
Some Computations in Weight 4 Motivic ComplexesHerbert GanglAbstract We perform computations using the candidates for motivic cohomology as proposed by Goncharov,thereby giving evidence for his general conjecture about motivic complexes which would imply (among others)Zagier's conjecture on polylogarithms and values of Dedekind zeta functions. As a by-product, we obtain a familyof functional equations for the 4-logarithm.1. Motivation. One of the important problems in algebraic K-theory is to �nd anexplicit description of higher K-groups in terms of generators and relations.After Bloch's pioneering work [Bl] for the case of K3(F ), F a number �eld, Zagier [Z1]gave conjectural candidates for all K2m�1(F )
Q (for number �elds, m � 2). Goncharov[G1] went further and proposed explicit candidates for motivic complexes whose cohomol-ogy groups for any �eld should coincide (at least rationally) with appropriate pieces ofK-groups. These complexes not only led him to a stronger (and more conceptual) conjec-ture, but they also enabled him to prove a consequence of Zagier's conjecture for m = 3to the e�ect that �F (3) for any number �eld F is expressible in terms of modi�ed triloga-rithms L3(xi) (see below) where the arguments xi lie in F (the corresponding result form = 2 had been shown earlier by Suslin [Su], and a weaker version also by Zagier [Z2]).The fact that Goncharov's conjectures are stronger than Zagier's original one canbe seen already in the case m = 4 and F = Q, where K7(Q) 
 Q = 0 and Zagier'sconjecture is true for trivial reasons: the modi�ed 4-logarithm is identically zero on thereal line. Nevertheless the corresponding conjectured property for Goncharov's motiviccomplex B(F ; 4)� (see below), namely being exact in degree 2, constitutes a non-trivialstatement. This also gives some evidence for Zagier's conjecture.Goncharov suggested to investigate the latter statement which should give evidencein favor of his conjecture and is outlined as \key question" below. Roughly, it claims thatthe image of certain degenerate con�gurations (of 8 points in 3-space) should coincide withthe image of generic con�gurations.In order to state the problem formally, we need to introduce some notation. Let Fbe a �eld. Let Z[F�] be the free abelian group generated by the elements of F� . In [G2]Goncharov constructed certain subgroupsRn(F ) � Z[F�] :In particular the modi�ed n-logarithm function (cf. [Z1])Ln(z) = <=� n�1Xj=0 2j Bjj! logjjzjLin�j(z)�; (n odd)(n even) n � 2 ;1



annihilates the group Rn(C) . HereLin(z) = Z z0 Lin�1(z) d log z ; Li1(z) = � log(1� z) ;is the classical polylogarithm function and Bj the j-th Bernoulli number. SetBn(F ) = Z[F�]Rn(F ) :One can show that Rn(F ) belongs to the kernel of the map�n : Z[F�]! Bn�1(F )
 F� ;given on generators by �n : fxg 7! fxgn�1 
 x ; (n > 2) , and by �2 : fxg 7! (1� x) ^ xfor n = 2 . Consider the following cohomological complex (cf. [G1], [G2])B(F ; 4)� : B4(F ) �(1)�! B3(F )
 F� �(2)�! B2(F )
^ 2 F� �(3)�! ^ 4 F�where B4(F ) is placed in degree 1, and the di�erentials �(i) are given on generators by�(1)fxg4 7! fxg3 
 x ;�(2) : fxg3 
 y 7! fxg2 
 x ^ y ;�(3) : fxg2 
 y ^ z 7! (1� x) ^ x ^ y ^ z :It was conjectured in [G1], [G2] thatHi�B(F ; 4)��Q = gr4 K8�i(F )Q : (�)It follows from the results of [G2]{[G4] and standard conjectures on mixed motives thatone should have a weight 4 motivic complex of the following shape:G(F ; 4)� : G4(F ) �(1)�! B3(F )
 F� �(2)�! B2(F )
^ 2 F� �(3)�! ^ 4 F�where G4(F ) is a certain abelian group containing the group B4(F ) and is generated bycertain con�gurations of 8 points in P3(F ) (for details, cf. [G4], s.4-5).Key question. Is it true that �(1)B4(F )Q ?= �(1)G4(F )Q , i.e. do the degeneratecon�gurations as above already generate the image of all con�gurations?In this note we present the results of computer experiments for F = Q supporting apositive answer to the latter question.2. The evidence. Notice that for F = Q we have gr4 K8�i(Q)Q = 0 modulotorsion for all i . Since we also expect Hi(G(Q; 4)�) = gr4 K8�i(Q) , any � 2 ker �(2)2



should belong to �(1)G4(Q) . Therefore, if B4(Q)Q = G4(Q)Q we should be able to writeany � 2 ker �(2) as the boundary of an element in B4(Q) .In the following we consider two types of non-trivial elements in ker �(2) .a) The �rst type consists of elements of the formf1g3 
 q ; q 2 Q�(note that f1g2 = 0 in B2(Q)). We show that they are indeed bounded by elements inB4(Q) , if the primes which have non-trivial valuation at q are � 59 .We can restrict ourselves to the case of a prime number p , and we have been able tocheck the above for p � 59 (we only give examples for p � 11 , though). We can proceedby induction, showing �rst that f1g3 
 p� 2 Image(�(1)) for p� in some small set P, andthen it su�ces to show that f1g3 
 p 2 Image(�(1)) modulo the subgroup generated byf1g3 
 p� where p� 2 P . For 11 � p � 59 it was enough to take P � f2; 3; 5; 7g. Wealways compute modulo torsion in Q�.b) The second type of evidence comes from the following considerations (also suggestedby Goncharov): in [G1] was given, for any �eld F , an element �(x; y) (given below, s.5.)in the di�erence kernel of the following map�B3(F )
 F���^ 2 B2(F ) �(2)��(0)�! B2(F )
^ 2 F� ;where �(0) is de�ned on generators as fxg2^fyg2 7! fyg2^(1�x)^x�fxg2^(1�y)^y . Forany linear combination � = Pi ni[xi] 2 Z[F�] we can form �(�; y) (extended linearly),and if � corresponds to a functional equation of the dilogarithm, it is zero in B2(F ) , andthe projection of �(�; y) to the �rst summand B3(F )
 F� lies in the kernel of �(2) (theprojection to the second giving zero) and should be the boundary of an element in B4(F ) .We will construct those \bounding" elements for in�nitely many functional equations� (in one variable). We have performed similar calculations for certain Q�specializationsof the �ve term relation which always could be bounded. We have not been able to obtainthe corresponding result for the general �ve term relation, which should enable one tode�ne B4(F ) explicitly.3. How to compute. We take �nitely many elements [xi] in Z[Q�] and computetheir image under the map �4 : Z[Q�] �! Sym2(Q�) 
 V2Q� given on generators by[x] 7! x
x
x^ (1�x) . The images actually lie in a �nitely generated subgroup, and thecomputer �nds elements in ker �4 by looking for linear dependences among the images.We expect �(1)(�) to lie in f1g3
Q� as indicated above, and this is exactly what we �nd.For each valuation v : Q� ! Z let �v�(1)(�) denote the following homomorphism:�v : B3(Q)
Q� �! B3(Q)fxg3 
 y 7! �v(y) � fxg3 :We have checked numerically that �v�(1)(�) for each valuation v : Q� ! Z is mappedunder the trilogarithm map to a rational multiple of �(3) (the denominator of this rational3



multiple divides 12). This numerical check could be made rigorous by deriving �v�(1)(�)from specializations of functional equations.If, for p as above, this rational multiple is non{zero (this is proved(!) numerically),we are done.4. