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Abstract. Tate’s algorithm [31] for computing K2OF for rings of integers in
a number field has been adapted for the computer and gives explicit generators
for the group and sharp bounds on their order—the latter, together with some
structural results on the p-th primary part of K2OF due to Tate and Keune,
gives a proof of its structure for many imaginary quadratic fields, confirming
earlier conjectural results in [7].
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1. Introduction

The Milnor K-group K2OF of the ring of integers OF in a number field F
is known to be a finite abelian group. Its actual determination, though, is very
difficult and has been achieved only in a dozen or so cases, where the resulting
groups turned out to be either trivial or of order 2, with an obvious generator.

Tate [31] has given an algorithm to bound the number of generators which en-
abled him—after some further clever manipulations—to complete the analysis for
the six first imaginary quadratic cases (i.e. the ones of smallest discriminant). Sub-
sequently, other authors (Ska lba [29], Qin [23, 25], Browkin [6]) have improved the
method and were able to establish several other (still imaginary quadratic) cases,
the largest (in absolute value) discriminant treated so far being −35.

We present an algorithm for computing K2OF , that can be divided roughly into
three phases:

a. Find a small set of generators, via a refinement of Tate’s and Browkin’s elimi-
nation procedures.

b. Create enough relations among those generators. This gives us upper bounds
on the order of the generators.

c. Bound the size of the p-primary part of K2OF from below with the help of
class group computations, via results of Tate and Keune.

The first phase was originally based on work of Browkin [6], dealing with the imag-
inary quadratic case, which in fact gave the impetus for this paper. Eventually
it was adapted for arbitrary number fields and implemented in the PARI/GP [16]
scripting language. So far, parts of the program remain specific to the imaginary
quadratic case, for lack of good bounds for the number of generators in the general
case.

The program proves the previously conjectured [7] structure of K2OF , in terms of
explicit generators and their order, for all imaginary quadratic fields of discriminant
greater than −1000 with only 7 exceptions (cf. §7). In particular, K2OQ(

√
−303) =

Z/22 Z, and a generator is given by the symbol
{

1
2 (−37 − 3

√
−303), 1

2 (−73 +
√
−303)

}5
.

Furthermore, in many other cases including the 6 exceptions from above, it still
gives a set of simple generators together with a bound on their orders. For instance,
K2OQ(

√
−755) is generated by

{
2, 1

2 (577 + 17
√
−755)

}6

and its order is either 2 or 2 × 41. The latter is almost certainly the correct value
since it coincides with the conjectured one from [7], which used a different method.

As a further interesting example, we are led to conjecture that
{

1
2 (1751 +

√
−4547), 1

2 (7 + 5
√
−4547)

}12

has order 233 and generates K2OQ(
√
−4547).

The organization of the paper is as follows. In §2, we give definitions and ba-
sic properties of the objects which are computed. We also recall ideas from the
computation of class groups via index calculus which we adapt to the K2OF situa-
tion. In §§3-4, we discuss Tate’s method, further improved by Ska lba and Browkin,
and systematize it. This covers part 1) of the algorithm. In §5, we explain how

relations are generated, and how one computes a tentative group K̃2OF of which
K2OF is a quotient. If enough relations have been produced, these two groups
should coincide. In §6, we recall Keune’s result exhibiting pn-torsion in K2OF

from pn-torsion in the class group of the cyclotomic extension F (ζp) and discuss
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its realizability, in particular we carefully separate the results into unconditional
ones and into ones which hold only under the assumption that a few explicit ideals
in OE are not principal, a fact which we can only prove assuming the Generalized
Riemann Hypothesis (GRH). In a final section §7, we list our results and give a few
examples.
Acknowledgements: We would like to thank Claus Fieker, Rob de Jeu, Thorsten
Kleinjung, and foremost Jerzy Browkin for useful discussions and correspondence.
We would also like to thank the Max-Planck-Institut für Mathematik and the Arith-
metic Algebraic Geometry Network for financial support.

2. Background

2.1. The functor K2. For the convenience of the reader we recall the setup from
Tate’s paper [31]. We order the finite primes v1, v2, . . . in the number field F by
norm, writing Nv for the absolute norm of v, and put

Sm = {v1, . . . , vm} .

We let (r1, r2) denote the signature of F , and n = r1 + 2r2 = [F : Q]. Given a set
S of finite places of F , denote by OS the ring of S-integers of F , by US the group
of S-units, by µ(F ) the group of roots of unity in F , and by k(v) the residue field
of the place v.

Recall that K2F can be defined as the quotient of F ∗⊗F ∗ modulo the subgroup
generated by the elements of the form x ⊗ (1 − x), where x(1 − x) ∈ F ∗. The
symbol {a, b} denotes the projection of a⊗ b ∈ F ∗⊗F ∗ in K2F . Let KS

2 (F ) be the
subgroup of K2F generated by the symbols with support in S, i.e. those symbols
{a, b} for which a, b ∈ US. We have a natural filtration on K2F = lim−→

m

KSm

2 (F ).

Let ∂v : K2F → k(v)∗ be the tame symbol corresponding to v, given by

∂v({a, b}) := (−1)v(a)v(b)av(b)/bv(a) (mod v) .

(By abuse of notation, we will use the same symbol v for a finite place and the
associated normalized valuation.) This is well defined and the tame kernel K2OF

can be given, via a theorem of Quillen, as the subgroup
⋂

Ker ∂v, where v runs
through all finite places of F .

Garland [15] proved that K2OF ⊂ KS
2 (F ) for a finite set of places S. This im-

mediately implies that K2OF is finitely generated since the S-units are themselves
finitely generated, with |S| + r1 + r2 generators, one of them being torsion, the
others of infinite order. Since K2OF is also known to be a torsion group [loc. cit.],
it is a finite abelian group.

Bass and Tate [3] made Garland’s argument effective for any number field, and
Tate refined it further for principal imaginary quadratic fields, completing the work
for the 6 smallest discriminants (in absolute value): −3, −4, −7, −8, −11, −15.
Most of the explicit computations of K2OF referred to in Section 1 are refinements
of Tate’s method. The best unconditional results are due to Ska lba [29] and Browkin
[6] and rely on Minkowski’s theorem on lattice points:

Theorem 2.1. Let F be a number field and ∆ its discriminant. Then K2OF ⊂
KS

2 (F ), where S = {v : Nv ≤ B(∆)} for some computable

B(∆) = O
(

max(∆3, ∆2f(∆))
)

and where f depends on the embeddings of fundamental units of F in C and is a
priori exponential in ∆.

If F is imaginary quadratic, one can take B(∆) = C∆5/3, where

C := 26/π10/3 ≈ 1.409 .
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Here and in the sequel, all constants implied by the O notation depend at most
on the field degree and are computable. The general result is due to Ska lba and,
although the bound does not appear explicitly in his paper, it follows from his
argument. Browkin optimized the special case where F is imaginary quadratic and
worked out the constants. We will refer to B(∆) as Browkin’s bound.

When F is a given arbitrary number field, one can in general derive tolerable
bounds from Ska lba’s argument, if the fundamental units are not too large. This
will be the subject of a later paper but, in the present one, we are lacking a precise
bound for the general case, so F will be quadratic imaginary in all our examples.
On the other hand, restricting to the imaginary quadratic case does not really
make anything simpler, apart from the existence of a better bound B(∆), so the
algorithms outlined in the sequel are given in full generality.

2.2. Computing class groups. We recall the basic idea of modern algorithms
to compute class groups and fundamental units in general number fields (see [10]).
We need

• A distinguished set of generators p1, . . . , pn for the class group, namely all
prime ideals less than the Minkowski bound (or Bach’s bound if one is willing
to assume GRH). They form a nice factor base.

• An easy way to produce relations: factoring elements of small norms on the
factor base given above, since a factorization (x) =

∏
p

ei

i yields a relation
among the generators, encoded by the vector (ei). There are other ways,
necessary in general (especially when F has many subfields), such as computing
random relations using Buchmann’s ideal reduction theory, but unfortunately
we know of no equivalent in our K2 situation.

• A rough estimate for the class group size, and more precisely for the product
hR of the class number with the regulator, provided by Dirichlet’s class number
formula. In fact, any B such that B/

√
2 < hR ≤

√
2B will do.

Let Λ be the submodule of Zn generated by a number of relation vectors; and
let MΛ be the corresponding integral matrix. The Hermite Normal Form (HNF)

algorithm, applied to MΛ, makes it easy to compute the index h̃ = [Zn : Λ], which
is a multiple of the true class number (or equal to ∞). The HNF algorithm also
computes the integer kernel of MΛ, which corresponds to trivial relations of the
form αOF = OF , i.e. to units. From the logarithmic embeddings of these units,
one computes a tentative regulator R̃, which is an integral multiple of the actual
one.

If R̃ is non-zero, which can be checked numerically using Zimmert’s universal
lower bound for the regulator, we now have a full set of relations and a full set of
generating units if and only if 0 < h̃R̃ ≤

√
2B, which implies h̃ = h and R̃ = R.

Once this is achieved, the Smith Normal Form (SNF) algorithm yields the structure
of the class group Cl(OF ) as a product of cyclic groups, together with explicit
generators, and we can extract a system of fundamental units from the information
used to compute R̃.

2.3. Higher class groups. Ideas analogous to the ones in the previous subsection
can be used to compute KS

2 (F ). We can easily factor elements of the form x⊗(1−x)
on fixed generators of US ⊗ US . Hence, assuming we can find enough relations, we
should be able to compute KS

2 (F ). Should this be feasible for a sufficiently large S,
such as the one given by Browkin, the subgroup K2OF would then be given by the
intersection of all Ker ∂v : KS

2 (F ) → k(v)∗, v ∈ S, which is obtained by elementary
linear algebra (see Section 5.3). We unfortunately face two serious problems:

a. Too many generators: Browkin’s bound is exponential, and the number of
generators for US ⊗ US is O(|S|2) = O(B(∆)2/ log2 B(∆)) by the prime ideal
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theorem. For ∆ ≈ 100, even in the imaginary quadratic case, this bound is
bigger than 200000 and it will be exceedingly hard to HNF-reduce a matrix of
that dimension1.

b. No stopping criterion: suppose no matter how many relations we add, the
computed value for |K2OF | stabilizes. Unfortunately, we still have to prove
that we have a full set of relations, and our construction cannot do it, unless
the group is trivial.

We will see in the next section that the first problem is easily overcome: by
following explicitly the steps in Browkin’s proof, we obtain an algorithm that,
starting from Browkin’s bound, considerably reduces the number of generators.

As for the second problem, we will see in Section 6 a number of useful tests,
relying in particular on work of Tate [32] and Keune [18], to determine the p-primary
part of K2OF , which most of the time yields enough information to conclude.
Unfortunately, its implementation requires to assume the GRH unless p is very
small (in order to compute class groups of cyclotomic extensions of F ), and is not
practical if p is large.

