Values of Zeta Functions and Their Applications

Don Zagier

Zeta functions of various sorts are all-pervasive objects in modern nmum-
ber theory, and an ever-recurring theme is the role played by their special
values at integral arguments, which are linked in mysterious ways to the
underlying geometry and often seem to dictate the most important prop-
erties of the objects to which the zeta functions are associated. It is this
latter property to which the word “applications” in the title refers. In this
article we will give a highly idiosyncratic and prejudiced tour of a number
of these “applications,” making no attempt to be systematic, but only to
give a feel for some of the ways in which special values of zeta functions
interrelate with other interesting mathematical questions. The prototyp-
ical zeta function is “Riemann’s” ((s) = Y >, n~?, and the prototypical
result on special values is the theorem that

¢(k) = rational number x 7* (k>0 even), 1)

which Euler proved in 1735 and of which we will give a short proof in
Section 1. (The “applications” in this case are the role which the rational
numbers occurring on the right-hand side of this formula play in the theory
of cyclotomic fields, in the construction of p-adic zeta functions, and in the
investigation of Fermat’s Last Theorem.) In Section 2 we list some of the
characteristic properties of nice (= motivic) zeta functions and recall the
definition of ecritical points, the arguments at which the value of the zeta
function is expected to be given by a formula of the same general form as
(1). We discuss applications of such critical values to Diophantine equations
(Birch-Swinnerton-Dyer conjecture) in Section 3 and applications of the
theory of periods of modular forms (which are critical values of Hecke L-
series) in Section 4, while Section 5 is devoted to connections between values
at non-critical integral points of Dedekind zeta functions of number fields,
algebraic K-theory, and the classical polylogarithm function. In Section 6
we return to critical values to give one or two examples of special values of
zeta functions at the symmetry point of their functional equation.

In Section 7 we turn to another theme, the relation of special zeta values
to invariants of moduli spaces of various kinds. Finally, in Sections 8--9 we
will discuss another kind of zeta value, the multiple zeta values
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These numbers, whose investigation is only now beginning, seem to be
connected with several fascinating topics, ranging from mixed motives to
the knot invariants of Vassiliev—Kontsevich.

1. Elementary proofs of (1)

We start, for fun, with an ultra-simple proof of Euler’s formula {(2) = n2/6
discovered a few years ago by E. Calabi. Expanding (1 — z2y?)~! in a
geometric series and integrating termwise gives

//(1—w2y2)"1d:ndy= 17243245 24...= (1- %) ¢(2),
s

where S is the square [0,1] x [0,1]. But the clever substitution (z,y) =
(gne sinv) hag Jacobian precisely 1 — z%y? and maps the open triangle
T = {u,v > 0, u+v < 7/2} bijectively to the interior of S, so [ [ (1 —
22y?)Vdody = [ [} dudv =?/8.

Calabi found a similar proof of (1) for all k, but we give a different
proof which will tie up later with the multiple zeta values (2) (in the case

r = 2). We start with k = 4. Define

1 + 1
2m2n2  m3n’

f(m’ TL) = m1n3 +

Then one checks directly that

f(m,n) — fm+mn,n) — f(m,m +n) = m%nz

and hence, summing over all m, » > 0, that

= (X = % = ¥ Vi = s = 2.

mn>0  m>n>0 a>m>0 n>0

Thus the formula {(2) = 72 /6 implies ((4) = 7%/90. Similarly, for larger k
we set

k—2

1 1 1 1
f(mﬂl)-——n’q};,;_—l-f'i?z +

= mrnk—T mk—1n

and check easily that

fmm) = fom+n,m) — flmman)= Y
. mink—J
0<j<k, j even

)
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so the same proof gives

Y ek ="k (k>4 even)

0<j<k, § even

and hence (1) by induction.

2. Properties of motivic zeta functions

The classical zeta functions with arithmetically nice properties arise
from algebraic number theory (Riemann zeta function, Dirichlet L-series,
Dedekind zeta functions of algebraic number fields, L-series of Hecke
grossencharacters), from representation theory and the theory of automor-
phic forms (Hecke L-series and Rankin-Selberg L-functions of classical
modular forms and their generalizations to Hilbert and Siegel modular
forms and to automorphic forms on more complicated groups), and from
algebraic geometry (Hasse-Weil zeta functions of varieties over number
fields). From a modern point of view, all of these zeta functions are, or are
conjectured to be, special cases of the notion of motivic L-functions. We
do not attempt to define this, but merely list some of the “nice arithmetic
properties,” illustrating each for the simplest case L(s) == ((s).

