-L., Sur l’homologie de SL2 à coefficients dans l’action adjointe,
Math. Scand. 63 (1988), 51-86.

5. Cathelineau, J.-L., Remarques sur les différentielles des polylogarithmes uniformes,
Ann. Inst. Fourier, Grenoble, 46, 5 (1996), 1327–1347.

6. Cathelineau, J.-L., The tangent complex to the Bloch-Suslin complex, Bull. Soc.
math. France, 135 (4), 2007, 565-597.

7. Csiszár, Imre., Axiomatic Characterizations of Information Measures, Entropy
2008, 10, 261-273; DOI: 10.3390/e10030261

8. De Julis, Guenaëlle, Analyse d’accumulateurs d’entropie pour les générateurs aléa-
toires cryptographiques, PhD thesis, Université Grenoble Alpes, December 2014.
https://tel.archives-ouvertes.fr/tel-01102765v1.

9. Elbaz-Vincent, Ph., Gangl, H., On poly(ana)logs I, Compos. Math. 130 (2002), no.
2, 161–210.

10. Elbaz-Vincent, Ph., Gangl, H., Finite multiple polylogarithms and applications
(work in progress).

11. Evens, L.; The Cohomology of Groups, Oxford Math. Monographs, Clarendon
Press, 1991.

12. Goncharov, A.B., Galois symmetries of fundamental groupoids and noncommuta-
tive geometry. Duke Math. J., 128, no. 2 (2005), 209–284.

13. van der Kallen, W., The K2 of rings with many units, Ann. Scient. Ec. Norm.
Sup. 10, 473-515 (1977).

14. Kontsevich, M., The 1 1
2
-logarithm, Appendix to [9].

15. Maksa, Gy., The general solution of a functional equation related to the mixed
theory of information, Aeq. Math. 22 (1981), 90-96.

16. Matsumura, H., Commutative ring theory, Cambridge studies in advanced Math.
8. (1986).

17. Maurer, U.M., A universal statistical test for random bit generators. Journal of
Cryptology, 5(2), p.89-105, 1992.

18. Ollivier, Yan, Aspects de l’entropie en mathématiques et en physique, Technical
report, 2002. http://www.yann-ollivier.org/entropie/entropie.pdf.

19. A. Rényi; On measures of entropy and information, in Proc. 4th Berkeley Sympo-
sium on Mathematical Statistics and Probability. vol. 1, 1960, p. 547-561.

20. Ribenboim, P., 13 Lectures on Fermat’s Last Theorem. New York: Springer Verlag.
1979.



21. Shannon, C., A Mathematical Theory of Communication, The Bell System Tech-
nical Journal, Vol. 27, pp. 379-423, 623-656, July, October, 1948.