At this point, it is tantalizing to use the Lichtenbaum conjecture, which is a
higher analog of Dirichlet’s class number formula. A proof of the cohomological
version of this conjecture2 seems to be within reach in the case of abelian fields due
to the efforts of Kolster, Nguyen-Quang-Do and Fleckinger [19]. Unfortunately,
even after removing erroneous Euler factors in their main formula, the statement
is given only up to an unspecified power of 2 (cf. also the recent paper by Huber
and Kings [17]). For a real abelian field, the exact power of 2 is known (Rognes
and Weibel [26]), so Lichtenbaum’s formula can be used at least in that case.

An exact statement, including the 2-primary part, would allow us to argue as
follows: Lichtenbaum’s conjecture expresses the product h2R2 in terms of accessible
invariants, where h2 = h2(F ) := |K2OF | and R2 = R2(F ) is the volume of a lattice
formed from the images of “higher units” (the Bloch group B(F ), which is related
to K3OF by work of Suslin [30]) under some higher regulator map. Reducing the
relation lattice in US⊗US, i.e. computing the span of the exponent vectors provided
by the factorizations of the relations x ⊗ (1 − x), naturally produces elements in
K3OF (as relations among the relations). From the relations and higher units found

so far, we can derive tentative values for h2 and R2, say h̃2 and R̃2, which are both
integral multiples of the correct values. Indeed h̃2/h2 is the index of our relation

lattice for K2OF in the full one, and R̃2/R2 is the index of the span of our higher

units in the full lattice of higher units. If h̃2R̃2/h2R2 is strictly less than 2, where

the denominator is computed via Lichtenbaum’s formula, we in fact have h2 = h̃2

and R2 = R̃2, thereby proving that we have indeed computed K2OF and K3OF

(in fact rather B(F )).
Hence, although the algorithm produces useful unconditional information about

K2OF in the guise of explicit simple generators and a multiple of their order, it may
require the full strength of Lichtenbaum’s formula to prove that the presentation is
complete. For real abelian fields, where the formula is known to hold, it can very
easily be applied since there are no higher units: the regulator R2 is 1.

Numerical experiments performed by the second author ([14]) suggest that, if F
is imaginary quadratic, Lichtenbaum conjecture should read:

h2R2 =
3

π2
|∆|3/2ζF (2),

1The (naive) HNF implementation in PARI can easily treat sparse relation matrices of dimen-
sion 1000, but requires too much memory when dimension increases further.

2which in the special case we need to compute K2OF is known to be equivalent to the K-
theoretic formulation.
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where ζF is the Dedekind zeta function.

Remark 2.2: It is of course not fortuitous that the class group algorithm general-
izes so well. One defines an infinite sequence of K-groups and there is a well-known
description for the first two, which makes apparent what is going on:

K0OF ≃ Z ⊕ Cl(OF ) and K1OF ≃ O∗
F ,

with canonical isomorphisms. We are replicating the classical algorithm two steps
higher, replacing K0 and K1 by their analogs K2 and K3, respectively.

3. Reducing Browkin’s bound

In this section, we fix a set S of finite places and v 6∈ S. We write A for OS , U
for US and k for k(v). The main ideas are adapted from Tate’s seminal paper [31].

Let T := S ∪ {v} and assume that K2OF ⊂ KT
2 (F ). We want to prove that, in

fact, we already have K2OF ⊂ KS
2 (F ). This will be used in the following situation:

starting from Browkin’s initial S, we iterate this process, successively truncating S
by deleting its last element with respect to the given ordering, hoping to reduce the
set of places to a manageable size. As soon as one of the tests described below fails,
the reduction process stops and we proceed to the next phase of the algorithm:
building the relation matrix (cf. Section 5).

3.1. A notion of smallness. For a ∈ F , define

T2(a) :=
1

[F : Q]

∑

σ

|σ(a)|2 and ‖a‖2 :=
√

T2(a),

where σ runs through the [F : Q] embeddings of F into C and |x| denotes the
complex modulus of x. Note that ‖.‖2 is a norm of Q-vector spaces, and T2 a
positive definite quadratic form on the coordinates of a on any Q-basis. The norm
‖.‖2 gives a precise meaning to the word small applied to an element of F . Due
to the celebrated LLL algorithm, it is easy to compute vectors in lattices (or grids,
i.e. translates of lattices) which are small with respect to T2, with precise quanti-
tative statements with respect to their relation to the shortest vectors. This would
not be the case if we had chosen ‖·‖∞ instead for instance.

The quadratic form T2 is [F : Q]−1 times the usual so-called T2-norm, which is in
fact not a norm. The normalization is chosen so that it coincides with the ordinary
modulus when F is imaginary quadratic. It generalizes to arbitrary number fields
the euclidean techniques used by Tate, Browkin and others.

3.2. The brute force approach. We first require3 that v be principal in A, say
v = πA. The tame symbol ∂v vanishes on KS

2 (F ), hence induces a homomorphism

∂v : KT
2 (F )/KS

2 (F ) → k∗ .(1)

Recall that we assumed that K2OF ⊂ KT
2 (F ). Obviously, K2OF ⊂ KS

2 (F ) if
this induced morphism is injective. We now consider the following commutative
triangle:

U

α

xxpppppppppppp

β

!!
C

C
C

C
C

C
C

C

KT
2 (F )/KS

2 (F )
∂v

// k∗

3In practice, this condition is easy to check and is always satisfied except for very small sets
S which we are not interested in reducing anyway. In fact, A itself will be principal as soon as
S contains the generators of the class group which, according to Bach’s GRH bound [2], will be
true for S containing the primes of norm less than 12 log2 |∆|.
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where α(u) := {u, π} (mod KS
2 (F )) and β(u) := u (mod v), for u ∈ U . The

morphism α is easily seen to be surjective: the only difficulty is to notice that {., .}
is skew-symmetric and that {π, π} = α(−1), see [31]. Hence, ∂v is injective if and
only if Ker α = Ker β.

This last property is not usable directly since Ker α seems to be hard to compute.
Fortunately, we know a sizeable chunk of this kernel offhand: define U1 to be the
subgroup of U generated by (1 +πU)∩U ; then U1 ⊂ Ker α. Indeed, if u = 1 +πt ∈
U1, one has 1 = {1 + πt,−πt} = {u,−t} {u, π} ≡ {u, π} (mod KS

2 (F )), since both
u and t are supported on S.

So U1 ⊂ Kerα ⊂ Kerβ. If we are lucky, then U1 = Ker β and we are done;
in fact, this is guaranteed if Nv is larger than Browkin’s bound, and in practice
appears to be true for all but a few very small primes. This suggests the following
heuristic algorithm:

Algorithm 3.1:

Input: a set S of finite places, and a place v 6∈ S such that K2OF ⊂ K
S∪{v}
2 (F ).

Output: check whether U1 = Ker β. If so, Ker α = Ker β and K2OF ⊂ KS
2 (F ). It

may happen that the equality holds and the algorithm fails to detect it (return FAIL in
that case).

a. [Compute U ]. This yields a set W of d := |S| + r1 + r2 independent generators
of US , as well as technical data needed to solve the discrete logarithm problem in
U .

b. [Compute π]. If v is not principal in A, return FAIL. Else compute a generator π
of v using Sub-algorithm 3.2.

c. Compute the cardinality B of Im β. This is done by reducing the elements of W
modulo v and computing their order in the cyclic group k∗; the lcm of the orders
is B.

d. Create an empty relation matrix and set a failure counter fail to 0.
e. [Find an element in U1]. Compute a small multiplicative combination t of the

generators from Step (a). If u := 1 − πt is an S-unit, go to Step (f). Otherwise,
increase fail. If the counter gets too big, return FAIL.

f. [Update relation matrix]. Factor u ∈ U1 on the factor base and append the
exponent vector to the relation matrix. If we have found less than d relations,
reset fail to 0 and go to Step (e).

g. Let H be the HNF of the relation matrix. If it has maximal rank (namely d) and
det(H) = B, return TRUE. Otherwise, increase fail, delete dependent relations
and go to Step (e).

Proof. The only non-trivial step is the last one. Let Ũ1 ⊂ U1 be the lattice generated
by the S-units u ∈ U1 constructed so far in Step (e); then det(H) = [U : Ũ1]. Since

| Im β| = [U : Ker β] and Ũ1 ⊂ U1 ⊂ Ker β, we have det(H) = | Im β| if and only if

Ũ1 = U1 = Ker β. The counter fail ensures that the algorithm terminates.

Sub-algorithm 3.2:

Input: a set S of finite places, and a place v 6∈ S.
Output: a uniformizer in S-integers.

a. If v is principal in OF , compute a generator of small T2-norm using the principal
ideal algorithm [10, Chapter 6] and return it.

b. Factor v on a fixed basis for the class group. Since Step (a) did not succeed, we
obtain a non-zero exponent vector e(v). Factor each element vi of S on the same
generators, and stop when e(v) falls into the lattice generated by the exponent
vectors e(vi) corresponding to the vi (check using successive HNF reductions). In
matrix form, Mu = e(v) has an integral solution u0, where the columns of M are
given by the exponent vectors e(vi).
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c. Using for instance the second reduction algorithm in Section 4.1, compute a small
vector u in the grid u0 + Ker M .

d. The corresponding relation in the class group v ∼ ∏
vui

i gives a uniformizer in the

S-integers: (π) = v
∏

v−ui

i , which involves few vi.

