ALGEBRA II Problems: Week 12

Epiphany Term 2014
Homework for Thursday, Feb. 6: Q1, 5, 6.

1. (i) Show that if x and y are elements of finite order of a group G, and $x y=y x$, then $x y$ is also an element of finite order. What can you say about the order of $x y$ in terms of the orders of x and y ?
(ii) Show that the elements of finite order in an abelian group form a subgroup.
(iii) Find a group G and elements x, y of G such that x and y have finite order yet $x y$ has infinite order.
2. Which of the following functions are (i) injective (ii) surjective (iii) bijective?
(a) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{3}+x$.
(b) $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=2 x$.
(c) $f:[0,2] \rightarrow[0,1], f(x)=\sin x$.
(d) $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=x(x+1) / 2$.
3. Which of the following functions are homomorphisms from the multiplicative group of non-zero real numbers to itself?
(a) $x \mapsto|x|$;
(b) $x \mapsto-x$;
(c) $x \mapsto 2 x ; \quad$ (d) $x \mapsto x^{2} ;$
(e) $x \mapsto-1 / x$.
4. Decompose D_{6} into left cosets with respect to the subgroup $\left\{e, r^{3}, s, s r^{3}\right\}$. Is every left coset also a right coset?
5. The centre $Z(G)$ of a group G is the subset of elements $h \in G$ which commute with all elements in G, i.e. $Z(G)=\{h \in G \mid g h=h g \quad \forall g \in G\}$. Find the centre of the quaternion group Q_{8}, which is given as a set of 8 elements (denoting the identity e by 1) by $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$, with the relations $i j=k=-j i$ and $i^{2}=j^{2}=k^{2}=-1$ (as well as $(-1)^{2}=1$, $-1 \neq 1$, as usual).
6. Show that every subgroup of the quaternion group Q_{8} (see Problem 5) is normal.
7. Let G be the set of all ordered triples (x, y, z) of real numbers. Show that the multiplication

$$
(x, y, z)\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, x y^{\prime}+z+z^{\prime}\right)
$$

makes G into a group. Determine which of the following subsets of G are subgroups: $\{(x, y, z) \mid x=0\} ;\{(x, y, z) \mid x=y\} ;\{(x, y, z) \mid z=0\}$.

Is G abelian? Work out the nth power of (x, y, z) in G. Which elements of G have finite order?

Verify that $H=\{(x, y, z) \mid x=y=0\}$ is a subgroup of G and that $g h=h g$ for all $g \in G, h \in H$.

