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Abstract

We give a number of Ss-symmetric functional equations for poly-
logarithms up to weight 7. This allows to obtain the first proven ladder
relations, a la Lewin, of weight 6 and 7.

1 Motivation

Polylogarithms appear in many contexts within mathematical physics, like
in dimensional regularization expansions or when determining analytic solu-
tions of various Feynman integrals in quantum field theory; e.g. the dilog-
arithm appeared already in the famous paper by t’Hooft and Veltman [21],
and Ussyukina and Davydychev [29], eq. (30), encountered all m-logarithms
(n < m < 2n) in a closed expression for the “n-box” diagram (for a more
recent update cf. [28]), as well as in conformal field theory (the diloga-
rithm plays a crucial role in a conjecture of Nahm [27] characterizing ra-
tional CFTs) or when considering expansions of hypergeometric functions
(cf. e.g. [22]). Even more closely related to our results below, (multiple)
polylogarithms and their special values have occurred, among many others,
in various ways in work of Broadhurst and Kreimer (e.g. [6]), occasionally
even in connection with ladder relations (cf. [5]) as defined below. Recently,
when calculating the two-loop hexagon Wilson loop in N = 4 supersymmet-
ric Yang-Mills theory, Del Duca, Duhr and Smirnov [10] were led to a long
expression in polylogarithms that has been subsequently enormously sim-
plified by Goncharov, Spradlin, Vergu and Volovich [20] using Goncharov’s
notion of a symbol attached to a (multiple) polylogarithm (the first combina-
torial description being given, under the name @"-invariant, in [19], §4.4).
Subsequent papers, especially in particle physics, by many more authors
(e.g. [12], [13], [17], [11], [7], [8]) have studied similar expressions in various
contexts. While the symbols somehow aim to circumvent having to apply



functional equations, it seems still conceivable that in these contexts insight
into functional equations for the polylogarithms involved might be useful to
reduce the ensuing—typically very complicated—expressions considerably.

Functional equations of polylogarithms play also a pivotal role in a more
abstract context when trying to define an explicit version of the (odd index)
algebraic K-groups Kop,—1(F) of a number field F. The latter can conjec-
turally be written as a subquotient of the free abelian group on F' (pioneered
by Bloch [3] in the dilogarithm case and generalized by Zagier [31] and by
Goncharov [18] for higher m), and the group of relations in that description
is expected to encode all the functional equations of the m-logarithm.

In 1840, Kummer [23] gave non-trivial functional equations for polylog-
arithms Liy,(2) = Y, ~q 2"/n™ up to weight m = 5, where results had pre-
viously been known only up to m = 3. He mentioned “peculiar difficulties”
(“eigenthiimliche Schwierigkeiten”) that arise when trying to extend the re-
sults to m > 5. In fact, Wechsung proved [30] that the type of functional
equation that Kummer had found does not extend to m > 5.

In the eighties, Lewin and his coauthors ([1], [26]) tried several ap-
proaches to conquer what he called the “trans-Kummer region” m > 5
(cf. e.g. [1], p.11), and they indeed found new functional equations, but all
results were ultimately confined to the same range m < 5. On the way,
Lewin discovered interesting special relations of the form j n;Lipm(a?) =0
(nj € Q), for certain algebraic numbers «. He realized that such relations,
which he dubbed “ladders”, were consequences of a certain intrinsic property
of such an «, viz. the property that it satisfies many different “cyclotomic
relations” (loc.cit.), which are equations of the form [] (1 — ") = +al¥
where r, v, and N are integers. This insight enabled him to conjecture cer-
tain ladders even up to weight m = 9 (he used the terminology order in
place of the now more common notion of weight). By cleverly specializing
and combining old and new functional equations, he was able to prove quite
a number of his conjectured ladders, but was again confined to weights < 5.

The first functional equations for m = 6 and m = 7 were constructed in
[14] and [16], and no examples of higher weight are known. In this note we
describe a collection of functional equations for polylogarithms up to this
weight that have a very specific symmetry: the arguments (in one variable
t) involve only the three factors ¢, 1 —¢ and 1 —¢(1 —¢) (with roots 0, 1 and
the primitive sixth roots of unity, respectively), and each given equation is
invariant under the action of the symmetric group Ss.

As a by-product, the equations for weight 6 and 7 allow, after special-
ization, to prove the first ladders in that range.