(i) Algebraicity. The L-functions in question should be Dirichlet series
L(s) =Y a,n—* with all a,, integers in a fixed algebraic number field.
For L(s) = ((s), an =1 for all n.

(1) Euler product. We should have L(s) = [ ¢p(p~*), where the product
runs over all prime numbers p and the ¢,(X) are rational functions of
bounded degree with ¢,(0) = 1. In particular, n — a, is multiplicative.
For L(s) = ((3), ¢p(X) =1/(1 — X) for all p.

(ili) Punctional equation. There is a “gamma factor” ~(s) (equal to an
exponential function A® times a finite product of terms I‘(%(s + m))
with m € Z) such that the product L*(s) = (s)L(s) has a mero-
morphic continuation with only finitely many poles in C and satisfies
L*(s) = wL*(h — s) for some integer h > 0 and sign w = £1. (Some-
times the functional equation relates L(s) to L1(h — s) for a different
L-series Li(s), and w is only a complex number of absolute value 1, but
we will not look at such cases.) For L(s) = ((s), 4(s) = n~%/?T'(s/2),
h =1, and w = +1; the functional equation in this case was discovered
by Euler in 1749 and proved by Riemann in 1859.

(iv) Special values. Given the properties in (iii), we call an integer m critical
(following Deligne) if neither m nor h —m is a pole of y(s). Then the
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corresponding critical value L(m) should have the form
L(m) = A(m)Q(m) (m critical) (3)

where 2(m) is a predictable period (the integral over some algebraic
cycle of an algebraic differential form defined over a number field) and
A(m) an algebraic number belonging to a predictable number field.
For L{s) = ((s), the critical integers are m = k and m = 1 — k, where
k is positive and even, and the corresponding values are given by (1)
and by the equivalent formula ((1 — %) € Q.

Of course, some of these properties are only conjectural in general, and
there are other properties shared (or conjectured to be shared) by these zeta
functions which we have not mentioned, such as the Riemann hypothesis
or p-adic interpolation properties of the algebraic numbers A(m) in (3).
Another property is that if the critical point m in (3) is the symmetry point
of the functional equation (i.e., if k is even and m = h/2), and if w = +1,
then the number A(m) in (3) is supposed to be—possibly up to some
simple, predictable factors — a perfect square in the number field in which
it naturally les. Examples of this phenomenon will be given in Section
6. First, however, we will give in the next three sections “applications” of
special values of zeta functions from each of these three domains mentioned
above, though in the reverse order.

3. First “application”: Diophantine equations

The simplest zeta functions from algebraic geometry are the Hasse—Weil
zeta functions of elliptic curves over Q . If

E:y*=2°-34:x+2B (A,BcZ, A*# B?) (4)

is such a curve, then L(E, s) is defined by an Euler product as in (ii) above
with ¢,(X)~! a polynomial of degree < 2 for each prime number p, equal
to 1 — (p ~ Np)X + pX? for pt 6(A% — B?), where N, is the number of
solutions of (4) over Z/pZ. It is known in some cases, and conjectured in
general (“Taniyama~Weil conjecture™), that L(F,s) satisfies a functional
equation as in (iil) with h = 2 and v{(s) = (271‘)‘31\72;/ 2I‘(s) for a certain
natural number Ng, the conductor of E. Thus (s) has poles at all non-
positive integers and y(h — s} at all integers > 2, so the only critical point
of L(E,s)is s=1.

The conjecture of Birch and Swinnerton-Dyer in its weakest form says
that the value of the L-function at the critical point is non-zero if and
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only if the group E(Q) of rational solutions of (4) (including the point
at infinity) is finite, and thus gives a criterion for the solvability in ra-
tional numbers of a large class of Diophantine equations. For instance, a
more than 1000-year old problem is to determine which natural numbers
are “congruent,” ie., are the area of a right-angled triangle with rational
sides or, equivalently, the common difference of three rational squares in
arithmetic progression. The Birch—Swinnerton—Dyer conjecture leads to
the conjectural answer {Tunnell) that an odd (resp. even) square-free num-
ber m is congruent if and ounly if it has equally many representations as
a® + b2 + % with a + b (resp. a) congruent to 0 modulo 8 and to 4 modulo
8. (This condition is satisfied by any m = 5,6,7 (mod 8) and by m = 34,
41, 65, 137,....) The “only if” part of this assertion is in fact known to be
true, as a consequence of the theorem of Coates—Wiles and a theorem of
Waldspurger.

