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Abstract

We give a number of new functional equations for polylogarithms
and in the process we obtain the first proven ladder relations, à la
Lewin, of weight 6 and 7.

1 Motivation

Polylogarithms appear in many contexts within mathematical physics, like
in dimensional regularization expansions or when determining analytic so-
lutions of various Feynman integrals in quantum field theory; e.g. the
dilogarithm appeared already in the famous paper by t’Hooft and Veltman
[14], and Ussyukina and Davydychev [22], eq. (30), found all k-logarithms
(n ≤ k ≤ 2n) in a closed expression for the “n-box” diagram (for a more
recent update cf. [21]), as well as in conformal field theory (the dilogarithm
plays a crucial role in a conjecture of Nahm [20] characterizing rational
CFTs) or when considering expansions of hypergeometric functions (cf. e.g.
[15]). Even more closely related to our results below, (multiple) polyloga-
rithms and their special values have occurred, among many others, in various
ways in work of Broadhurst and Kreimer (e.g. [6]), occasionally even in con-
nection with ladder relations (cf. [5]) as defined below. Very recently, when
calculating the two-loop hexagon Wilson loop in N = 4 supersymmetric
Yang-Mills theory, Del Duca, Duhr and Smirnov [8] were led to a long ex-
pression in polylogarithms that has been subsequently enormously simplified
by Goncharov, Spradlin, Vergu and Volovich [13]. In these contexts, insight
into functional equations for the polylogarithms involved can be useful to
reduce the ensuing typically complicated expressions considerably.

Functional equations of polylogarithms play also a pivotal role in a more
abstract context when trying to define an explicit version of the (odd index)
algebraic K-groups K2m−1(F ) of a number field F . The latter can conjec-
turally be written as a subquotient of the free abelian group on F (pioneered
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by Bloch [3] in the dilogarithm case and generalized by Zagier [24] and by
Goncharov [12] for higher m), and the group of relations in that description
is expected to encode all the functional equations of the m-logarithm.

In 1840, Kummer [16] gave non-trivial functional equations for polylog-
arithms Lim(z) =

∑

n≥1 zn/nm up to weight m = 5, where results had pre-
viously been known only up to m = 3. He mentioned “peculiar difficulties”
(“eigenthümliche Schwierigkeiten”) which arise when trying to extend the
results to m > 5. In fact, Wechsung proved [23] that the type of functional
equation that Kummer had found does not extend to m > 5.

In the eighties, Lewin and his coauthors ([1], [19]) tried several ap-
proaches to conquer what he called the “trans-Kummer region” m > 5
(cf. e.g. [1], p.11), and they indeed found new functional equations, but all
results were ultimately confined to the same range m ≤ 5. On the way,
Lewin discovered interesting special relations of the form

∑

j njLim(αj) = 0
(nj ∈ Q), for certain algebraic numbers α. He realized that such relations,
which he dubbed “ladders”, were consequences of a certain intrinsic property
of such an α, viz. the property that it satisfies many different “cyclotomic
relations” (loc.cit.), which are equations of the form

∏

r(1 − αr)νr = ±αN

where r, νr and N are integers. This insight enabled him to conjecture cer-
tain ladders even up to weight m = 9 (he used the terminology order in
place of the now more common notion of weight). By cleverly specializing
and combining old and new functional equations, he was able to prove quite
a number of his conjectured ladders, but was again confined to weights ≤ 5.

In our thesis [9], we gave the first functional equations beyond that range,
and the largest weight, for which non-trivial such equations are known for
the m-logarithm, is m = 7 (cf. also [11]). We provide in this note a collection
of functional equations for polylogarithms up to this weight, which moreover
have a very specific symmetry: the arguments (in one variable t) involve only
the three factors t, 1 − t and 1 − t(1 − t) (with roots 0, 1 and the primitive
sixth roots of unity, respectively), and each given equation is invariant under
the action of the symmetric group S3. With increasing weight, the number
of independent such equations decreases, and for weight 8 and beyond we
did not find any.