2 Zagier’s criterion for functional equations of poly-
logarithms

In his seminal papers [31] and [32], Zagier described a criterion for functional
equations for polylogarithms. More precisely, he first gave a single-valued
function Ly, (2) = R ( ZZZOI 22?’“ log” |z| Lip—(2)) (denoted by Pp(z) in
[31]) attached to the (multivalued) function Liy,(z), where R, denotes the
real part for m odd and the imaginary part for m even, and the By de-
note the Bernoulli numbers. This function now satisfies “clean” functional
equations, i.e. without invoking products of lower weight polylogarithms as
occur typically—and in abundance—for Li,,-equations (cf. e.g. almost any
functional equation in [24]). Furthermore, one can give a very useful char-
acterization for them which we describe in the following subsection.

2.1 Higher Bloch conditions
For a field F, let 35 be the map

571;1 . Z[F] SN ®m—2F>< ®/\2ij
defined as 3% ([0]) = 8L ([1]) = 0, and on generators [z] (z # 0, 1) as follows:
Bha) =2® - ©ze (zA(l-1)).

For m = 2, this map was related to the dilogarithm in Bloch’s seminal paper
[3].

We say that a combination & € Z[F| satisfies the m-th higher Bloch
condition simply if it lies in ker 32 . This fits very well with the above one-
valued function £, (2):

Theorem 1 (Zagier, [31]) Let F be a subfield of C(t) then for £ € Z[F] we
have
€ ckerBl — L,,(0(£)) = constant,

for any embedding o : F — C(t).
Here we extend the definition of £,, as well as of o to all of Z[F] by

linearity, i.e.
Lo a( ; nz[xz]> = ; niLm (a(xz)) .

In this way, the problem of finding functional equations with given ar-
guments z; is reduced to a problem in linear algebra and the hard part is to
find a suitable list of potentially good arguments.



2.2 A rich collection of arguments

A particularly good collection of arguments for functional equations (in one
variable t) turns out to be given by

(£t (1 —t)2(1—t(1—1¢)" | a; € Z}.

It is convenient to introduce new variables

—t (-1

wlt)=1ag 0=y wO= 1oy

and then to rewrite the above expressions as
{uy () ug(t)*?us(t)*® | a; € Z},

for suitable «a;, since then a further Ss—symmetry becomes apparent. The
two involutory automorphisms induced by ¢ — % and t — 1—t, respectively,
generate this Sz3—action on the set of those arguments by simply permuting
the exponents. Any of the arguments can hence be encoded by a triple of
exponents, together with a sign. There are many functional equations for
m < 7, in the exponent range |o;| < 6, which carry the above symmetry.
All the ones that were found have arguments chosen from the following list
A which represents 32 Sz-orbits in Z[Q(t)]:

A={(-, 2,-2,3),(+, 0, 5, 0),(—, 6,—1,-1),(+, 3, 0, 0),
(+, 0,-3,3), (—,—3, 6,-3),(—,—3, 3, 3),(+, 0,-5, 5),
(+, 4,-1,0), (+,-3, 4, 4),(+, 3, 0,—-2), (—,—1, 2,—1),
(+, 0, 1,1),(—, 2, 0,-2),(+, 1, 0,—1),(—, 1, 0,—1),
(+,-2,-2,3), (—,—1, 3,-1), (+,—4,—1, 4), (—,—2,-2, 5),
(—, 2,-1,1), (-,—2,—1, 3),(—, 2, 0,—1),(+, 2, 0,—1),
(——2, 2,2), (+, 2,—1,-1),(—, 2,-1,-2),(—, 0, 1, 0),
(+, 0, 1,0),(—,—1, 1, 1),(+, 1,-1,-1),(—, 1, 1, 0) }.

The factors of 1 —z where x runs through those arguments can be found
in the Ss-orbits of the following list (where T'=1—t(1 — t))

1—t t(1—1t)?
1
T T

1 t t2(1 —t)
{t, T, 1+t,1+t(1—t),1+ — ol =2 }.

1
T’+

71_



2.3 The functional equations

Due to the symmetry just explained we focus on Ss-invariant functional
equations and introduce the shorthand

3

[(i,al,ag,ag)] = Z [:tHui(t)%m} .

o€S3 =1

Using this notation, the functional equations can be given in concise form,
with coefficients taken from the tables below. We first state the results for
combinations satisfying the higher Bloch conditions.

(320)°

Theorem 2 Form € N, let k,;, = ker * be the space of S3—invariant

elements in the kernel of the map 52“). Then we have the following bounds
on the ranks of Kk, for m =4,5,6,7.

m 4 5 6 7
rank K, > 11 >9 >4 >2

The corresponding elements are given by

S ™ (a)fa],

acA

with the coefficients cgm) = {cg-m)(a)}aeA as in Tables 1-3 below.