The full version of the Birch—Swinnerton—Dyer conjecture relates the
behavior of L(E, s) at the critical point to the arithmetic invariants of E.
If L{(E,1) # 0, then, in accordance with the general expectation (3)), it
predicts that

S dx
LE1)=c—2_Q, Q:/ 2
(1) |[EQ) «3—34z+2B>0 VT — 3Az + 2B ®)

where ¢ is an easy rational number and S a difficult integer (the order
of the Shafarevich-Tate group of E over Q), while if L(E, s) vanishes at
s = 1, then the order of vanishing there should be equal to r, the rank of
the finitely generated abelian group E(Q), and the rth derivative at s = 1
should be related in a specific way to the size of the rational solutions of (4).
All of this makes sense, of course, only for F satisfying the Taniyama—Weil
conjecture, since otherwise not even the analytic continuation of L(E, s) to
s =1 is known, and under that assumption some partial results are known.
In particular, we know that if L(E, 1) # 0 then F(Q) is indeed finite and
formula (5) is essentially true (Kolyvagin), while if L(E,s) has a simple
zero at s = 1 then F(Q) is indeed infinite and L'(E,1) is related to the
size of a certain non-trivial rational solution of (4) {Gross—Zagier). These
partial results often suffice to determine whether or not E{Q) is finite, since
if the order of L(E, s) at s = 1 is less than 2 they decide the question and if
it is > 2 then the rank of E(Q) is (presumably) at least 2 and we can often
find a rational solution of infinite order by a straightforward search. For
instance, the congruence nature of all numbers < 2000 was decided in a few
minutes of computer time (Kramarz), whereas previously each individual
case represented a non-trivial research problem.



502 Don Zagier
4. Second “application”: periods of modular forms

The simplest zeta functions from the theory of automorphic forms are the
Hecke L-series of holomorphic modular forms on SL(2,Z). Let f(z) =
Yoo 5 Gn€2™"%  (z € §) = upper half-plane) be such a form, of (necessar-
ily even) weight k > 0, i.e., f(—1/2) = 2* f(2), and L(f,s) = 3 ov | ann™*
the associated L-series. We assume that f is a normalized eigenform of
all Hecke operators T, ie., T.f = anf for all n. Then L(f,s) has the
properties (i)—(iif), with the rational function ¢,(X) in (ii) of the form
1/(1 — apX +pX?) and 7(s) = (27)~°T(s), h = k, w = (—1)*/2 in (iii).
The critical points are thus the finitely many points m = 1,2,...,k — 1,
and for these points (3) is indeed true with A(m) an element of the field
generated by the coefficients a(n) and Q(m) the product of 7™ with one of
two basic periods Q. (f) (depending on the parity of m) defined by suitable
integrals of f over a closed geodesic in $/SL(2,Z). I f is an Eisenstein
series, then L(f, s) = ((s){(s—k+1), so one usually restricts to the case of
cusp forms (ag = 0), for which the special values L*(f,m) (1 <m <k-1)
have a particularly simple description as fooo Fat)tm1ldt.

The Eichler—Shimura—Manin theory of periods says that the map as-
signing to each cusp form its (k£ — 1)-tuple of critical values is an injective
map from the space of cusp forms to C*~1, and gives a partial description
of the image. The group GL(2,C) acts on C*~! in a natural way (think
of C*~1 as the space of binary forms of degree k — 2), and if g € GL(2,C)
is a matrix of trace ¢ and determinant n, then the trace of g on CF~! is
given by a simple polynomial pg(t,n) (e.g., pa(t,n) = 1, ps(t,n) = ¢ —n).
Extending ideas of Manin, one can find a splitting of C*¥~', roughly into
the image of the space of cusp forms and a complementary subspace, and
for each n € N a finite formal linear combination of elements g € M(2,Z)
of determinant +n whose operation on the cusp form part corresponds to
the action of the nth Hecke operator T3, and whose action on the comple-
mentary subspace has trace zero. In this way one immediately obtains an
explicit formula for the trace of 73, on the space of modular forms of weight
k on SL(2,7Z), as a finite linear combination of expressions p (¢, tn), e.g.,
for n = 2 the trace is 1[px(3,2) —px(2,2) — 2px(1,2) — P (0, 2) +px(1, —2)].
This is of course the well-known Eichler-Selberg trace formula, but with
a far easier and more elementary proof than the usual one. (Details will
appear later.)

As a second application of special values of L-series of modular forms,
now for congruence subgroups of SL(2,7Z), we mention the celebrated re-
sult of Waldspurger (1981) which expresses the Fourier coefficients of the
Shimura, lift of a Hecke eigenform of even weight & (this is another modular
form, of half-integral weight (k + 1)/2) as essentially the square-roots of
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the values at the central critical point s = k/2 of the L-series of the form
and its twists by quadratic characters.

