ALGEBRA II Problems: Week 11 (Group check)

Epiphany Term 2014

Hwk problems 1(2), 1(4), 1(5), 1(7), 1(11) due: Tuesday, Jan. 28 during the lectures. For tutorials in week 11: the remaining items under 1.

- For the following pairs (S, ◦) with S a set and a binary operation on S (i.e. a map : S × S → S), determine whether it defines a group or not. [Give a proof or indicate what prevents the pair from forming a group. Provide your arguments—note that it may sometimes be easier if you can prove it to be a subgroup of an object that you know to be a group.] Moreover, give the neutral and inverse elements in each case.
 - (1) $(S, \circ) = (\{\frac{a}{2} \mid a \in \mathbb{Z}\}, +);$
 - (2) for S the rational numbers $b/2^a$ with b odd or b = 0, and $a \in \{1, 2, 3, \ldots\}$, and $\circ = +$;
 - (3) for S the rational numbers with denominators of the form 2^a , $a \in \{0, 1, 2, 3, ...\}$, and $\circ = +$;
 - (4) for S the rational numbers with denominators of the form $2^a 3^b$, $a, b \in \{0, 1, 2, 3, ...\}$, and $\circ = +$;
 - (5) for S the rational numbers whose denominator is *not* divisible by 2, and $\circ = +$;
 - (6) for S the complex numbers of norm 1, i.e. the points on the unit circle in C, and ∘ = ·;
 - (7) for S the complex numbers of norm 2^a , $a \in \mathbb{Z}$, and $\circ = \cdot$;
 - (8) for S the complex numbers of norm 2^{2a+1} , $a \in \mathbb{Z}$, and $\circ = \cdot$;
 - (9) for S the sequences of non-zero rational numbers $(r_1, r_2, ...)$, i.e. with $r_i \in \mathbb{Q} \setminus \{0\}$, and where $\circ =$ "slotwise" multiplication, i.e. $(r_1, r_2, ...) \circ (s_1, s_2, ...) = (r_1 s_1, r_2 s_2, ...);$
 - (10) for S the subset of vectors (a, b, c) in \mathbb{R}^3 for which a = b, and $\circ =$ vector addition;
 - (11) for S the set of vectors in \mathbb{R}^3 and $\circ = \text{cross product of two vectors}$;
 - (12) for S the set of vectors in \mathbb{R}^3 and $\circ =$ scalar product of two vectors;
 - (13) for the set $S = \{a, b\}$, with \circ defined as follows

$$a \circ b = b$$
, $b \circ a = b$, $a \circ a = a$, $b \circ b = a$;

(14) for the set $S = \{a, b, c\}$, with \circ defined as follows

$$a \circ a = b \circ b = c \circ c = a \,,$$

$$a \circ b = b \circ a = c$$
, $b \circ c = c \circ b = a$, $c \circ a = a \circ c = b$;

(15) for $S = \mathbb{Z}$ and \circ defined for any $a, b \in \mathbb{Z}$ (using the usual addition on \mathbb{Z}) as follows:

$$a \circ b = a + b + 1.$$

Challenge: For a fixed odd prime number p let S be the set of pairs $(a_1, a_2) \in \mathbb{Q} \times \mathbb{Q}$ where for $a_1, a_2, b_1, b_2 \in \mathbb{Q}$ one defines \circ as follows:

$$(a_1, a_2) \circ (b_1, b_2) = \left(a_1 + b_1, a_2 + b_2 - \sum_{i=1}^{p-1} \frac{1}{p} {p \choose i} a_1^i b_1^{p-i}\right).$$

Determine whether the pair (S, \circ) forms a group. [Give a proof or counterexample.]