The proof that the given elements are indeed in the kernel of ﬂﬁ; is a
tedious and mechanical task, which is best left to a computer. One de-
termines all the factors occurring in a factorization of x and 1 — z, where
z runs through all the corresponding arguments in an equation and then
checks that all the terms in the ensuing image under 32 do cancel. Using
the S3-symmetry involved, one can cut down on the actual calculations, but
they are still too cumbersome to give in detail.

Corollary 3 There are at least 2 (resp., 4, 9, 11) linearly independent Ss-
symmetric functional equations for Ly (resp., Lg, L5, L4) with arguments
encoded (up to permutation) by A.

We remark that the two functional equations for £7 do not seem to follow
individually from the 2-variable equation for £7 given in [16], but the linear
combination of the two which cancels the constant terms is a specialization
of that equation.



Example. We spell out some equations corresponding to the columns
of Table 1. The last one, c(ﬁ), gives

2[(+, 2,-1,-1)] +6[(—, 0, 1, 0)] + 3[(+, 1,—1,-1)] € ker 8}’

for F' = Q(t). This is equivalent to the 9-term equation for £4 cited in [32],
§7. The second-to-last column gives another element in that kernel,

[(-,-2,2,2)] + 4[(-,2,-1,-2)] — 6[(—,0,1,0)]
- 12[(+,0,1,0)] — 2[(+,1,-1,-1)].

Explicitly, but with less apparent symmetry, this can be written as

(e~ g) + &= el )
1-8)T tT T
w1 (e -5 + e gh) + alg)

+z4((1_Tt)3) + L(1-0)T) + Li(1T))

(e ) + a(z) + 2 ()
_24(£4<t(1T_t)> N £4<_%) + @(—%))

() + £4((1_Tt)2) +LyT)) =0,

where T'=1 —t(1 — t) as before.
(

The constant of Theorem 1 is zero for each ij) for even m, while for
m = 5 or 7 the constants can be obtained by specialising ¢ to 1, say, and
turn out to be of the form /\(cgm))g‘(m) with /\(cgm)) € Q and ¢((m) =
L,(1) denoting the corresponding Riemann zeta value. The corresponding
values of A (=0,0,0,0,1662,378,4230, —126 and 414 for m = 5 and —%
and —Mi& for m = 7, respectively) are given in the last lines of Tables
2 and 3, respectively. Note that certain a € A, indicated by a gray font
in Tables 1 and 3, occur with non-trivial coefficient only for odd m as the
inversion relation annihilates the sum over the corresponding orbit for even
m. Moreover, in order to display how the order of the columns has been
chosen we indicate the first non-zero value in each column of Tables 1 and 2
in bold face.



2.4 The tables

2.4.1 Functional equations for m =4
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Table 1 Generators for ker (ﬂ?(t)) ® in Thm 1



2.4.2 Functional equations for m =5
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Table 2 Generators and constant A



(6)

(6)

(7)

(7)

a Cl 62 C3 C4 Cl 02

(=, 2,-2, 3) 6 0 0 0 50 126
(+, 0, 5, 0) 0 3 0 0 -3 0
(-, 6,—1,—1) 0 0 3 0 0 3
(+, 3, 0, 0) 0 0 0 5 0 -35
(+, 0,3, 3) 0 0 0 0 0 140
(-,—3, 6,—3) 0 0 21 4 0 7
(—,—3, 3, 3) 0 0 -8  —20 0 28
(+, 0,5, 5) 0 0 0 0 4 0
(+, 4,1, 0) 0 —30 0 0 50 0
(+,-3, 4, 4) 0 0 12 3 0 -3
(+, 3, 0,—2) 0 60 0 0 —300 0
(——1, 2,-1) 0 0 —5103 —972 0 —5103
(+, 0, 1, 1) 0 —360 0 0 900 0
(=, 2, 0,—2) 0 0 0 0 —2750  —4410
(+, 1, 0,—1) 0 0 0 0 —62500 —102060
(=, 1, 0,—1) 0 0 0 0 —68000 —112140
(+,-2,—2, 3) 0 0 —420 —90 0 —210
(—,—1, 3,—1) 0 0 —420 —60 0 —420
(+,—4,—1, 4) 8 50 224 70 50 70
(—,—2,—2, 5) 5 20 140 40 25 35
(=, 2,-1, 1) —40 200 —2380 —560 —1000 —140
(-,—2,—1, 3) | —120 —600 —3402 —1008 —~1000  —1386
(=, 2, 0,-1) 180 1800 4200 1680 —4500  —7140
(+, 2, 0,—1) | —360 —900 —9240 —2520 —4500  —6720
(—,—2, 2, 2) 20  -50 —224  —70 ~125 —343
(+, 2,—-1,-1) 20 600 0 360 3000 —420
(=, 2,-1,-2) | —190 —1000 —4480 —1400 —250 490
(=, 0, 1, 0) 540 —2700 37800 9900 27000  —22680
(+, 0, 1, 0) | —360 —7125 10080 1935 26625  —22995
(——1, 1, 1) 0 0 20412 4860 0 —20412
(+, 1,-1,-1) 544 2800 —4340 —160 400 —20272
(-, 1, 1, 0) 0 0 —630 —180 0 630