As a by-product, the equations for weight 6 and 7 allow, after special-
ization, to prove the first ladders in that range.
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2 Zagier’s criterion for functional equations of poly-

logarithms

In his seminal papers [24] and [25], Zagier described a criterion for functional
equations for polylogarithms. More precisely, he first gave a single-valued

function Lm(z) = ℜm

(
∑m−1

k=0
2kBk

k! logk |z|Lim−k(z)
)

(denoted by Pm(z) in
[24]) attached to the (multivalued) function Lim(z), where ℜm denotes the
real part for m odd and the imaginary part for m even, and the Bk de-
note the Bernoulli numbers. This function now satisfies “clean” functional
equations, i.e. without invoking products of lower weight polylogarithms as
occur typically—and in abundance—for Lim-equations (cf. e.g. almost any
functional equation in [17]). Furthermore, one can give a very useful char-
acterization for them which we describe in the following subsection.

2.1 Higher Bloch conditions

For a field F , let βF
m be the map

βF
m : Z[F ] −→

⊗

m−2F× ⊗
∧

2 F× ,

defined as βF
m([0]) = βF

m([1]) = 0, and on generators [x] (x 6= 0, 1) as follows:

βF
m([x]) = x ⊗ · · · ⊗ x ⊗

(

x ∧ (1 − x)
)

.

For m = 2, this map was related to the dilogarithm in Bloch’s seminal paper
[3].

We say that a combination ξ ∈ Z[F ] satisfies the m-th higher Bloch
condition simply if it lies in ker βF

m. This fits very well with the above one-
valued function Lm(z):

Theorem 1 (Zagier, [24]) Let F be a subfield of C(t) then for ξ ∈ Z[F ] we
have

ξ ∈ ker βF
m =⇒ Lm(σ(ξ)) = constant ,

for any embedding σ : F →֒ C(t).

Here we extend the definition of Lm as well as of σ to all of Z[F ] by
linearity, i.e.

Lm ◦ σ
(

∑

i

ni[xi]
)

=
∑

i

niLm

(

σ(xi)
)

.

In this way, the problem of finding functional equations is reduced to
a problem in linear algebra and the hard part is to find a suitable list of
potentially good arguments xi.
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2.2 A rich collection of arguments

A particularly good collection of arguments for functional equations (in one
variable t) turns out to be given by

{±ta1(1 − t)a2
(

1 − t(1 − t)
)a3 | ai ∈ Z} .

It is convenient to introduce new variables

u1(t) =
−t

1 − t(1 − t))
, u2(t) =

−(1 − t)

1 − t(1 − t)
, u3(t) =

t(1 − t)

1 − t(1 − t)

and then to rewrite the above expressions as

{±u1(t)
α1u2(t)

α2u3(t)
α3 | ai ∈ Z} ,

for suitable αi, since then a further S3–symmetry becomes apparent. The
two involutory automorphisms induced by t 7→ 1

t
and t 7→ 1− t, respectively,

generate this S3–action on the set of those arguments by simply permuting
the exponents. Any of the arguments can hence be encoded by a triple of
exponents, together with a sign. There are many functional equations for
m ≤ 7, in the exponent range |αi| ≤ 6, which carry the above symmetry.
All the ones that were found have arguments chosen from the following list
A which represents 32 S3-orbits in Z[Q(t)]:

A =
{

(−, 2,−2, 3), (+, 0, 5, 0), (−, 6,−1,−1), (+, 3, 0, 0),
(+, 0,−3, 3), (−,−3, 6,−3), (−,−3, 3, 3), (+, 0,−5, 5),
(+, 4,−1, 0), (+,−3, 4, 4), (+, 3, 0,−2), (−,−1, 2,−1),
(+, 0, 1, 1), (−, 2, 0,−2), (+, 1, 0,−1), (−, 1, 0,−1),
(+,−2,−2, 3), (−,−1, 3,−1), (+,−4,−1, 4), (−,−2,−2, 5),
(−, 2,−1, 1), (−,−2,−1, 3), (−, 2, 0,−1), (+, 2, 0,−1),
(−,−2, 2, 2), (+, 2,−1,−1), (−, 2,−1,−2), (−, 0, 1, 0),
(+, 0, 1, 0), (−,−1, 1, 1), (+, 1,−1,−1), (−, 1, 1, 0)

}

.