Remark 3.3: a. All the S-units and principal ideal computations above can be
done by a straightforward generalization of the classical situation S = ∅ (see
[11, Chapter 7]). When iterating this procedure, one should make sure to
arrange the initialization Step (a) so that it can be re-used by simply deleting
a generator.

b. By a famous result of Siegel [28], made effective by Baker’s theory of linear
forms in logarithms, there are only a finite number of solutions to the equation
u + πt = 1 in S-units u and t. There are tractable ways of enumerating
them all using Baker’s method and LLL-reduction when the S-unit rank is
small [34, 13], less than 20, say. In our situation, both the reduced bounds
and the actual number of solutions are hopelessly huge, and an exhaustive
search is impractical. Fortunately, although it seems hard to fully analyze this
behaviour, we only need a very small fraction of these solutions to build U1.
In practice, using at most two generators in the product defining t works very
well. This amounts to checking at most O(|S|2) S-units.

c. In Step (c), we expect that Im β = k∗ as soon as S includes enough small
primes. For instance, assuming GRH, Bach’s version of Ankeny’s theorem says
that the integers up to 2 log2(p) in absolute value generate the multiplicative
group (Z/pZ)∗. Taking for G this set of rational integers, it implies that, for
a place v of inertia degree 1, Im β = k∗ as soon as S contains all the places
dividing the primes less than 2 log2 Nv. Note that in order to be rigorous, we
should also check that this set G is included in U , and we can only ensure this
in general by requiring that 2 log2 Nv <

√
Nv, i.e. Nv ≥ 57829 which is far

beyond the limits of our HNF implementation. In short, this line of reasoning,
although interesting asymptotically, has mostly heuristic value. It tells us that
the first few elements should generate Im β in Step (c), and not O(|S|) many
as the size of W would indicate. Hence one checks the elements of W one by
one and computes an lcm after each order computation: we abort this step as
soon as the lcm reaches Nv − 1, thereby proving that Im β = k∗.

d. We are only interested in factoring S-units in Step (f), and this is easily done
by trial dividing by the primes in S. More precisely, given x ∈ F , we trial
divide the absolute norm of x by the rational primes covered by the elements
of S, and compute only those valuations lying above the primes which divide
the norm of x. All the other valuations will be 0.

e. The class group of F is computed via a finite presentation, and its generators
(gi) are initially given in terms of a fixed factor base B of prime ideals. Con-
versely, the elements of B are easily obtained in terms of the gi. If S is not
too large, it will be contained in B, and the factorization of the vi in Sub-
algorithm 3.2 will be already known. Note that these factorizations were also
needed to compute US in Step (a) of Algorithm 3.1.

The whole point of Algorithm 3.1 is that, assuming we can truncate S all the
way down to bounded size, we handle O(|S|) relation matrices of dimension O(|S|),
instead of a single one of size O(|S|2). Since no linear time HNF algorithm is known,
this is a definite improvement. The storage requirements are likewise lowered.

On the other hand, this method is still unable to handle really large sets S. We
will see in the next subsection a clever construction, due to Tate, which implements
the same test (U1 = Ker β) in a simpler way. It is less efficient as far as lowering
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the bound goes since, in general, it succeeds only when Algorithm 3.1 would, but
is much faster to execute.

3.3. Tate’s method.

3.3.1. The general case. The setup is the same as in the previous section, except
that we do not assume that v is principal. If v happens to be non-principal we
define U1 to be the subgroup generated by the empty set, i.e. U1 = {1}. We would
like to apply, for as many primes v as possible, the following criterion of Tate:

Proposition 3.4. [31, Prop. 1, p. 430] Suppose that W , C and G are subsets of
U satisfying the following three conditions

(T1) W ⊂ CU1, and W generates U,
(T2) CG ⊂ CU1, and β(G) generates k∗,
(T3) 1 ∈ (C ∩ Ker β) ⊂ U1.

Then U1 = Ker β and ∂v (see (1)) is bijective.

These conditions arise quite naturally when trying to construct an explicit inverse
to ∂v by brute force. (T2) together with (T3) is a devious way to ensure that CU1

is a subgroup of U , which will be the whole of U by (T1); multiplying on both sides
by U1, (T3) now implies that Ker β ⊂ U1. In particular, these conditions imply
that C contains a complete system of representatives of k∗. In practice, we will
choose it to be minimal, that is |C| = |k∗| = Nv − 1.

Remark 3.5: If this method succeeds with a finite C, then v is principal unless
F is imaginary quadratic, S is empty and Nv < 4. If v is not principal, U1 = {1};
since CU1 = U , we have C = U . Hence, U contains only roots of unity, which forces
F to be imaginary quadratic. In fact U = {−1, 1} since Q(

√
−1) and Q(

√
−3) are

the only ones to contain higher roots of unity and they are both principal fields.
The condition on Nv follows from 〈β(G)〉 = k∗ ⊂ {−1, 1}, since G ⊂ U , where 〈 〉
denotes the span as a Z-module.

We need one more easy lemma:

Lemma 3.6. Assume that S is the set of all places smaller than v. Let a, b ∈
U ∩ OF satisfying β(a) = β(b).

a) If N(b − a) < Nv2, then a/b ∈ U1.
b) Let n := [F : Q]. If

‖a‖2 + ‖b‖2 < Nv2/n,(2)

then the condition of a) is satisfied.

Proof. a) is exactly [3, Claim 2, p. 63]. As for b), the arithmetic-geometric mean
inequality implies that

Na ≤ ‖a‖n
2 , for a ∈ F .

Hence, N(b − a) ≤ ‖b − a‖n
2 ≤ (‖a‖2 + ‖b‖2)n < Nv2.

This is used in the following way: one constructs minimal sets C, G, W in U∩OF

such that 〈β(G)〉 = k∗, 〈W 〉 = U , and C is a complete set of representatives of k∗,
containing 1. Let m(C), m(G), m(W ) be the maximum of the ‖x‖2 for x in C, G
and W , respectively. Condition (T3) is automatically satisfied and one then checks
conditions

(T1′) m(W ) + m(C) < Nv2/n,

(T2′) m(C)(m(G) + 1) < Nv2/n.

since each of them easily implies the related one from Proposition 3.4. For example
assume that (T2′) holds. Then, given c ∈ C, g ∈ G, one picks c′ ∈ C such that
β(cg) = β(c′) and the lemma asserts that the quotient cg/c′ belongs to U1, hence
(T2) is also satisfied.
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3.3.2. Browkin’s optimization. In the imaginary quadratic case, Browkin’s bound
is derived from the proposition and the lemma in the previous section, with slight
modifications to allow denominators, by taking cleverly chosen balls for the various
sets. It should be apparent that there is ample room for improvement when working
with explicit sets, if only by checking the conditions elementwise, or by computing
(a/b− 1)π−1 instead of applying Lemma 3.6. The key condition is of course (T2′),
since improvements to m(C) or m(G) will make their product significantly smaller.
In fact, if (T2′) could be omitted, Browkin’s bound would be O(∆). This is mostly
what GRH would do for us (asymptotically) in the case of places of degree 1, since
it asserts that one could take m(G) logarithmic in Nv in this case (see Remark 3.3,
part c). More precisely, [6, Lemma 8] says that if

Nv >
16

π2
m(G)|∆|,(3)

then it is possible to construct C such that (T2) holds. There is an inequality for
(T1), analogous to (3), possibly making the computation of m(C) entirely super-
fluous if the right conditions are met: let qF be the least integer such that every
ideal class of OF contains an ideal of norm ≤ qF (see Section 4.6 for how to bound
this quantity). If

Nv > max

(
16

π2
|∆|,

(√
2qF

2

π

√
|∆| +

1√
2

)2
)

,(4)

is satisfied (the rightmost term is always dominant unless the field is principal),
then (T1) holds with the same set C that resulted from (3).

3.3.3. Reducing the set S. We adapt Browkin’s strategy to the case of general
number fields. The reduction is split into two phases:
First, we build a list of bad primes, using only bounds and not the actual elements
of the sets C, G and W . To ensure we have enough flexibility for the final part
of the algorithm (looking for relations), we do not want S to be too small, so we
initialize a black list with all places v dividing 2 or 3.

a. For each prime ideal v such that Nv ≤ B(∆), compute the best possible m(G)
using the methods of Section 4.5.

b. If this succeeds, check whether inequality (4) holds; if so, start over in a with
the next v. If not, compute m(W ) using the algorithm from Section 4.6.

c. If a prime fails to satisfy one of the two inequalities (3) and (4), evaluate m(C)
and check conditions (T1′) and (T2′) using Algorithm 4.5. This is not so fast
(a few seconds per prime) and is in fact the only practical bottleneck of the
reduction phase.

d. If it also fails, stigmatize the prime as bad and add it to the black list.

This ends the first phase. Now we check the black list and try to refine the reluctant
primes into submission, starting from primes of highest norm. For x ∈ U , we denote
by x′ the unique element of C congruent to x (mod v). This time, we explicitly
compute the sets:

a. [Initialize G]. Pick up the largest v in the list and compute a good set G as in
Algorithm 4.7.

b. [Initialize C]. Compute a good set C as in Section 4.3 except we now take the
best possible representative for each class of k∗/µ(F ), even those which violate
(T2′). Compute m(C).

c. [Check W ]. Check that (T1′) is satisfied (it always is in practice). If not, we
abort the whole refinement procedure.

d. [Update G]. Truncate G from below: remove all elements g ∈ G such that
m(C)(‖g‖2 + 1) < Nv. The resulting G should be non-empty.
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If any of the two steps below succeed, delete v from the list and start over in
Step (a).

e. [Check (T2) elementwise]. For all pairs (c, g) ∈ C × G, try to prove that cg ∈
(cg)′U1 using Algorithm 4.3. If the algorithm fails, compute a small element
d, possibly larger than c, such that d ≡ c (mod v) and m(W ) + ‖d‖2 < Nv. If
dg ∈ (dg)′U1 and d/g ∈ (d/g)′U1 for all g ∈ G, replace c by d in the set C and
proceed. If not, the test fails.

f. [Compute U1]. If all else fails, try to prove directly that U1 = Ker β using
Algorithm 3.1.

As soon as we meet an ideal v0 in the list that we are unable to discard, we take
S equal to all the places v such that Nv ≤ Nv0 and apply the final class group-type
construction in Algorithm 3.1.

Remark 3.7: The replacement criterion applied in Step (e) is straightforward. We
first check whether (d, g) passes the test for all g, just as c was supposed to. If so,
we further check whether anytime we have (γg)′ = c for some γ ∈ C and g ∈ G
(which implies γ = (c/g)′ = (d/g)′), the expected inclusion γg ∈ dU1 holds; then
we can replace c by d in C. Note that since G is minimal, it does not contain any
element ≡ 1 (mod v), so there is no ambiguity in the procedure: we can never have
(cg)′ = c.

In this refinement algorithm, W is a theoretical annoyance that has no impact in
practice when the fundamental units are small, since the set is trivial to compute :
the bound (4) was nice enough to ensure that W never causes refinement to fail in
any of our imaginary quadratic examples. It will become a serious problem if the
fundamental units are large, since mW can then be exponential in

√
∆, for all S.

We make one final remark which is very important for practical computations.
When F/Q is Galois, the Galois group acts on prime ideals of given norm (in fact,
transitively on the prime ideals dividing a given rational prime). We can then try
to delete not only v, but all primes of norm Nv in one sweep. For that, one takes S
to be the set of all primes of strictly smaller norm, and picks an arbitrary v of the
chosen norm. If we can build the sets C, G and W for v, then σC, σG, and σW
get rid of σv. More generally, when F is Galois over a proper subfield (the smaller,
the better), that is if it has non-trivial automorphisms, only one prime ideal out of
each Galois orbit needs to be considered.

