ALGEBRA II Problems: Week 11 (Group check)

Epiphany Term 2014
Hwk problems $\mathbf{1 (2)} \mathbf{1} \mathbf{1 (4)} \mathbf{1 (5) , 1 (7) , \mathbf { 1 } (1 1)}$ due: Tuesday, Jan. 28 during the lectures. For tutorials in week 11: the remaining items under 1.

1. For the following pairs (S, \circ) with S a set and \circ a binary operation on S (i.e. a map $\circ: S \times S \rightarrow S$), determine whether it defines a group or not. [Give a proof or indicate what prevents the pair from forming a group. Provide your arguments-note that it may sometimes be easier if you can prove it to be a subgroup of an object that you know to be a group.]
Moreover, give the neutral and inverse elements in each case.
(1) $(S, \circ)=\left(\left\{\left.\frac{a}{2} \right\rvert\, a \in \mathbb{Z}\right\},+\right)$;
(2) for S the rational numbers $b / 2^{a}$ with b odd or $b=0$, and $a \in$ $\{1,2,3, \ldots\}$, and $\circ=+$;
(3) for S the rational numbers with denominators of the form $2^{a}, a \in$ $\{0,1,2,3, \ldots\}$, and $\circ=+$;
(4) for S the rational numbers with denominators of the form $2^{a} 3^{b}, a, b \in$ $\{0,1,2,3, \ldots\}$, and $\circ=+$;
(5) for S the rational numbers whose denominator is not divisible by 2 , and $\circ=+$;
(6) for S the complex numbers of norm 1, i.e. the points on the unit circle in \mathbb{C}, and $\circ=\cdot$;
(7) for S the complex numbers of norm $2^{a}, a \in \mathbb{Z}$, and $\circ=\cdot$;
(8) for S the complex numbers of norm $2^{2 a+1}, a \in \mathbb{Z}$, and $\circ=\cdot$;
(9) for S the sequences of non-zero rational numbers $\left(r_{1}, r_{2}, \ldots\right)$, i.e. with $r_{i} \in \mathbb{Q} \backslash\{0\}$, and where $\circ=$ "slotwise" multiplication, i.e. $\left(r_{1}, r_{2}, \ldots\right) \circ\left(s_{1}, s_{2}, \ldots\right)=\left(r_{1} s_{1}, r_{2} s_{2}, \ldots\right) ;$
(10) for S the subset of vectors (a, b, c) in \mathbb{R}^{3} for which $a=b$, and $\circ=$ vector addition;
(11) for S the set of vectors in \mathbb{R}^{3} and $\circ=$ cross product of two vectors;
(12) for S the set of vectors in \mathbb{R}^{3} and $\circ=$ scalar product of two vectors;
(13) for the set $S=\{a, b\}$, with \circ defined as follows

$$
a \circ b=b, \quad b \circ a=b, \quad a \circ a=a, \quad b \circ b=a ;
$$

(14) for the set $S=\{a, b, c\}$, with \circ defined as follows

$$
\begin{gathered}
a \circ a=b \circ b=c \circ c=a, \\
a \circ b=b \circ a=c, \quad b \circ c=c \circ b=a, \quad c \circ a=a \circ c=b ;
\end{gathered}
$$

(15) for $S=\mathbb{Z}$ and \circ defined for any $a, b \in \mathbb{Z}$ (using the usual addition on \mathbb{Z}) as follows:

$$
a \circ b=a+b+1
$$

Challenge: For a fixed odd prime number p let S be the set of pairs $\left(a_{1}, a_{2}\right) \in \mathbb{Q} \times \mathbb{Q}$ where for $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{Q}$ one defines \circ as follows:

$$
\left(a_{1}, a_{2}\right) \circ\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}-\sum_{i=1}^{p-1} \frac{1}{p}\binom{p}{i} a_{1}^{i} b_{1}^{p-i}\right) .
$$

Determine whether the pair (S, \circ) forms a group. [Give a proof or counterexample.]