The factors of 1−x where x runs through those arguments can be found
in the S3-orbits of the following list (where T = 1 − t(1 − t))

{

t, T, 1+ t, 1+ t(1− t), 1+
1

T
, 1+

t

T
, 1+

(1 − t)

tT
, 1+

t(1 − t)2

T 2
, 1−

t2(1 − t)

T 2

}

.

Due to the above symmetry we focus on S3-invariant functional equations
and introduce the shorthand

[

(±, α1, α2, α3)
]

:=
∑

σ∈S3

[

±
3

∏

i=1

ui(t)
ασ(i)

]

.
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2.3 The functional equations

In the above notation, the functional equations can be given in concise form,
with coefficients taken from the tables below. We first state the results for
combinations satisfying the higher Bloch conditions.

Theorem 2 For m ∈ N, let κm = ker
(

β
Q(t)
m

)S3 be the space of S3–invariant

elements in the kernel of the map β
Q(t)
m . Then we have the following bounds

on ranks of κm for m = 4, 5, 6, 7.

m 4 5 6 7

rank κm ≥ 11 ≥ 9 ≥ 4 ≥ 2

Explicitly, the corresponding elements are given by

∑

a∈A

c
(m)
j (a) [a] ,

with the coefficients c
(m)
j = c

(m)
j (a) as in Tables 1–3 below.

The proof that the given elements are indeed in the kernel of βF
m is a

tedious and mechanical task, which is best left to a computer. One de-
termines all the factors occurring in a factorization of x and 1 − x, where
x runs through all the corresponding arguments in an equation and then
checks that all the terms in the ensuing image under βF

m do cancel. Using
the S3-symmetry involved, one can cut down on the actual calculations, but
they are still too cumbersome to give in detail.

Corollary 3 There are ≥ 2 (resp., ≥ 4, ≥ 9, ≥ 11) linearly independent
functional equations for L7 (resp., L6, L5, L4), with arguments encoded by
A, up to permutation, which are S3-symmetric.

We remark that the two functional equations for L7 do not seem to
follow from the 2-variable equations for L7 given in [11], but a suitable linear
combination of the two which cancels the constant terms is a specialization
of that equation.

Example. We spell out some equations corresponding to the columns

of Table 1. The last one, c
(4)
11 , gives

2
[

(+, 2,−1,−1)
]

+ 6
[

(−, 0, 1, 0)
]

+ 3
[

(+, 1,−1,−1)
]

∈ ker βF
4
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for F = Q(t). This amounts essentially to our 9-term equation for L4 cited
in [25], §7. The second-to-last column gives another element in that kernel,

[

(−,−2, 2, 2)
]

+ 4
[

(−, 2,−1,−2)
]

− 6
[

(−, 0, 1, 0)
]

− 12
[

(+, 0, 1, 0)
]

− 2
[

(+, 1,−1,−1)
]

,

which explicitly (and with less apparent symmetry) is written as

2
(

L4

(

− t4

(1−t+t2)2

)

+ L4

(

− (1−t)4

(1−t+t2)2

)

+ L4

(

− 1
(1−t+t2)2

)

)

+4
(

L4

(

− (1−t)(1−t+t2)
t3

)

+ L4

(

− t(1−t+t2)
(1−t)3

)

+ L4

(

1−t+t2

t3

)

+ L4

(

1−t+t2

(1−t)3

)

+ L4((1−t)(1−t+t2)) + L4(t(1−t+t2))
)

−12
(

L4

(

− t(1−t)
1−t+t2

)

+ L4

(

t
1−t+t2

)

+ L4

(

1−t
1−t+t2

)

)

−24
(

L4

( t(1−t)
1−t+t2

)

+ L4

(

− t
1−t+t2

)

+ L4

(

− 1−t
1−t+t2

)

)

−4
(

L4

(

1−t+t2

t2

)

+ L4

(

1−t+t2

(1−t)2

)

+ L4(1−t+t2)
)

= 0 .