5. Third “application”: algebraic K-theory and polylogarithms

The simplest zeta functions from algebraic number theory are the Dedekind
zeta functions of algebraic number fields. Let F = Q{c) where « is the
root of an irreducible monic polynomial P(T} of degree n with integral
coefficients. Then the Dedekind zeta function (r(s) of F' is given by an
Euler product as in (ii) where each ¢,(X) is the reciprocal of a polynomial
of degree at most n. (More precisely, for p not dividing the discriminant
D of P(T), ¢p(X)™t = (1 — X™)---(1 — X™) where ny,...,n, are the
degrees of the irreducible factors of the reduction of P modulo p.) Thus (i)
and (ii) hold, as does (iil) with h = 1, w = +1 and v(s) = A°T'(s/2)"T'(s)"™
for a certain A > 0, r; and 79 being the number of linear and quadratic
irreducible factors into which P(T") decomposes over R. Thus either y(s) or
(1 — s) has a pole at every integer if r5 is positive, so there are no critical
values in this case. If 7o = 0 (totally real case), then we have the same
critical points ¥ and 1 —k (k > 0 even) as in the case of the Riemann zeta
function, corresponding to F = Q, and the Siegel-Klingen theorem gives
the analogue of (1): (r(1 — k) is rational and (r(k) is a rational multiple
_ of ik / VD for every positive even integer k.

We now look for the first time also at non-critical values. Essentially
nothing is known about the arithmetic nature of these numbers, even for
F = Q, but a theorem of Borel relates them to the algebraic K-theory of
the field F. More precisely, algebraic K-theory associates to F' a finitely
generated abelian group K;(F) for each 7 > 1. Borel showed that the rank
of this group is 0 if ¢ is even and r; 473 or 9, depending whether m is odd or
even, if ¢ = 2m — 1, and that in the latter case K;(F)/ (torsion) is canon-
ically isomorphic to a certain lattice (“regulator lattice”) in a Euclidean
space of the same dimension whose covolume is a simple multiple of the
number {g(m). This relationship with zeta values, which for many fields
can be computed numerically, made it possible to formulate and provide
extensive numerical evidence for a conjecture which completely describes
the higher K-groups and the regulator lattices of arbitrary number fields.
Roughly, the points of the regulator lattice should have coordinates which
are finite rational linear combinations of values of the classical mth polylog-
arithm function Lip(z) =Y o. 2™/n™ at arguments in F'. A consequence
of this conjecture is that the value of {z(m) for any number field F and any
integer m > 1 can be expressed as a simple multiple of the determinant
of a matrix (of size 71 + r2 or rq, depending on the parity of m) whose
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coefficients are linear combinations of polylogarithms of numbers in F), a
typical formula being
b (B) = 55 \/._LZ3(1) [Lis(e) + Lis(—a) + = 10g (o)

vb-1
TR

— %log(a)] , o=

The case m = 2 of the conjecture follows from work of Bloch, Suslin and
Merkuriev about algebraic K-theory (specifically, about K3 of fields), and
the case m = 3 has been proved in beautiful recent work of A. Goncharov.

One also expects that the values of partial zeta functions associated
to ideal classes in a number field F would be related to polylogarithms
with arguments in the Hilbert class field of F. An exciting special case
is the one where F' is imaginary quadratic—the only case besides Q where
the class field can be constructed effectively by analytic functions—would
be the existence of a generalized Kronecker limit formula. Recall that the
classical Kronecker limit formula says that the value (after subtracting the
pole and taking the limit) at s = 1 of the Eisenstein series

E(z,8) = ( Z)Z ‘pgf)q[% (zeC, S(2) >0, R(s) > 1)

is essentially equal to the logarithm of the absolute value of the classical
discriminant function A(z) = e?™* [[(1 —?™"#)2?*. This and the theory of
complex multiplication then imply that the value at s = 1 of the difference
of E(z,s) for two quadratic irrationalities z having the same discriminant
is, up to a simple factor, the logarithm of a unit in the class field of the
quadratic field in which they lie. The generalization would express the
difference of two values of E(z,m) for an integer m > 1 similarly in terms
of polylogarithms of order m of numbers in the class field. A typical formula
here is

1+2\/__
2

1+4v23
4

472
’ 2) = —=D (9) H
) - o
where 8 is the root with positive imaginary part of the cubic equation
2 —z — 1 = 0 and D(z) = §(Lia(z) + log|z] log(1 — z)) is the Bloch-
Wigner modified dilogarithm function.