25461 54495

A 0 0 0 0 =

Table 3 Generators for ker (/BS (t))83 and ker (,3? (t))s3 in Thm 1



2.5 Specializing to Ladders

A polylogarithmic ladder is a (finite) linear combination Y, n;Lip,(a’) for
some algebraic number «, some positive integer m, and integers n;, which can
be written as a rational linear combination of log? (o) products of logarithms.
Lewin gave examples up to weight m = 9 (cf. [1], [25], Chapters 1-6). Cohen,
Lewin and Zagier were able to push the set-up in Zagier’s polylogarithm
conjecture [31] to produce an example of a ladder up to weight m = 16
(cf. ]9]), but they had missed a relation which was eventually detected by
Bailey and Broadhurst, allowing the latter to “climb” one weight higher to
the current ladder record m = 17 (cf. [2], where they also give ladders for
other Salem numbers up to weight 13). The algebraic number « involved
in this ladder is a very distinguished one: it is the so-called Lehmer number
(the unique root of 20 4+ 2% — 27 — 26 — 2% — 2% — 23 + 2 + 1 of absolute value
> 1) which conjecturally has the smallest Mahler measure among algebraic
numbers.

The originally quite surprising occurrence of such ladders seems now well
understood in the context of Zagier’s polylogarithm conjecture (see, e.g., [31],
§7C and [32], §4).

New ladders of weight 6 and 7

From the functional equations above, we can deduce four linearly indepen-
dent ladders of weight 6 and two of weight 7. We give the latter here.
With the notation of [1], we let w be a root of the equation

2+ 2% =1.

Zagier’s conjecture implies that there should be at least 4 linearly indepen-
dent ladders for weight 7 for w (cf. [9], §3, and [32], §4).

By substituting —w for ¢ in the two independent functional equations
in one variable stated in Table 3 in terms of the coefficients 05-7) = {05-7)((1)}
(j = 1,2), we arrive at the first proven ladder relations for weight 7. We
have divided the coefficients by a suitable power of 2 for ease of reading.

Corollary 4 Let o and 3 denote the following two ladders

= USRI+ A ] R 7] S ) R ) 127 7]
34575 [1] — 228 (8] + 472 o] — 43T (1] — B %] - B[]
_% [w15] o 1%% [w18] - % [w20] + % [u}28] 4 1(2)% [u)30]

10



and

2 3 5
ﬁ —_ 195413255[1] + 6%25 [ ] _ 4;8;25 [ ] o 2?2117 [ } _ 1318;35 [ ] 4 5(1)25 [w ]
84455 1, 6 7 6769 1, .8 4971 9 9835 , .10 5523 1, 12 1551 1, 14
+512 [w]_g[ ] 128[ ]+T6[ ] 1024[ ] 1024[ }_128[ ]
357, 15 497 1 18 245 1, 20 65 1 28 30
=36 Wl = fo21 W] = qoop W+ 55 w }4’1024[”]

Then
Lr(a) = L7(8) =0

We note that from the 2-variable equation for the 7-logarithm in [16] we do
not obtain an independent ladder, but instead a linear combination of these
two, viz.

£7<_476217[1] _ 10675 1] 4 307825 2] 4 19565 1 3] 39725 | 4] 10801 [w5]

512 16 256 16 1024 16
_92;:)(235 [(UG] + 45[ ] + 3%;(155 [WS] + 1g5 [ ] + 5205869 [ ] + ?ggi [w12] o %g [w14]
15 18 20 28 30
~1 ") - 18 ") - 855 ™) + &5 )+ 3 7)) = o.

This seems to suggest that the 2-variable equation just mentioned may not
specialize (at least not directly) to the individual 1-variable equations for L7
in Table 3.

We can corroborate here a certain “correlation” of exponents and coeffi-
cients which had already been observed by Lewin in connection with other
ladders: denoting by az and £ the coefficient of [w¥] in the ladders o and
0 given above, we find for £ > 0 that

5|ak<:>5)(k, 7|/8k<:>7/rk‘

Acknowledgments: We are grateful to Don Zagier for invaluable advice
and to David Broadhurst and an unanonymous referee for useful comments.
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