The constant of Theorem 1 is zero for each c
(m)
j for even m, while for c

(5)
j

the constants can be obtained by specialising t to 1, say, and turn out to be

ζ(5) times 0, 0, 0, 0, 1662, 378, 4230,−126 and 414, respectively, for c
(7)
1 we get

the constant −25461
4 ζ(7) and for c

(7)
2 we find −54495

4 ζ(7). Note that certain
a ∈ A only occur with non-trivial coefficient for odd m, as the inversion
relation annihilates the sum over the corresponding orbit.
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2.4 The tables

2.4.1 Functional equations for m = 4

a c
(4)
1 c

(4)
2 c

(4)
3 c

(4)
4 c

(4)
5 c

(4)
6 c

(4)
7 c

(4)
8 c

(4)
9 c

(4)
10 c

(4)
11

(−, 2,−2, 3) 2 0 0 0 0 0 0 0 0 0 0
(+, 0, 5, 0) 0 1 0 0 0 0 0 0 0 0 0
(−, 6,−1,−1) 0 0 1 0 0 0 0 0 0 0 0
(+, 3, 0, 0) 0 0 0 3 0 0 0 0 0 0 0
(−,−3, 6,−3) 0 0 0 0 3 0 0 0 0 0 0
(−,−3, 3, 3) 0 0 0 0 0 3 0 0 0 0 0
(+, 4,−1, 0) 0 0 0 0 0 0 2 0 0 0 0
(+,−3, 4, 4) 0 0 1 1 −1 −1 0 0 0 0 0
(+, 3, 0,−2) 0 −10 0 0 0 0 −6 0 0 0 0
(−,−1, 2,−1) 0 0 0 0 −81 0 0 0 0 0 0
(+, 0, 1, 1) 0 −30 0 0 0 0 −6 0 0 0 0
(+,−2,−2, 3) 0 0 7 6 −15 3 0 0 0 0 0
(−,−1, 3,−1) 0 0 −14 −8 −10 −1 0 0 0 0 0
(+,−4,−1, 4) 0 0 0 0 0 0 0 1 0 0 0
(−,−2,−2, 5) 0 0 0 0 0 0 0 0 1 0 0
(−, 2,−1, 1) −6 0 −42 −30 30 30 −6 −1 2 0 0
(−,−2,−1, 3) 2 0 0 6 −6 −6 −2 −3 −6 0 0
(−, 2, 0,−1) 6 0 −28 20 −20 −20 −12 6 −6 0 0
(+, 2, 0,−1) −12 0 −14 −30 30 30 6 3 −12 0 0
(−,−2, 2, 2) 0 0 0 0 0 0 0 0 0 1 0
(+, 2,−1,−1) 0 0 0 0 0 0 0 0 0 0 2
(−, 2,−1,−2) 6 0 0 0 0 0 0 −4 0 4 0
(−, 0, 1, 0) 6 −120 42 78 30 −132 −42 −9 −6 −6 6
(+, 0, 1, 0) −48 −125 0 −81 0 0 0 −3 0 −12 0
(−,−1, 1, 1) 0 0 0 0 0 −81 0 0 0 0 0
(+, 1,−1,−1) 15 −15 −21 36 45 18 −27 −2 −1 −2 3
(−, 1, 1, 0) 0 0 −21 −24 15 6 0 0 0 0 0

Table 1 Generators for ker
(

β
Q(t)
4

)S3
in Thm 1
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2.4.2 Functional equations for m = 5