E(—5— ) -B(—F—

6. Central values

Returning now to critical values, we discuss briefly the phenomenon men-
tioned at the end of Section 2: that the algebraic factor A(m) in (3) is
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essentially a square when m = h — m, ie. at the point of symmetry of
the functional equation. One example of this, for m = 1, is given by the
Birch-Swinnerton-Dyer formula (5), since the integers S and |E(Q)|? are
both squares. As a second illustration we take the series

ok~
Li(s) = Z —]\—rég (k > 0 even),

where the sum is over all integers @ = (r + sy/—7)/2 of Q(v/—7) with
r = 1,2 or 4 modulo 7 and N(a) = (r? + 7s?)/4 is the norm of o.
This series belongs to all three of the domains of mathematics mentioned
in Section 2: to algebraic number theory because it is the L-series as-
sociated to a Hecke grossencharacter of weight & — 1 on the imaginary
quadratic field Q{/—7); to the theory of automorphic forms because it
is the Hecke L-series of a holomorphic modular form of weight k& on the
congruence subgroup I'g(49) of SL(2,Z); and to algebraic geometry be-
cause it is the (k — 1)st symmetric power of the Hasse-Weil zeta func-
tion of the elliptic curve y? = z% — 35z — 98. The functional equa-
tion is L%(s) := (7/2m)°T(s)Ly(s) = (=1)*/271Li(k — s). Here F. Ro-
driguez Villegas and I, using a method invented by him for the case k =2
(Inv. Math. 106, 1991), showed that

Vi (P(%)r(%r(%))’““l 2

Lek/2) =5 7 ae

with ¢x € Z, as had been conjectured by B. Gross and myself some ten
years earlier on the basis of numerical evidence. The ¢; turn out to be the
constant terms of a sequence of polynomials {cg(z)} satisfying a 3-term
linear recurrence.

7. Zeta values, invariants of moduli spaces,
and the Witten zeta function

It is an old and well-known phenomenon that the volumes or Euler char-
acteristics of moduli spaces are often expressible in terms of special values
of zeta functions. For instance, the volume of the moduli space for elliptic
curves over C, which is the quotient of the upper half-plane §) by the ac-
tion of SL(2,7), can be evaluated simply by integrating y~2dz dy over a
fundamental domain of this action and equals 7 /3, but the “true” explana-
tion of this number is that it is 2w ~1((2) or —4x ((—1), where ((s) is the
Riemann zeta function. Similarly, the volume (or, what is by virtue of the
Gauss—Bonnet formula essentially the same thing, the Euler characteristic)
of a Hilbert modular variety $5Q/SL(2,0k) for a totally real number
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field K is essentially given by (i (2) or (x(—1), a fact which played a key
role in Hirzebruch’s study of the geometry of Hilbert modular surfaces in
the 1970’s. More generally, results of Siegel and others which from a mod-
ern point of view correspond to the evaluation of Tamagawa numbers show
that the volumes of quotients by arithmetic subgroups of SL(n), Sp(n) and
other algebraic groups can be expressed as special values or finite products
of special values of zeta functions. In a different direction, Harer and 1
showed in 1984 that the Euler characteristic of the moduli space of Rie-
mann surfaces of genus ¢, which is the quotient of a contractible space
(Teichmiiller space) by a non-arithmetic discrete group (the mapping class
group), is equal up to a simple factor to the value of the Riemann zeta
function {(s) at s = 2g (or s =1 — 2g).

Recently, because of their appearance in physics (Verlinde formulas),
there has been much interest in certain moduli spaces of vector bundles of
curves. On the basis of arguments coming from theoretical physics, Witten
gave a formula expressing the volumes of these spaces in terms of special
values of a new type of zeta function. Specifically, let g be a semi-simple
Lie algebra and define (y(s) be the zeta function ) dim(p) %, where the
sum runs over all finite-dimensional representations of g. Their dimensions
can be calculated by a well-known formula of Hermann Weyl; thus (.i2)(s)
is the Riemann zeta function while

x0 25
Gaiay(s) = mzn:;l e m L)’
AN o o
S0 et ment(m o+ n)s(m o+ 2n)°

A consequence of Witten’s volume formula is the following purely number-
theoretical fact:

Theorem. The values of (4(s) at positive even integers are always rational
multiples of powers of m; more precisely, (;(s) € Q" for s = 2, 4, 6,
... where r denotes the number of positive roots of g.