In practice, the black list is remarkably short. For instance for F = Q(
√
−1016),

one has B(∆) = 144711 and only 135 bad primes v. Using the Galois action, they
in fact contribute 15 inert rational primes 59 split ones, and 2 ramified ones. Only
24 of them are “serious” problems (corresponding to |S| ≥ 1000, so that algorithm
3.1 becomes expensive); 7 of them are inert, the largest norm being 1572 = 24649.
All primes are refined when checking (T2) elementwise, without needing to modify
C.

Inert primes are a disproportionate threat: recall that the bound is on the norm,
not the underlying rational prime, so very few inert primes actually play a role;
most of them are a nuisance, nevertheless. This is not surprising since, if v is
inert, we have little freedom to change the representatives of k∗ without increasing
considerably their T2-norm.

4. Filling in some details

4.1. Small vectors in grids. For future reference, we review quickly in this sec-
tion three basic algorithms dealing with short vectors in grids (translates of lattices),
all of them applications of the LLL algorithm [20]. Given a euclidean space E with
a positive definite quadratic form Q, a free Z-submodule Λ, and e ∈ E, the problem
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is to find a vector x in e + Λ such that Q(x) is small. We assume that Λ is given
by a basis (λi), which is LLL-reduced with respect to Q.

The first algorithm, due to Fincke and Pohst, diagonalizes the form and finds
recursively all points in the grid whose norm is less than a given bound. All small
vectors are found, but the search is very slow (exponential time in the bound).

For the second, fix an isomorphism E ≃ Rn and embed E in Rn+1 ≃ E × R via
e → (e, 0). Then consider the lattice in Rn+1 generated by the (λi, 0) and (x, C),
where C is a huge real number (bigger than C0 maxi Q(λi), where C0 depends only
on the dimension and a certain “quality ratio” chosen for the reduction). Then
reduce this new lattice with respect to the quadratic form Q + X2

n+1. The last
vector in the basis, projected back to E, will be a small vector belonging to ±e + Λ
(the other vectors will have 0 as (n + 1)-th coordinate), maybe not the smallest
one, but often so in practice. The complexity is much better, both theoretically
(polynomial time) and in practice.

The last algorithm is the most näıve one: take the orthogonal (with respect
to Q) projection of e onto the subspace spanned by Λ, and call it ε, say. If L
denotes the matrix whose columns give the LLL-reduced basis of Λ, then f :=
L⌈L−1ε⌋ is a point of Λ close to ε, where ⌈e⌋ denotes rounding to the closest
integer coordinatewise, and L−1ε is the inverse image of ε, corresponding to the
usual matrix inverse if Λ spans E. The point e− f belongs to L and has relatively
small norm. This gives a crude but fast estimate, assuming the data associated to
the subspace spanned by Λ have been precomputed.

4.2. Does x belong to U1? We describe a simple heuristic check to decide whether
a given x is in U1, without trying to compute the whole subgroup as in Algo-
rithm 3.1.

For the sake of completeness, we first make the trivial check for x ∈ U explicit.
We first assume the field is Galois and we are making use of the Galois action,
checking all places dividing a given rational prime simultaneously. Hence S is the
set of prime divisors of a list P of rational primes.

Sub-algorithm 4.1:

Input: x ∈ F , Galois over Q.
Output: TRUE if x ∈ U , FALSE otherwise.

a. Compute the denominator of x in the integral basis, that is write x = a/b with
a ∈ OF , b ∈ Z>0 for the smallest possible b (note that this is likely to be the
original representation for x).

b. Trial divide b by all primes in P . If the result is not 1, the factorization involves a
prime not in the list, and we return FALSE.

c. Compute |Na| and trial divide as in Step (b). If it succeeds, return TRUE. Return
FALSE otherwise.

Proof. Due to the special form of S, we have a ∈ U if and only if Na ∈ U , and a
rational integer belongs to U iff it is not divisible by any element of P . Hence, if
the algorithm returns TRUE, then x ∈ U .

Conversely, if x ∈ U , its minimal polynomial mx is
∏

σ∈H(X − σx) for some
H ⊂ Gal(F/Q). The denominator d of mx has the same prime divisors as b. Since
if v ∈ S, so are all its conjugates, all the σ(x) belong to U , hence the valuation of any
of the coefficients of mx at v ∈ S is non-negative. In particular, the denominator
d, hence b, belongs to U . Since U is a subgroup, so does a.

Remark 4.2: Step (b) is needed since simply checking the norm would let numbers
whose factorization contains a factor v/σ(v) for some σ ∈ Gal(F/Q) slip through.
Note also that if we are not in the Galois case, the procedure above is enough to
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check that x ∈ US′ where S′ is the subset of S obtained by removing all v from
S such that there exist w 6∈ S above the same rational prime (of course the list of
such v should be precomputed). One then has to check that the valuation of x at
all v ∈ S − S′ is 0.

We now cater for the subgroup U1:

Sub-algorithm 4.3:

Input: x ≡ 1 (mod v), a small uniformizer π such that πOS = v, as in Sub-
algorithm 3.2.
Output: TRUE if x ∈ U1, FAIL otherwise (could not conclude).

a. If (x − 1)/π ∈ U , return TRUE.
b. Otherwise, pick a few small elements in U1, for instance the 1 + uπ and their

inverses where u runs through generators of the units, or small rational integers in
U (less than 5, say). Multiply x by each of them in turn, testing the product as
in Step (a) above.

c. If none of the modified elements satisfies the condition in Step (a), return FAIL.

Remark 4.4: It looks difficult to mix strategies by computing part of U1 as in Al-
gorithm 3.1 when Algorithm 4.3 fails: computing U explicitly is out of the question
when S is huge. On the other hand, one can fix a much smaller set S′ and find
multiplicative generators (ui) for the S′-units which are congruent to 1 (mod v) by
the methods of Section 5.3. We keep only those which are included in U1, according
to the above test; when S contains all primes less than a huge bound, the ui will
all pass the test, since their T2-norm will be small enough. After taking logarith-
mic embeddings of F into Rr1 × Cr2 ≃ Rn, we can use one of the grid reduction
algorithms in Section 4.1 to find exponents (ni) such that y := x

∏
uni

i has small
T2-norm. Now Step (a) can be applied to y. This procedure is a more sophisticated
version of Step (b) above. In practice, Step (b) is sufficient as it stands.

4.3. Constructing the set C. We want to find a complete system of representa-
tives C of k∗ in U ∩ OF , whose elements have minimal T2-norm.

A theorem of Ska lba [29, GTT] asserts that, provided Nv > ( 4
π2 )r2 |∆| and we

allow denominators, it is possible to find such representatives with numerators and
denominators both O((|∆|Nv)1/2n), where the O constant depends at most on the
degree n := [F : Q]. This situation will be considered in Section 4.4. In the current
section, we insist on C ⊂ OF .

For all e ∈ k∗ , we want to find a small x ∈ U ∩OF such that β(x) = e, i.e. such
that x belongs to the grid ε + v, where ε ∈ U ∩ OF is any representative of e, and
the ideal v is regarded as a lattice. We use the last algorithm of section 4.1 and take
x = ε − P ⌈P−1ε⌋, where the columns of P give a reduced basis (pi) of the lattice
v, in terms of a fixed integral basis. This is the least efficient of the grid reduction
algorithms in terms of the size of the element produced, but it is very fast since
most of the data (in particular P−1) do not depend on ε and can be precomputed.

Note that, starting from a fixed reduced basis, the result does not depend on
the chosen representative ε. Note also that if v is an inert rational odd prime and
the chosen integral basis is LLL-reduced, then P is the diagonal matrix p Id and
the procedure above simply picks the unique representative whose coordinates are
all bounded by (p− 1)/2. This produces the same set C as in Browkin’s procedure
for the imaginary quadratic case, and possibly slightly worse ones in the non-inert
cases, where he uses a much slower exhaustive enumeration.

If the resulting bound is not satisfactory, we can check whether the other two
grid reduction algorithms produce better representatives. We obtain the following
algorithm:

Algorithm 4.5:
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Input: a finite place v. The values m(G) and m(W ) from Algorithm 4.6 and §4.6
respectively. The set µ(F ) of roots of unity belonging to F .
Output: a suitable bound for m(C) such that (T1′) and (T2′) are both satisfied. Or
return FAIL (v is a bad prime).

a. Compute the maximum allowed norm for elements in C if (T1′) and (T2′) are to
be satisfied: MAX := min(Nv/(m(G) + 1), Nv − m(W )).

b. Compute a reduced basis for v (with respect to T2), given by a matrix L on a fixed
integral basis. Compute L−1.

c. For each element γ of k∗/β(µ(F )), pick a representative ε ∈ OF . We try to find

xε ∈ U such that β(xε) = γ and ‖xε‖2 < MAX(5)

using the increasingly complicated possibilities below. As soon as one of the ele-
ments produced satisfies (5), we start over from (c) with the next γ.
• Compute xε := ε − L⌈L−1ε⌋.
• Check the neighbouring points: try all other possible rounding combinations

(2 in each coordinate, 2n possibilities in total).
• Try again to find a suitable xε using the second algorithm in Section 4.1.
• Using the Fincke-Pohst algorithm, compute the smallest elements which are

congruent to ε (mod v) and of norm less than MAX until one of them lies in
U . If such an element does not exist, return FAIL.

Of course, once a representative x for ε is known, ξx is an equally good represen-
tative for ξε, for any root of unity ξ, since ‖ξx‖2 = ‖x‖2. This justifies our choice
to check orbits modulo µ(F ) in Step (c).

The last possibility in the algorithm, using exhaustive enumeration as a last
chance, should probably be avoided as soon as v gets large, since it is less costly
to check (T2) elementwise first. Given our experiments, it is not yet clear where
the cutoff point should lie. For imaginary quadratic fields, the exhaustive search is
rarely needed and relatively cheap; it pays off to always include it.

In any case, constructing C in this way is by far the longest part of the algo-
rithm, and becomes the main bottleneck as |∆| increases. It is tempting to use the
structure of Fp-vector space on k(v) ≃ (Fp)f to find good representatives ε1, . . . , εf

for the elements in a basis, which satisfy (5). We could then try to use sphere
packings, e.g. ‖xε + α‖2 ≤ ‖xε‖2 + ‖α‖2 for α a small combination of the εi, hence
a few evenly distributed xε might be enough to yield all the representatives we
need. Unfortunately, the bounds we obtain for ‖xε +α‖2, although lower than MAX,
are rarely sufficient to ensure that xε + α belongs to U (if x ∈ OF , ‖x‖2 < Nv1/n

obviously implies that x ∈ U for instance, but this is far too stringent), hence all
those elements have to be checked individually, which is the most time-consuming
part in Algorithm 4.5: roughly half the time is spent there.