a c
(5)
1 c

(5)
2 c

(5)
3 c

(5)
4 c

(5)
5 c

(5)
6 c

(5)
7 c

(5)
8 c

(5)
9

(−, 2,−2, 3) 18 0 0 0 0 0 0 0 0
(+, 0, 5, 0) 0 3 0 0 0 0 0 0 0
(−, 6,−1,−1) 0 0 3 0 0 0 0 0 0
(+, 3, 0, 0) 0 0 0 3 0 0 0 0 0
(+, 0,−3, 3) 0 0 0 0 10 0 0 0 0
(−,−3, 6,−3) 0 0 0 0 0 3 0 0 0
(−,−3, 3, 3) 0 0 −63 −12 0 15 0 0 0
(+, 0,−5, 5) 0 0 0 0 0 0 3 0 0
(+, 4,−1, 0) 0 −18 0 0 0 0 6 0 0
(+,−3, 4, 4) 0 0 15 3 0 −3 0 0 0
(+, 3, 0,−2) 0 12 0 0 0 0 −54 0 0
(−,−1, 2,−1) 0 0 0 0 0 −243 0 0 0
(+, 0, 1, 1) 0 −144 0 0 0 0 −27 0 0
(−, 2, 0,−2) 0 0 0 0 0 0 0 90 0
(+, 1, 0,−1) 0 0 0 0 −810 0 −1875 0 0
(−, 1, 0,−1) 0 0 0 0 0 0 0 0 180
(+,−2,−2, 3) 0 0 105 18 0 −45 0 0 0
(−,−1, 3,−1) 0 0 −105 −12 0 −15 0 0 0
(+,−4,−1, 4) −8 −10 −56 −14 6 14 20 −8 2
(−,−2,−2, 5) 5 4 35 8 3 −8 7 −4 1
(−, 2,−1, 1) −80 80 −1190 −224 6 224 −10 −8 2
(−,−2,−1, 3) 0 0 0 0 −54 0 −150 72 −18
(−, 2, 0,−1) 180 360 1050 336 −54 −336 −270 72 −18
(+, 2, 0,−1) −360 −180 −2310 −504 −54 504 −90 72 −18
(−,−2, 2, 2) −40 −20 −112 −28 12 28 40 −1 4
(+, 2,−1,−1) 0 0 0 0 −108 −162 −150 −96 −6
(−, 2,−1,−2) 190 200 1120 280 −120 −280 −400 40 −40
(−, 0, 1, 0) 540 −540 9450 1980 −108 −2142 −720 −36 −36
(+, 0, 1, 0) −360 −1425 2520 387 −270 −630 −900 0 −90
(−,−1, 1, 1) 0 0 5103 972 0 −1215 0 0 0
(+, 1,−1,−1) −544 −560 1085 32 39 −194 370 8 13
(−, 1, 1, 0) 0 0 −315 −72 0 45 0 0 0

Table 2 Generators for ker
(

β
Q(t)
5

)S3
in Thm 1
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2.4.3 Functional equations for m = 7 and m = 6

a c
(7)
1 c

(7)
2 c

(6)
1 c

(6)
2 c

(6)
3 c

(6)
4

(−, 2,−2, 3) 50 126 6 0 0 0
(+, 0, 5, 0) −3 0 0 3 0 0
(−, 6,−1,−1) 0 3 0 0 3 0
(+, 3, 0, 0) 0 −35 0 0 0 5
(+, 0,−3, 3) 0 140 0 0 0 0
(−,−3, 6,−3) 0 7 0 0 21 4
(−,−3, 3, 3) 0 28 0 0 −84 −20
(+, 0,−5, 5) 4 0 0 0 0 0
(+, 4,−1, 0) 50 0 0 −30 0 0
(+,−3, 4, 4) 0 −3 0 0 12 3
(+, 3, 0,−2) −300 0 0 60 0 0
(−,−1, 2,−1) 0 −5103 0 0 −5103 −972
(+, 0, 1, 1) 900 0 0 −360 0 0
(−, 2, 0,−2) −2750 −4410 0 0 0 0
(+, 1, 0,−1) −62500 −102060 0 0 0 0
(−, 1, 0,−1) −68000 −112140 0 0 0 0
(+,−2,−2, 3) 0 −210 0 0 −420 −90
(−,−1, 3,−1) 0 −420 0 0 −420 −60
(+,−4,−1, 4) 50 70 8 50 224 70
(−,−2,−2, 5) 25 35 5 20 140 40
(−, 2,−1, 1) −1000 −140 −40 200 −2380 −560
(−,−2,−1, 3) −1000 −1386 −120 −600 −3402 −1008
(−, 2, 0,−1) −4500 −7140 180 1800 4200 1680
(+, 2, 0,−1) −4500 −6720 −360 −900 −9240 −2520
(−,−2, 2, 2) −125 −343 −20 −50 −224 −70
(+, 2,−1,−1) 3000 −420 20 600 0 360
(−, 2,−1,−2) −250 490 −190 −1000 −4480 −1400
(−, 0, 1, 0) 27000 −22680 540 −2700 37800 9900
(+, 0, 1, 0) 26625 −22995 −360 −7125 10080 1935
(−,−1, 1, 1) 0 −20412 0 0 20412 4860
(+, 1,−1,−1) 400 −20272 544 2800 −4340 −160
(−, 1, 1, 0) 0 630 0 0 −630 −180

Table 3 Generators for ker
(

β
Q(t)
7

)S3
and ker

(

β
Q(t)
6

)S3
in Thm 1
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2.5 Specializing to Ladders