Direct proofs of this statement were given by myself and by Stavros
Garoufalidis (private communication). In the special case g = si(3) one
can even give a closed formula, namely for even s > 2 one has

o

Z f,nsns(,,:il + n)s = % Z (233—_’]’; 1) C(T)C(33 B 7.) (6)

m,n=1 0<r<s
r even

(for example, 275((3)(6) = 1031(27)'8/126 - 19!), as was shown by both
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of us and also by Leonard Weinstein (private communication). The reason
that the theorem holds is that, although sums over cones like the ones
occurring in (4(s) are in general very difficult to evaluate, the symmetry
coming from the Weyl group allows us to evaluate these particular sums
at positive even integers by summing over the whole lattice (minus the
hyperplanes on which one of the linear forms occurring in the denominator
vanishes), rather than only over one conical chamber. For instance, if s is a
positive even integer then (i3)(s) is 1/6 times the sum of [fmn(m+n)]~*
over all pairs of integers (m,n) with mn(m-n) # 0, rather than only over
pairs of positive integers. The theorem is then an immediate consequence
of the following general result, which can be proved easily by induction or
by partial fraction decompositions or by using Fourier expansions:

Proposition. Let £1(z),...,In{(z) (x = (z1,...,2,)) be N linear forms in
r variables with rational coefficients. Then the sum 3 £€1(x) 1.+ fn(z)~L,
where the summation is over all x € Z7 for which no £;(z) vanishes, is, if
absolutely convergent, a rational multiple of %,

8. Witten’s zeta function for s{(3) and modular forms

We just saw that the proofs of Witten’s statement about special values
of {4(s), and in particular of such special cases as (6), are in fact easy
because the sums over cones are equivalent to sums over entire lattices.
However, the story does not end there. For instance, formula (6) is true
also for odd values of s if the factor 4/3 is replaced by 4 (for example,
Cai3)(3) = 20¢(9) —2m2((T) ), yet the proof sketched before does not work
at all since the sum over the whole lattice would vanish for parity reasons.
To understand the situation better we introduce the more general sums

> 1
S@he)= X edlm )

which in general cannot be expressed in terms of values of the Riemann
zeta function. Using the Pascal triangle-like recurrence S{a,b,c) = S{a —
1,b,¢ + 1) + S(a,b — 1,c + 1) we can express the k?/2 + O(k) numbers
S({a, b, ¢) of given weight k£ = a+b+c as integral linear combinations of the
numbers ((a,¢) = S{a, 0, ¢) defined by equation (2) with r = 2. There are
k + O(1) such numbers of weight k, and we find £ + O(1) relations among
them, namely those coming from S5(a,b,0) = ((a)((b) (a + b=k, a < b)
and from ¢(a,c) + {(c,a) = {(a)¢(c) — {(k) (a+c =k, a £ ¢). Moreover,
the two “O(1)”’s (whose value depends on the parity of k) are the same,
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so we have just as many equations as variables. We must thus solve a
non-homogeneous system of linear equations of the form Ax = ¢ where
A is a square matrix with integral entries, the components of the vector
¢ are rational linear combinations of ((k) and of products ((r)¢{(k — r)
(2 <r < k/2), and the components of x are the unknowns ((a,k — a).

But now something quite different happens depending whether & is
even or odd. If k is odd, then it turns out that det A # 0, so we can solve
uniquely for x; thus every number S(a,b, ¢), and in particular every double
zeta value ((a,c), of odd total weight k is a rational linear combination of
the numbers (k) and {(r)¢(k — r), the formula given above for S(a,a,a)
being a special case. But if & is even, then A turns out to be highly singular,
of corank [(k — 2)/6]. This means, first of all, that the double zeta values
{(a,c) of even weight a+ ¢ > 8 cannot be expressed in terms only of usual
zeta values, but also that the components of ¢ must satisfy certain linear
relations over @ in order to ensure that Ax = chas a solutlon These extra,
relations are precisely the relations of the form

Y cl@Ck-a) =clle)  (ca€Q)

a even, 2<a<k/2

which can be obtained by the partial fraction decomposition method that
we used in Section 1 to give an elementary proof that ((k) € Q¢(2)*/2, i.e.,
they correspond to the homogeneous polynomials f(m,n) € Q[m=,n7]
of degree k for which f(m-+n,n)+ f(m,m+n) € Qm™',n~']. Moreover,
there turns out to be a surprising and beautiful connection with the theory
adumbrated in Section 4 of modular forms on SL(2,Z) and their periods:
the relations >~ co((a)¢(k—a) = co((a) which one can prove by this method
are exactly those obtained by taking the constant terms of modular form
identities Y ¢, Go(2)Gr—a(2) = c0Gr(2), where