4.4. A set C with denominators. If we allow denominators in C, we can expect
to improve the bounds, but the conditions (T1) and (T2) need to be modified.
Assume that C can be written as

{
c1

c2
, ci ∈ U ∩ OF

}
; this will be case for the

sets we construct, and is automatic for any subset of U when S contains a set of
generators for the class group. Now define

mi(C) = max
c1
c2

∈C
‖ci‖2, i = 1, 2.

Note that this depends on the particular representative chosen; we want them to
be as small as possible, of course.

The more general conditions we need to check are:

(T1′′) m(W )m2(C) + m1(C) < Nv,
(T2′′) m1(C)m2(C)(m(G) + 1) < Nv.
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A similar idea as in the previous section can be applied, in a homogeneous setting
this time. Given a ∈ U we want to find x, y in U ∩ OF such that c := x/y ≡ a
(mod v), i.e. x − ay ∈ v. The points (x, y) satisfying this last property obviously
form a sublattice of OF ⊕OF which, in matrix form, can be written as

(x, y) ∈ Im

(
P A
0 Id

)

on a fixed integral basis for the two copies of OF . In this expression, P denotes
a set of generators of v and A is the matrix of the multiplication by a. Compute
an LLL-reduced basis for this lattice with respect to the quadratic form T2 ⊕ T2,
and pick the smallest vector (x, y) in which y 6= 0 (there will be at least [F : Q] of
them). One can expect both ‖x‖2 and ‖y‖2 to be small.

The bounds m1(C) and m2(C) play a symmetrical role in (T2), not so in (T1).
So we should allow m1(C) to be a bit larger than m2(C) (by a factor of m(W )),
assuming their product more or less remains constant. To achieve this effect one
can reduce with respect to T2 ⊕ NT2, for a suitable N .

At present, the practical usefulness of this algorithm is not clear: bad primes
are so easily refined that we are yet to find an example where adding denominators
would make a difference.

4.5. The set G. The goal is to find a set G of small representatives in U ∩OF of
multiplicative generators of k∗. To verify (3), we only need m(G), but if it fails and
we want to check (T2) elementwise, we need an explicit subset which is minimal
with respect to the required property.

Given a subset of k∗, the order of the subgroup it generates is the lcm of the
orders of the individual elements. Assuming the factorization of Nv − 1 is known,
the classical algorithm (computing local orders for all primes dividing Nv − 1)
computes the individual orders quite efficiently.

Computing m(G) is straightforward, and is very quick assuming that k∗ can be
generated by small elements:

Algorithm 4.6:

Input: S and v. A precomputed set A containing representatives in OF of all elements
in (OF − {0})/µ(F ) of small T2-norm (about 100 or 200 of them, say), ordered by
increasing norm.
Output: the bound m(G).

a. Set L = 1. Factor |k∗| = Nv − 1.
b. For each element a of A

• Compute the order n of β(a) (set n = 0 if β(a) = 0).
• Compute L′ = lcm(n, L). If L′ > L and a ∈ U , set L = L′.
• If L = Nv − 1, return ‖a‖2.

c. We have exhausted A and β(A) does not generate k∗. Double the size of A and
restart the previous step with the appended elements.

Proof. Obvious, since in a cyclic group the order of the subgroup generated by two
elements is the lcm of their orders. We check that a ∈ U before letting L increase,
since we need G ⊂ U .

To compute a minimal G, we need the following variant:

Algorithm 4.7:

Input: as above.
Output: the set G.

a. Factor Nv − 1.
b. Set L = 1 and B = ∅.
c. For each element a of A
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• Compute the order n of β(a) (set n = 0 if β(a) = 0).
• Compute L′ = lcm(n, L). If L′ > L and a ∈ U , append to B the triple

[a, n, L], then set L = L′.
• If L = Nv − 1, go to Step (e).

d. β(A) does not generate k∗. Double the size of A and restart the previous step
with the appended elements.

e. Set L′ = 1 and G = ∅.
f. For each element [a, n, L] of B, starting from the last one, if lcm(L′, L) 6= Nv−1,

then set L′ = lcm(L′, n) and append a to G. If L′ = Nv − 1, return G.

Proof. In Step (f), L is the order of the subgroup of all the elements occurring
before a (excluded) in B, and L′ is the order of the subgroup generated by the
elements lying in G at this point. If the lcm of L and L′ is equal to the group order,
then 〈β(B−{a})〉 = 〈β(B)〉 = k∗. Otherwise, B−{a} generates a proper subgroup,
hence a needs to be included.

Note that, although m(G) is well defined and best possible, G depends on the
representatives chosen in A. When checking (T2) elementwise, some sets G may
succeed where others fail. We do not know how to cater for that phenomenon,
which remains theoretical, except by retrying the procedure with a few different G
(there are finitely many possible G, if one keeps the optimal sequence of T2-norms).

4.6. The set W . This is computed as in Browkin [6, 3.2]. We have a general
algorithm to compute a minimal set of small generating S-units but it cannot be
applied to a huge set S, since it implies HNF-reducing a square matrix of size |S|.

We assume that |S| is big enough, so that OS is principal. Let Q be a set of
representatives of small norm, supported on S, representing all the ideal classes of
OF . This is easily produced from arbitrary representatives by applying Buchmann’s
ideal reduction [10, Chapter 6], which coincides with Gauss’s reduction theory of
binary forms in the quadratic setting. By definition, qF is bounded by maxq∈Q Nq.

Since OS is principal, one can take W to be given by the union of a set of
generators of the units and a set of generators of the principal ideals of OF of one
of the following forms ([6, 3.2])

(i) (a) = pq,
(ii) (a) = q1q2q3,

where p ∈ S and q, q1, q2, q3 ∈ Q. Given a suitable ideal, the principal ideal
algorithm (see [10]) will yield a generator of small T2-norm (this is important when
there are fundamental units).

Note that only generators of type (i) depend on S. Obviously, if one needs to
compute W for a given S, the values of the T2-norm of the generators of this type
can be stored in an array, indexed by the corresponding p. Then m(W ) can be
trivially computed for any subset of S simply by deleting some norms before taking
the maximum. Since this construction is applied to sets S of the form {v, Nv < B}
for a given bound B, the set W in fact needs to be computed only once.

Remark 4.8: Although, as we have seen, W is particularly easy to compute, it is
even nicer in the imaginary quadratic setting where ‖a‖2 =

√
Na. For any ideal

I, denote by I ′ the reduced ideal (in the sense of Gauss) which is equivalent to
I. In that case, for generators of type (i), we can take q = (p−1)′, and Nq =

N((p−1)′) = N(p′). Hence, ‖a‖2 =
√

NpN(p′) is obtained without computing the
actual element. The same technique applies to the other type of generators.
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5. Creating the relation matrix

5.1. Representing symbols. We fix a set S of finite places in F such that
K2OF ⊂ KS

2 (F ) and assume that we have already computed a basis (ωi)1≤i≤r

for the S-units, where r := rS := |S| + r1 + r2, and w1 generates µ(F ). In order to
encode a representative a⊗b ∈ US⊗US for the symbol {a, b} ∈ K2F , we decompose

a =
∏

ωαi

i , and b =
∏

ωβi

i

on the above basis, and associate to a ⊗ b the vector (αiβj)1≤i,j≤r .
Due to the antisymmetry of symbols in K2F , we will in fact work in the quotient

of US⊗US by the symmetric tensors {x⊗y+y⊗x : x, y ∈ US}, and the corresponding
representation becomes (αiβi (mod 2))1≤i≤r ⊕ (αiβj − αjβi)1≤i<j≤r , thus cutting
the dimension in half. Note that x⊗ x has exponent 2, hence the reduction mod 2
in the first factor.

5.2. Producing relations. Our goal is to minimize the index of the lattice spanned
by relation vectors for K2F in US ⊗ US. For that, we generate many relations of
the form u ⊗ (1 − u), u ∈ US. Although there is no guarantee that this should be
enough to generate all relations (in principle, we should consider all u ∈ F −{0, 1}),
it turns out to be sufficient in practice. All such relations can be factored on our
basis (ωi ⊗ ωj)i,j and encoded as above.

The relations x⊗ (1−x) for x ∈ F −{0, 1} induce the following trivial relations:
ωi ⊗ (−ωi), (ωi ⊗ ωi)

2, and (ω1 ⊗ ωi)
w, where w is the order of µ(F ).

Furthermore we increase the lattice of relations by producing a list L of S-units
and considering all pairs (u, u′) ∈ L2, whose difference u − u′ is again an S-unit,
we obtain new relations, of the form (u′/u) ⊗ (1 − (u′/u)).

Unfortunately, we are lacking a good stopping criterion that would tell us that
the lattice of relations Λ is complete, so we decide terminate the algorithm when

its index stabilizes. Although we believe that K̃S
2 (F ) := (US ⊗ US)/Λ is equal to

KS
2 (F ), we have no way of proving it at this point. We will see in the next section

how to combine the information obtained so far with theoretical results, in order
to prove this claim.

Algorithm 5.1:

Input: a set S of primes in F , a basis (ωi) for the S-units.
Output: a lattice of full rank in US ⊗ US formed from some x ⊗ (1 − x), with index
believed to be minimal.

a. Set Λ to be the lattice generated by the trivial relations as above.
b. Collect a set L of integral S-units with bounded coefficients on a fixed LLL-reduced

integer basis, then add to L all
∏

wei

i for bounded ei.
c. Check pairs (u, u′) ∈ L2 until u − u′ ∈ US ; then go to Step (d). If there are no

pairs left, go to Step (e).
d. Replace Λ by the lattice generated by Λ and the relation corresponding to (u′/u)⊗

(1 − (u′/u)). If the index of Λ is not ∞ and stayed the same for, say, 100
consecutive pairs, return Λ and terminate the algorithm. Otherwise go to Step (c)
for the next pair.

e. If [US⊗US : Λ] 6= ∞, issue a warning message stating that Λ may not be complete,
then return Λ. Otherwise collect more elements in L and go to Step (c). If no
more elements could be collected, increase S and start over in Step (a).

5.3. The final step. In this subsection, we are given an explicit presentation of a

finite group K̃S
2 (F ) such that KS

2 (F ) is a quotient of K̃S
2 (F ), and that we believe

that in fact KS
2 (F ) = K̃S

2 (F ). In other words, by factoring enough Steinberg
tensors x⊗ (1−x) in US , we have been able to build a relation lattice Λ of maximal
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rank in US ⊗US, and its determinant appears to be minimal. By definition, K2OF

is the intersection of the kernels of the ∂v, v ∈ S.
This is easily computed once the problem is linearized (see Step (c) below). We

pick B = {bJ} a set of elements in US ⊗ US that generate KS
2 (F ), for instance the

(ωi ⊗ ωj)i≤j from the previous section; we have a natural projection from the free
abelian group Z[B] to KS

2 (F ). Given a lattice C ⊂ Z[B], we choose generators and
a matrix MC expressing them in terms of the basis B.