A polylogarithmic ladder is a (finite) linear combination
∑

i niLim(αi) for
some algebraic number α, some positive integer m, and integers ni, which can
be written as a rational linear combination of logj(α) products of logarithms.
Lewin gave examples up to weight m = 9 (cf. [1], [18], Chapters 1–6). Cohen,
Lewin and Zagier were able to push the set-up in Zagier’s polylogarithm
conjecture [24] to produce an example of a ladder up to weight m = 16
(cf. [7]), but they had missed a relation which was eventually detected by
Bailey and Broadhurst, allowing the latter to “climb” one weight higher to
the current ladder record m = 17 (cf. [2], where they also give ladders for
other Salem numbers up to weight 13). The algebraic number α involved
in this ladder is a very distinguished one: it is the so-called Lehmer number
(the unique root of x10 +x9−x7−x6−x5−x4−x3 +x+1 of absolute value
> 1) which conjecturally has the smallest Mahler measure among algebraic
numbers.

The originally quite surprising occurrence of such ladders seems now well
understood in the context of Zagier’s polylogarithm conjecture (see, e.g., [24],
§7C and [25], §4).

Specific ladders

From the functional equations above, we can deduce two linearly independent
ladders of weight 7 and four such of weight 6.

With the notation of [1], we let ω be a root of the equation

x3 + x2 = 1.

Zagier’s conjecture implies that there should be at least 4 linearly indepen-
dent ladders for weight 7 for ω (cf. [7], §3, and [25], §4).

By substituting −ω for t in the two independent functional equations

in one variable stated in Table 3 in terms of the coefficients c
(7)
j = c

(7)
j (a)

(j = 1, 2), we arrive at the first proven ladder relations for weight 7 (we
divide the coefficients by a suitable power of 2):

Corollary 4 The following two ladder relations hold for the 7–logarithm:

L7

(

35397
256 [1] + 1475

8 [ω] − 166525
1024 [ω2] − 3825

16 [ω3] − 55025
512 [ω4] + 127 [ω5]

+34575
512 [ω6] − 5225

256 [ω8] + 475
16 [ω9] − 4117

1024 [ω10] − 1375
512 [ω12] − 75

8 [ω14]

−29
16 [ω15] − 475

1024 [ω18] − 133
512 [ω20] + 25

256 [ω28] + 29
1024 [ω30]

)

= 0 ,
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L7

(

194355
512 [1] + 6265

16 [ω] − 479395
1024 [ω2] − 2317

4 [ω3] − 146125
1024 [ω4] + 5005

16 [ω5]

+84455
512 [ω6] − 9 [ω7] − 6769

128 [ω8] + 497
16 [ω9] − 9835

1024 [ω10] − 5523
1024 [ω12] − 1551

128 [ω14]

−35
16 [ω15] − 497

1024 [ω18] − 245
1024 [ω20] + 65

512 [ω28] + 35
1024 [ω30]

)

= 0 .

We note that from the 2-variable equation for the 7-logarithm in [11] we do
not obtain an independent ladder, but instead a linear combination of these
two, viz.

L7

(

−476217
512 [1] − 10675

16 [ω] + 307825
256 [ω2] + 19565

16 [ω3] − 39725
1024 [ω4] − 10801

16 [ω5]

−90125
256 [ω6] + 45 [ω7] + 31115

256 [ω8] + 105
2 [ω9] + 5089

256 [ω10] + 8365
1024 [ω12] − 645

128 [ω14]

−7
4 [ω15] − 105

128 [ω18] − 637
1024 [ω20] + 25

512 [ω28] + 7
256 [ω30]

)

= 0 .

This seems to suggest that the 2-variable equation just mentioned may not
specialize (at least not directly) to the individual 1-variable equations for L7

in Table 3.

We can observe here a certain “correlation” of exponents and coefficients
which had already been detected by Lewin in connection with other ladders:
denoting the coefficient of [ωk] in any of the two combinations above by ck,
then one verifies, for p = 5 in the first combination and for p = 7 in the
second, that p | ck ⇔ p 6 | k , at least for k > 0.

Acknowledgments: We are grateful to Don Zagier for invaluable advice
and to David Broadhurst for comments.
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