Z (pz+q)"‘ =R+ O (ze )

p g€z

denotes the holomorphic Eisenstein series of weight k. Thus for k& < 12
one gets every relation ((a)((k —a) ~g ((k), but for k = 12 or k > 16
one “misses” certain relations, because of the existence of cusp forms; and
dually, starting at weight 12 there are relations over Q among the numbers
¢(a.k — a) {a 0odd, 2 < a < k/2) and the number of such relations is equal
to the number of linearly independent cusp forms of weight k. The reason
for the connection with modular forms is that the formal proof given in
Section 1 remains true by sums over the “positive half” (Zsoz+Z)UZ~g if
the summations over m,n > 0 are replaced by sums over the “positive half”
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(Nz 4+ Z)UN of the lattice Zz+Z C C and hence automatically “lift” from
zeta identities to Fisenstein series identities. The connection to the theory
of periods arises because, by a theorem of Rankin, the Petersson scalar
product (f, GoGr—,) for a cusp form f € Sx(SL(2,Z)) is proportional to
the ath period L(f,a), so that a relation Y c,GoGr—q € (Gi) is equivalent
to a relation among the periods of cusp forms of weight k.

9. Multiple zeta values

Having been led by the investigation of Cﬁl(g)(s) and its generalization
S(a,b,c) to the study of the sums (2) for the special case r = 2, it is
natural to consider the general case. These numbers have in fact arisen
sporadically in mathematics and physics in the past, starting (at least)
with Euler, but it is only recently that it has become clear how basic—and
interesting—they are. We will call them multiple zeta values since they
generalize the classical special values {(k). (We do not, however, speak
of “multiple zeta functions,” both because this term has been used with
another meaning by N. Kurokawa and because the function obtained by
replacing the k; by complex variables s; in (2) does not seem to be very
nice: in particular, it does not have a unique analytic continuation to val-
ues outside the domain of absolute convergence.) The first property of the
multiple zeta values is that the set A of integral linear combinations of
them is a ring, since the product of any two values can be expressed as a
(positive) integral linear combination of others, e.g.,

¢(a,6) ¢(c) = ¢(a,b,¢) +((a, b+ ¢) + (a, ¢, b) + ((a +¢,b) +{(c,a,b) .

Next, by using combinatorial manipulations like those in Section 1 and
Section 8, one can derive many relations over Q among the multiple zeta
values. Therefore, although there are 25=2 tuples k = (k1,...,kr) a8 in
(2) with given total weight k = k; + --- + k,, the dimension dj of the
Z-module A spanned by the corresponding (k) is much smaller. It is
given conjecturally (after many discussions with Drinfel’d, Kontsevich and
Goncharov!) by the Fibonacci-like recurrence dy, = dg_g+dg- 3, with initial
values dy =0, do = d3 = dy =1, ...; this has been checked numerically up
to k =12 (dj2 = 12). Among the many multiple zeta identities there are
some very pretty ones like

k—2
k1) = SR - 5 S ek,
r=2
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(and in general, {(1,...,1,b) € Q[r2,{(3),¢(5),...] for any a and b),
N —~

26n+2 8n

€8 = gy

n

[(\/_+ 1 4n+2 + (\/_ 1)4n+2]

(and in general, {(k, ..., k) € Q*" for any even k), or the as yet unproved
e’

n
7 27T4n
L3 = (=4 4,...,4)).
(L3L3,- L= sy (= 474, 9)
n n

A different type of identity comes from the observation, due to M.
Kontsevich, that the multiple zeta values are at the same time the values
of the Drinfel’d integrals

J-f diy dty,
o<ty <--<tp<t Ag, (t1) A, (tx)
(ei=0o0rl,e1=1, e =0)

I{e1,...,e8) =

(where Ag(t) =t, A1 (t) = 1 —t), namely
(k... kp) =I(1,0,. ,0).

The easy proof consists of expanding each factor A;(%;)! in the integral
as a power series 1 +t; + £Z + --- and integrating term by term. A nice
consequence is that there is a non-trivial duality k — k' with ¢(k) = ¢(k),
corresponding to the obvious identity I(eg,...,ex) = I{1—&g,..., 1 —¢1).
But other identities, like the one for ¢(1,3,1,3,...,1,3) mentioned above,
are still not understood.

The fundamental importance of the multiple zeta values is that, appar-
ently, all iterated integrals & la Chen defined over Z can be written as linear
combinations of them, or equivalently, that the graded ring A = P Ay,
after adding 2wi, is exactly the ring of periods of the pro-nilpotent com-
pletion of 7y (P! \ {0,1,0¢c}). Thus understanding this ring is equivalent
to constructing the category of mixed Tate motives over Z. {Goncharov
now informs me that he has succeeded in doing this.) In another direction,
the integrals discovered by Kontsevich for the Vassiliev knot invariants are
essentially iterated integrals and can be related directly to the numbers
¢(k), so that the structure of the ring A should be directly related to the
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structure of the set of these knot invariants. However, I understand almost
nothing of any of the topics mentioned in this paragraph and will stop here.