Algorithm 5.2:

Input: a lattice Λ as above.

Output: a presentation for a finite abelian group K̃2OF , of which K2OF is a quotient.

a. For all v ∈ S, choose a generator gv of the cyclic group k(v)∗. Since Nv is very
small, this and the discrete logarithm problem in the next step are best done by
trial and error.

b. For all (v, J), compute nv,J ∈ Z/(Nv − 1)Z such that ∂v(bJ) = g
nv,J
v .

c. Compute the kernel Ker d of the linear map

d : Z[B] −→
⊕

v∈S

Z/(Nv − 1)Z

bJ 7→ (nv,J)

This is done by computing the integer kernel of the matrix
(

(nv,J )v,J | Diag(Nv − 1)v

)
.

By definition, the elements of Ker d span K2OF .

d. Compute K̃2OF := Kerd/(Ker d∩Λ) by taking the integer kernel of (MKerd|MΛ).
Let ( U

V ) be the kernel, then MKerdU , or equivalently MΛV , generates the inter-
section. Hence U is a matrix of relations among the generators of K2OF , and

the SNF of U computes the elementary divisors of K̃2OF . It is straightforward to
extract explicit tensors that generate the cyclic components from the SNF algo-
rithm.

Remark 5.3: a. In general most entries on the diagonal of the HNF of the rela-
tion matrix MΛ for KS

2 (F ) will be equal to 1. In other words, the corresponding
generator can be expressed in terms of the other ones. Obviously, one should
not include these redundant tensors in B above, which will be much smaller
than the full set (ωi ⊗ ωj)i≤j .

b. Since we realize an explicit isomorphism K̃2OF ≃ Z[B]/U , it is now possible

to compute in K̃2OF . A tame element in US ⊗ US is mapped to Z[B], via

factorization in US ; hence a product in K̃2OF reduces to an addition in Z[B]

and a reduction modulo U . Until we ascertain that K̃2OF = K2OF , we still
cannot really compute in K2OF since we do not even have a test for equality
between two symbols there. Of course once the equality is known, it is enough
to check that the quotient, mapped to Z[B], lies in the image of U .

Algorithm 5.2 further provides enough data to partly solve the discrete
logarithm problem in K2OF . We can express any tame element in US ⊗ US

as a product P of generators for K̃2OF computed above, by first factoring it
on the ωi ⊗ ωj, then expressing it in terms of generators of Kerd. By keeping
track of all base change matrices involved, the original element is given as a
product of explicit trivial Steinberg tensors x⊗ (1 − x) multiplied by P . If we
start from an arbitrary element in F ∗ ⊗F ∗, Tate’s method from Section 3 can
in principle reduce it to US ⊗ US , up to explicit trivial tensors. But it is not
really practical if the support of the tensor is much larger than S.
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c. In the class group case, an arbitrary ideal I can be factored on the factor base
by multiplying I by random products of elements in the factor base, until the
reduction of I along some direction is smooth (see [10, Chapter 6]). The ideal
I can then be factored on the factor base up to an explicit principal ideal, of
which a generator is known. Unfortunately, we could not devise an analog to
Buchmann’s reduction in the K2 setting.

6. The p-rank of K2OF

From the previous sections, we can exhibit an explicit presentation of some

finite abelian group, denoted K̃2OF , of which K2OF is a quotient. In other words,
we know how to produce a list of explicit generators for K2OF as well as, for
each of them, a multiple of its order. We may also think that these generators
are most probably independent and that the bound is in fact equal to their true
order. We will now investigate various ways that can be used to actually prove that

K̃2OF = K2OF .

6.1. Known results. Let us first recall a few explicit lower bounds or formulas
for the pn-ranks for K2OF , for an imaginary quadratic field F = Q(

√
−∆):

a. The group K2OF for fields of discriminant |∆| ≤ 35 is known precisely (Tate [31],
Ska lba [29], Qin [23, 25], Browkin [6]), and in fact is either trivial or equal to
Z/2Z, generated by {−1,−1}.

b. The 2-rank is known in terms of 2-class groups by work of Tate [32] (see also
Browkin-Schinzel [8]) and an explicit basis was given by Browkin [4].

c. The most comprehensive and rather explicit results on the 4-rank are given by
Qin [24] who covers the case where ∆ is divisible by ≤ 3 different odd prime
numbers.

d. The 3-rank is (for simple reasons) bounded from below by 1 if d ≡ 6 (mod 9)
(Browkin [5]). Furthermore, there is a relationship between the 3-rank of K2OF

and the class group for the real quadratic field Q(
√
−3∆). A similar result for

the prime 5, namely that the 5-rank K2OF is ≤ the 5-rank of the class group
of Q(

√
5∆), was conjectured in [14] on the basis of experimental data, and

proved in [5].

6.2. Formulas and lower bounds for rp(K2OF ). One trivial but important

case occurs when K̃2OF = 0, which implies that the tame kernel is also trivial.
Unfortunately, this occurs quite rarely. However, it is possible to do better: one
defines the wild kernel W (F ) analogously to K2OF , replacing the tame symbols
δv : K2F → k(v)∗ by Hilbert’s norm residue symbols (·, ·)v : K2F → µ(Fv), where
v runs through PF , the set of finite and real places of F , Fv is the completion of F
at v and (a, b)v is

(
a,b
v

)
mv

, the norm residue symbol of order mv = |µ(Fv)|.
By definition, W (F ) :=

⋂
Ker(·, ·)v where v runs through PF . It turns out to be

a subgroup of K2OF , and the quotient K2OF /W (F ) can in principle be determined
via Moore’s exact sequence [22] :

1 → W (F ) → K2OF →
⊕

v∈PF

µ(Fv) → µ(F ) → 1.

One restricts the sequence to p-primary parts, and determines µ(Fv) ⊗ Zp via the
observation that ζpn ∈ Fv iff v splits completely in F (ζpn )/F . When F is quadratic,
the recipe turns out to be trivial:
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Theorem 6.1 (Browkin [4]). Let F be the quadratic field of discriminant ∆. The
index iF := [K2OF : W (F )] divides 6, and we have

2|iF iff ∆/ gcd(4, ∆) ≡ ±1 (mod 8),
3|iF iff ∆ ≡ 6 (mod 9), ∆ 6= −3.

So whenever |K̃2OF | = iF we obtain a proof that K̃2OF = K2OF . Of course,
this can only happen when W (F ) = 0, but this is a less severe restriction than
K2OF = 0.

6.3. Local norm symbols and Brauer groups. If we believe that W (F ) 6= 0,
it is a natural idea to try and exploit the explicit symbols that our algorithm
provides by mapping them to a more manageable group G, via some morphism
ϕ : K2OF → G which we would like to be as close to an isomorphism as possible,
and determine their properties there, in particular trying to assert that they are

non-zero. Namely, suppose {a, b} ∈ K2OF is n-torsion in K̃2OF ; if ϕ({a, b}) has
order n, which is easily checked if we can test for 0 in G (and factor n), then so has
the symbol {a, b} in K2OF .

If E contains a primitive n-th root ζn of unity, one classically defines a map to
the Brauer group of E:

K2(E)/nK2(E) → Br(E)

(which is in fact an isomorphism onto the n-torsion of Br(E) by a deep theorem of
Tate [32]) by associating to {a, b} the algebra [a, b]ζn

generated by two elements x
and y over E subject to the relations

xn = a, yn = b, yx = ζnxy

see e.g. [21]. This element is trivial (i.e. is isomorphic to the matrix algebra Mn2(E))
if and only if a is a norm from the extension E(b1/n)/E. By letting E := F (ζn),
one can consider the composite map

K2OF /nK2OF → K2(E)/nK2(E) → Br(E)

which is unfortunately not an isomorphism anymore. We then try to prove that
a is not a norm in E(b1/n)/E, which would show that {a, b} 6= 0 in K2OF . The
extension is cyclic, so the Hasse principle applies and the question whether a is a
global norm in this extension reduces to showing that there exists a place ℘ in PE

such that a is not a local norm at ℘.

A slight variation on the above formulation would be to use an embedding OF ⊂
F ⊂ E ⊂ E℘ in order to map K2OF to K2(E℘)/pK2(E℘) (where ℘|p, otherwise
the image will be trivial). The latter is a cyclic group of order p where explicit
computations can be easily done, and we can check whether the image of {a, b}
is non-trivial there. This is essentially equivalent to the computation of the norm
residue symbol (a, b)℘ (see Daberkow [12]) and stands no better chance of success,
except that it provides a neat way to compute the said symbol.

Unfortunately, the following proposition shows that these localization maps will
not detect anything new if F is quadratic: they are trivial on the wild kernel.

Proposition 6.1. Let F be the quadratic field of discriminant ∆, p a prime num-
ber, E = F (ζp), and ℘ some place in PE. By abuse of notation, let (·, ·)℘ be the
norm residue symbol of order p in E℘. If {a, b} ∈ W (F ), then (a, b)℘ = 1.

Proof. By contradiction, assume that (a, b)℘ 6= 1. The case p = 2 is trivial since
F (ζ2) = F , so we assume that p is odd. We can also restrict to the case ℘|p ;
namely, since p 6= 2, the norm residue symbols at infinity are trivial, and if ℘ ∤ p
then (a, b)℘ = ∂℘(a, b), but the latter is 1 since {a, b} ∈ K2OF .
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Since E contains the p-th roots of unity, the product formula asserts that
∏

℘∈PE

(a, b)℘ = 1 .

On the other hand, Q(ζp)/Q is totally ramified at p, hence there are at most two
places above p in E = F (ζp). Due to the product formula, there cannot be a single
non-trivial symbol, hence there are exactly two places above p in E. Let ℘ be one
of them.

We first show that E℘ = Qp(ζp). Since Q∗
p/(Q∗

p)2 ≃ pZ/2Z×F∗
p/(F∗

p)2 (recall that
p 6= 2), there are three quadratic extensions of Qp, only one of which is included

in Qp(ζp) (namely Qp(
√

p∗), where p∗ = (−1)(p−1)/2p). If E℘ ) Qp(ζp), then it
contains all three quadratic extensions, including the unramified one. This would
imply that there is a single place above p in E, of inertia degree 2, which is a
contradiction.

Let Fv be the completion of F at a place v above p. Either p splits in F
and Fv = Qp or it is ramified and Fv = Q(

√
p∗) by the preceding argument.

Hence the assertion we are trying to prove translates to: if a and b belong to
Fv ⊂ E℘ = Qp(ζp), then (a, b)℘ = 1. Let πF := p (if p is unramified in F ) or

√
p∗

(if p is ramified) be a uniformizer in Fv and π := πE := 1 − ζp.
Using the multiplicative structure of the local field Qp(

√
p∗) together with the

standard properties of the norm residue symbol (see e.g. [9, Exercise 2.13]), one
reduces to the case where a = πF , and b is a unit of the form 1 +

∑
i>0 biπ

i
F . (Note

that (a, a)℘ = (−1, b)℘ = 1 for p 6= 2.) We can even assume that a = p∗ since
(
√

p∗, b)2℘ = (p∗, b)℘ and p 6= 2. For b ∈ Qp(ζp) as above, Artin and Hasse [1] have
proven the following explicit formula:

(p, b)℘ = ζ
Tr( log b

πp )
p ,

where log denotes the p-adic logarithm and Tr is the absolute trace in Qp(ζp). We
develop log(b) as a power series in πF and (p, b)℘ = 1 follows by the following
Lemma 6.1 unless p = 3 and Fv = E℘ = Q3(ζ3). But in that case we still have
(a, b)℘ = 1 since {a, b} ∈ W (F ). Note that Fv = E℘ = Q3(ζ3) occurs iff ∆ ≡ 6
(mod 9), which recovers in a very complicated way part of Theorem 6.1.

Lemma 6.1. For all n > 0 and p odd, we have

Tr(πn
F /πp) ≡ 0 (mod p)

unless n = 1, p = 3, and Fv = Q3(ζ3) (i.e. 3 ramifies in F ).

Proof. The lemma is trivial if n > 2 (recall that v℘(p) = p − 1 and v℘(π) = 1).
Let un := (

√
p∗)n (note that πF = ±u1 or u2); the action of σi : ζp 7→ ζi

p ∈
Gal(Qp(ζp)/Qp) on un is given by χn :=

( ·
p

)n
, hence the trace is equal to

p−1∑

i=1

χn(i)un

(1 − ζi
p)p

=
un

πp

p−1∑

i=1

χn(i)

(
∑i−1

j=0 ζj
p)p

.

Using v℘(un/πp) ≥ −(p + 1)/2 ≥ −(p− 1) (one of these inequalities is strict unless
n = 1 and p = 3), it remains to study the sum

p−1∑

i=1

χn(i)

(
∑i−1

j=0 ζj
p)p

≡
p−1∑

i=1

χn(i)

i
≡ χn(g)

g

p−1∑

i=1

χn(i)

i
(mod p)

for any g ∈ F∗
p, so the sum is 0 modulo p when χn is not the identity, i.e. unless

p = 3 and n = 1. This proves the lemma.
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It looks plausible that this lemma holds in greater generality, i.e. that F ⊂ F (ζp)
induces a natural map from W (F ) to W (F (ζp)) for a much larger class of number
fields F , but we did not investigate this question.

6.4. Keune’s exact sequences. The correct generalization of these ideas is due to
Tate [32] and Keune [18], and affords a complete solution to our problem assuming
we can compute certain class groups. We quote Keune’s formulation :

Theorem 6.2. [18, (5.3), (5.4), (6.6)] Let F be a number field, pr an odd prime
power, E := F (ζpr ) and Γ = Gal(E/F ). Let OE,p be the ring of S-integers in E,
where S is the set of places of E dividing p. We have the following short exact
sequences of Γ-modules:
• if E = F ,

1 −−−−→ µp ⊗ Cl(OE,p)
ι−−−−→ K2OF /p −−−−→ ⊕

v|p
v⊂OF

µp −−−−→ µp → 1

• if E = F (ζp) and E 6= F ,

1 −−−−→ (µp ⊗ Cl(OE,p))
Γ ι−−−−→ K2OF /p −−−−→ ⊕

v|p
v⊂OF

µp(Fv) −−−−→ 1

• if pr kills the p-primary part of K2OF and µpr contains the p-primary part of
µ(F℘) for all ℘|p.

1 −−−−→ (µpr ⊗ Cl(OE,p))Γ
ι−−−−→ W (F )p −−−−→ 1

In these statements, µpi is the Galois module µpi(E), and the Galois action on
µ ⊗ Cl is diagonal, given by (ζ ⊗ I)σ := ζσ ⊗ Iσ. Here, Γ is cyclic generated by σ,
AΓ denotes the invariants {a ∈ A, aσ = a}, and AΓ the coinvariants A/A1−σ. The
map ι sends ζp ⊗ I to TrE/F xp, where x ∈ K2(E) satisfies ∂v(x) ≡ ζv℘(I) (mod ℘)
for all ℘ not dividing p, and TrE/F : K2(E) → K2(F ) denotes the transfer map.

Remark 6.2: a. The statements in the theorem have to be slightly modified
when p = 2. Most importantly, F has to be replaced by F (i) (F (

√
2) would

also do). One then applies [18, 6.2] to go back from K2OF (i) to K2OF .
b. If F is quadratic, then the p-part of µ(F℘) is equal to µ4 if p = 2 and µp

otherwise. Indeed, µpr is included in F℘ if and only if ℘ is totally split in
F (ζpr ). Hence the ramification index of a place above p in F (ζpr ) is e(℘/p) ≤ 2.
Since it is already equal to pr−1(p − 1) in Q(ζpr ), the result follows.

c. The Galois action is trivial to compute by the very construction of E as F (ζp):
σ acts trivially on F and sends ζp to ζg

p for a given primitive element g ∈ F∗
p,

which we fix from now on. Computing the required invariants and coinvariants
translates to simple linear algebra over Fp once generators and relations for
Cl(OE,p) are known. The latter is isomorphic to the quotient of the class
group of E by the subgroup generated by the places of E dividing p. If the
class group of E is known algorithmically, including the solution to the discrete
logarithm problem, Cl(OE,p) is easily computed (see [11, Chapter 7]).

d. In order to evaluate ι(ζp ⊗ I) := TrE/F (xp), we can choose an x via the ap-
proximation theorem and the transfer TrE/F is easily computed uniquely in
terms of symbols (see [3, p. 382] and [27]). If the set S we choose when com-

puting K̃2OF is large enough, these symbols factor on our S-unit factor base

and we can map the resulting product of symbols to K̃2OF . Reducing modulo
the HNF basis for the relation module, we obtain simple generators for the
p-primary part of K2OF .
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e. Remarkably, as our previous method based on relation finding was computing
K2OF “from above”, the map ι provides a way to compute it “from below”
by computing its p-primary parts for a few small p. Since the required class
groups can only be computed when pr is very small, this method also fails to
give a complete algorithmic answer. In the next section, we shall see that the
practical situation is still rather satisfactory.

Keune’s theorem is used as follows: let q = pr be the exponent of the p-primary

part of our conjectural K̃2OF . If we can compute the class group of F (ζq), we

obtain the p-primary part of K2OF (since K2OF is a quotient of K̃2OF , q also

kills the p-primary part of K2OF ). If the p-primary parts coincide for all p|K̃2OF ,

we know that K̃2OF = K2OF . In particular, we have proven the non-triviality of
our generating elements, although in a roundabout way. Otherwise, we now know
the structure of K2OF , in particular its exact order and we look for more relations
until the required index is obtained.

In the unfortunate case that q = pr is so large that Cl(F (ζq)) cannot be com-
puted, we still obtain lower bounds on the order of our generating elements if
Cl(F (ζp)) can be computed. It may even occur that the p-primary part of K2OF

is p-torsion (with a high p-rank) and that we can compute exact orders after all.
Hence, it makes sense in any case to compute Cl(F (ζp)) first in order to take ad-
vantage of that possibility. If p itself is large, nothing can be salvaged.

Finally it should be noted4 that if F (ζpr ) is a CM-field, the natural map from
the maximal real subfield Cl(F (ζpr )+) → Cl(F (ζpr )) is injective on the p-th pri-
mary part for odd p (see e.g. Washington [33, Theorem 10.3]). Hence, the required
invariant classes may be found in the maximal real subfield, in which case all com-
putations can be done there. This is by no means a necessary condition, but it
should be checked first, since class group computations will be much easier in this
subfield of index 2 than in the full cyclotomic extension.

For instance when F = Q(
√
−303) and E = F (ζ11), assuming GRH PARI/GP

succeeds in proving that Cl(OE+,11) contains a class of order 11 (which can be rep-
resented by an ideal of norm 109×571). The latter is transformed in a suitable way
under the Galois action, thereby proving that r11(K2OF ) ≥ 1. PARI could prove
the same result working in Cl(F (ζ11)), but the computations needs 2 days instead
of 15 minutes. Certifying the result in order to remove the GRH assumption in the
maximal real subfield takes another 3 days, and is not practical in the cyclotomic
extension itself.

Note that the first part of the algorithm proved that

K2OF =
〈 {

− 1
2 (37 + 3

√
−303), 1

2 (−73 +
√
−303)

} 〉

and has exponent 22. Since r2(K2OF ) is easily proven to be 1 in that case, we
obtain an unconditional proof that the generator above indeed has order 22. This
is consistent with the heuristic result obtained in [7] assuming the truth of Licht-
enbaum’s conjecture.

7. Tables

We have proven the correct structure of K2OF for all imaginary quadratic fields
F of discriminant |∆| < 1000, with the exception of the 7 starred ones in the table
below, for which the certification has not been attempted. The results coincide with
the ones predicted in [7] by experimental methods (even for the 7 discriminants
above). Computing times range from 5s to 1h per discriminant, not including the
final certification.

4We are grateful to Jerzy Browkin and Thorsten Kleinjung for this remark.
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In all the tables, we list d = |∆| where ∆ ≤ 0 is the discriminant of the imaginary

quadratic field F = Q(
√

∆) and x stands for
√

∆. When appropriate, we list
|K2OF |, the elementary divisors of K2OF , and the corresponding generators. No
effort has been made to have “best possible” generators (for instance all 2-torsion
symbols could easily be written as {−1, a}, for some simple a ∈ F ∗ by the methods
of [4]). Starred entries denote conjectural results, meaning that the true orders of
the generators may divide the given ones.