Further reading

Since the purpose of this article is neither to prove new results nor to give a
survey of a well-defined area of mathematics, it is more or less impossible to
give a bibliography in the usual sense. References to a few specific results
which were mentioned in the main text were given as they occurred. We
will content ourselves here with indicating a few places where one can
find more information about some of the more general topics touched on,
with no pretense of completeness. The interested reader can then use the
bibliographies of the articles and books cited for the analytic continuation
of the path to be followed. ‘

(Section 1) Calabi’s ultra-short proof of “((2) = n2/6” as reproduced at
the beginning of this section, as well as its generalization to {(2n) for
n > 1, have now been written up; they are contained in the article “Sums
of generalized harmonic series and volumes” by F. Beukers, E. Calabi and
J. Kolk, Nieuw Archief voor Wiskunde 11 (1993), 217-224.

(Section 2) A general survey for the many kinds of zeta functions arising
from motivic contexts is the book Conjectures in Arithmetic Algebraic Ge-
ometry by W. Hulsbergen (Aspects of Mathematics No. 18, Vieweg 1992).
It contains information about the zeta functions coming from number fields,
elliptic curves, and modular forms as well as about the material discussed in
Section 5 of this paper, and gives many further references for these topics.
The notion of critical value was introduced by Pierre Deligne in “Valeurs
de fonctions L et périodes d’intégrales” (Proc. Symp. Pure Math. 33 Part
IT, AMS (1979), 313-346).

(Section 3) The Birch-Swinnerton-Dyer conjecture and its application to
the problem of congruent numbers are described in N. Koblitz’s book
Introduction to Elliptic Curves and Modular Forms (Graduate Texts in
Math. No. 97, Springer 1984), while the numerical results mentioned in
the text are given in G. Kramarz, “All congruent numbers less than 2000,”
Maih. Ann. 273 (1986), 337-340.

(Section 4) The afore-mentioned book by Koblitz is also a good reference for
the theory of modular forms (including Waldspurger’s theorem). A brief
exposition of this theory is given in my survey article in From Number
Theory to Physics (Springer 1992, 238-291). Another introductory text,
also covering periods and the Eichler-Selberg trace formula, is Serge Lang’s
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Indroduction to Modular Forms (Grundlehren No. 222, Springer 1976).

(Section 5) Borel’s paper relating special values of Dedekind zeta-functions
to algebraic K-theory is “Cohomologie de SL,, et valeurs de fonctions zéta
aux points entiers,” Ann. Sc. Norm. Pisa 4 (1977), 613-636. A survey of
what is known about the algebraic K-theory of fields (especially K3) is given
in A. Suslin’s article in the proceedings of the 1986 International Mathe-
matical Congress, 222-244. My conjectures relating to the polylogarithm
are presented in the article “Polylogarithms, Dedekind zeta functions, and
the algebraic K-theory of fields” in Arithmetic Algebraic Geometry (eds.
G. van der Geer and J. Steenbrink, Progress in Math. No. 89, Birkhiuser
1991, 391-430) and in an appendix to the book The Structural Properties
of Polylogarithms by L. Lewin (AMS 1991). Goncharov’s proof for the rela-
tion between (#(3) and K5(F) is given in his 1992 MPI preprint “Geometry
of configurations, polylogarithms and motivic cohomology.”

(Section 6) The joint paper with Villegas has appeared in Advances in
Number Theory (eds. F. Gouvea and N. Yui, Oxford Univ. Press 1993,
81-99).

(Section 7) A survey of the theory of Hilbert modular surfaces is given
in G. van der Geer’s book of the same name (Ergebnisse No. 16, Springer
1988; cf. in particular pp. 19-20 for the zeta-values of real quadratic fields).
The article of Witten cited in the text appeared in Commun. Math. Phys.
141 (1991) 153-209.

(Sections 8~9) The results on multiple zeta values are not yet written up
in detail. The connection with the Vassiliev—Kontsevich knot invariants,
as well as further references for the latter, can be found in several recent
preprints by T. Q. T. Le and J. Murakami, especially “Kontsevich’s inte-
gral for Homfly polynomial and relation between values of multiple zeta
functions” (MPI 93-26) and “The universal Vassiliev—Kontsevich invariant
for framed oriented links” (MPI 93-89).
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