Table of d with trivial K2OF :

3 4 8 11 19 20 24 40 43 52 59 67 83 88
104 116 131 139 148 152 163 179 211 212 227 232 244 251
283 296 307 344 347 379 404 424 436 443 467 488 499 523
536 547 563 587 596 619 628 659 664 683 691 692 724 739
787 788 808 811 827 856 859 872 883 907 916 947

Table of d with K2OF of order 2 generated by {−1,−1}:

7 15 23 31 35 47 55 56 71 79 87 91 95 103
115 127 143 151 155 159 167 168 184 191 199 203 215 223
235 239 247 248 259 263 271 276 280 295 299 308 311 312
319 335 355 359 371 376 383 395 403 407 415 427 431 439
440 447 463 487 515 519 532 535 551 559 564 568 591 599
607 611 616 631 632 635 647 655 667 671 695 707 719 727
728 743 744 751 760 763 767 807 815 823 824 839 851 852
871 888 895 899 911 919 920 923 951 955 967 983 991 995

Table of d with K2OF of order 2, where {−1,−1} is trivial:

51 {−1, 3} 123
{

3, 1
2x − 9

2

}16

187
{
−1, 1

2x − 3
2

}
267

{
3, 1

2x − 15
2

}8

328
{

1
2x − 4, 1

2x + 3
}12

339 {−1,−4x− 101}
340

{
2, 1

2x − 5
}20

411
{
−1, 11

2 x + 113
2

}

451 {−1, 4x + 153} 456
{

1
2x − 6, 1

2x − 1
}44

520
{

2, 1
2x − 10

}44
584

{
13
2 x − 149, 41

2 x + 732
}2

680 {x − 7, 3} 699
{

5, 1
2x − 1

2

}12

712
{
−1,− 1

2x + 68
}

779
{
−1,− 7

2x + 445
2

}

803
{

2, 23
2 x + 561

2

}30
843

{
1
2x − 23

2 , 1
2x + 33

2

}66
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Table of d with K2OF of order > 2:

39 6 6
{
− 1

2x − 5
2 , 1

2x − 7
2

}5

68 8 8
{

1
2x + 1, 1

2x − 2
}6

84 6 6
{

2, 1
2x − 5

}11

107 3 3
{

2, 1
2x − 7

2

}12

111 6 6 {−1,−1}
{
− 3

2x − 5
2 , 1

2x + 23
2

}4

119 4 2, 2
{
−1, 1

2x − 3
2

}
, {−1,−1}

120 6 6
{

2, 1
2x + 12

}28

132 4 4
{

2, 1
2x + 1

}{
3, 1

2x + 1
}2

136 4 4
{

1
2x + 4, 1

2x − 21
}18

164 4 4
{
− 1

2x + 11, 3
}2

183 6 6 {−1,−1}
{

2, 1
2x − 3

2

}2

195 4 2, 2 {3, x}12
, {−1,−1}

219 12 12
{
−1, 1

2x + 9
2

} {
1
2x + 9

2 , 2
}−3 {

1
2x + 9

2 , 1
2x − 1

2

}−10

228 12 12
{

2, 1
2x − 9

}22 {
2, 1

2x − 1
}−28

231 4 2, 2
{
−1, 1

2x + 5
2

}
, {−1, 3}

255 12 6, 2
{

3, 1
2x + 15

2

}4
, {−1, 3}

260 4 4 {2, x − 19}22

264 6 6
{

1
2x − 3, 5

}4

287 4 2, 2
{
−1, 1

2x − 1
2

}
, {−1,−1}

291 12 12
{

1
2x + 3

2 , 5
}4

292 4 4
{

1
2x − 5, 7

}3

303 22 22
{
− 3

2x − 37
2 , 1

2x − 73
2

}5

327 6 6 {−1,−1}
{

2, 5
2x − 23

2

}8

331 3 3
{

2, 1
2x + 3

2

}24

356 4 4
{
− 1

2x − 37, 7
2x + 16

}18

367 6 6 {−1,−1}
{

2,− 3
2x − 5

2

}12

388 8 8 {−1,−1}
{

1
2x − 1, 3x− 55

}18

391 4 2, 2 {−1,−1} ,
{
−1, 1

2x − 11
2

}

399 24 12, 2 {−1,−1}
{
−1, 1

2x − 25
2

}{
3, 1

2x − 9
2

}4
, {−1,−1}

408 6 6
{

2, 1
2x − 6

}22

419 3 3
{

2, 1
2x − 7

2

}12

420 8 4, 2 {−1,−1}{−1, 3}
{

2, 1
2x + 3

}−8 {
3, 1

2x + 3
}2

, {−1,−1}
435 12 6, 2

{
5, 1

2x + 15
2

}20
,

{
5, 1

2x + 15
2

}10 {
5, 1

2x − 5
2

}−22

452 8 8
{

1
2x + 7, 3

}2

455 4 2, 2 {−1,−1} ,
{
−1, 1

2x − 43
2

}

471 6 6
{

2,− 7
2x − 155

2

}11
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472 5 5
{

5,− 3
2x − 4

}120

479 14 14 {−1,−1}
{

2,− 41
2 x − 711

2

}4

483 4 2, 2 {−1,−1} ,
{

7, 1
2x − 21

2

}30

∗491 13 13
{

2, 1
2x − 7

2

}12

503 6 6 {−1,−1}
{

1
2x − 3

2 , 1
2x + 5

2

}10

511 4 2, 2 {−1,−1} ,
{

1
2x − 17

2 , 5
}4

516 12 12
{

3, 1
2x − 6

}50 {
−1, 1

2x − 11
}−1

527 4 2, 2
{
−1,− 1

2x − 39
2

}
, {−1,−1}

543 6 6 {−1,−1}
{

5
2x − 53

2 , 5
}−1

548 4 4
{
− 5

2x − 56,− 1
2x − 22

}22

552 6 6 {−1,−1}
{
−1, 1

2x + 3
}{

1
2x + 3, 1

2x − 4
}10 {

2, 1
2x + 3

}−1

555 28 14, 2
{

5, 1
2x + 5

2

}14
, {−1,−1}

571 5 5
{

2, 1
2x − 27

2

}12

579 12 12
{

19
2 x − 59

2 , 1
2x + 89

2

}8

580 4 4
{

2x − 9, 3
2x − 19

}16 {2, 2x − 9}−1

∗583 34 34 {−1,−1}
{

2, 1
2x + 5

2

}18

595 4 2, 2 {−1, 5} , {−1,−1}
615 12 6, 2

{
3, 1

2x − 11
2

}11 {
1
2x − 59

2 , 1
2x + 9

2

}−14
, {−1,−1}

623 4 2, 2
{
−1, 1

2x + 23
2

}
,

{
−1,− 1

2x − 87
2

}

627 4 2, 2
{

3, 1
2x + 33

2

}6 {
11, 1

2x − 33
2

}12
,
{

3, 1
2x + 33

2

}6 {
3, 1

2x + 11
2

}−16

643 3 3
{

1
2x + 27

2 , 1
2x − 71

2

}7 {
1
2x + 27

2 , 1
2x + 13

2

}−1 {
2, 1

2x + 13
2

}12

∗644 32 16, 2
{

1
2x − 8,−x − 59

}2
,

{
−1, 1

2x − 8
}

651 12 6, 2
{

2, 7
2x + 51

2

}132 {
3, 1

2x − 207
2

}28
,
{

2, 7
2x + 51

2

}132

660 12 6, 2
{

2, 1
2x − 3

}28
,

{
2, 1

2x − 5
}36

663 4 2, 2 {−1, 3} , {−1,−1}
679 20 10, 2

{
2, 1

2x + 29
2

}36
,

{
−1,− 1

2x − 37
2

}

687 6 6
{

2, 1
2x + 119

2

}28 {
−1,− 3

2x − 101
2

}

696 42 42 {−1,−1}
{

2, 1
2x + 4

}−72 {2, 2x − 29}−28

∗703 74 74 {−1,−1}
{

2, 1
2x + 31

2

}12

708 4 4
{

2, 1
2x + 3

}10

715 4 2, 2 {−1,−1} , {−1, 11}
723 12 12

{
− 9

2x + 1
2 , x − 148

}80

731 4 4
{

2, 1
2x + 5

2

}6

740 4 4 {2,−x + 31}6

∗755 82 82
{

2,− 17
2 x − 577

2

}6

∗759 36 18, 2
{
−1,− 1

2x − 125
2

}{
2, 1

2x − 3
2

}2
,
{
− 1

2x − 125
2 ,− 1

2x + 131
2

}12

771 6 6
{
− 9

2x − 7
2 , x − 2

}30

772 8 8
{

1
2x − 7, 1

2x + 26
}65
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776 4 4
{

2, 1
2x + 4

}12

791 4 2, 2
{
−1, 1

2x − 19
2

}
, {−1,−1}

795 12 6, 2
{

11, 1
2x − 5

2

}40
,

{
11, 1

2x + 15
2

}240

799 8 4, 2
{

1
2x − 1

2 , 2
}2

, {−1,−1}
∗804 36 36

{
1
2x + 7, 5

}6 {3,−16x− 99}22

820 4 4
{

2, 1
2x − 13

}40

831 6 6 {−1,−1}
{
−1,− 1

2x + 97
2

}{
2,− 1

2x + 97
2

}−2

835 6 6
{

1
2x − 67

2 , x + 10
}4 {

5, 1
2x − 45

2

}−4

836 4 4
{
− 5

2x + 232, 11
2 x − 73

}{
−1, 11

2 x − 73
}

840 12 6, 2
{

5, 1
2x − 15

}28
,

{
5, 1

2x − 15
}28 {

2, 1
2x + 15

}−28

863 6 6 {−1,−1}
{

1
2x + 47

2 ,− 87
2 x + 1543

2

}16

868 8 4, 2
{

1
2x + 5, 1

2x − 6
}110

, {−1,−1}
879 10 10

{
− 239

2 x − 3257
2 , 1

2x + 7
2

}7

884 4 4 {−1,−1}
{
−2x − 55, 1

2x + 7
}4

887 10 10
{
− 281

2 x + 45579
2 ,− 1

2x + 195
2

}9

903 12 6, 2
{

5, 1
2x − 75

2

}16
, {−1,−1}

904 4 4
{
− 1

2x − 32, 5
}4

915 4 2, 2 {−1,−1} ,
{

3, 1
2x − 45

2

}12

932 20 20
{

5, 1
2x − 8

}120 {
− 1

2x + 35, 3
}−2

935 4 2, 2 {−1,−1} ,
{
−1, 1

2x − 91
2

}

939 12 12
{

1
2x − 81

2 ,−6x − 139
}16

943 4 2, 2 {−1,−1} ,
{
−1, 1

2x − 73
2

}

948 6 6
{
−6x − 289, 1

2x − 29
}{

5, 19
2 x − 943

}14 {−x + 9, 5}−4

952 4 2, 2 {−1,−1} , {−1, 7}
959 8 4, 2

{
2,− 1

2x − 95
2

}12
, {−1,−1}

964 8 8
{

1
2x + 2,−x + 131

}14 {
1
2x − 3, 7

}−2

971 5 5
{

1
2x + 23

2 ,−733x + 14516
}2

979 4 4
{

2, 1
2x − 211

2

}12

984 6 6
{
x − 121, 1

2x − 3
}4

987 4 2, 2 {−1, 3} ,
{

2,− 17
2 x − 135

2

}18 {
3, 1

2x + 39
2

}−18

996 4 4
{

1
2x − 1,−2x + 129

}2
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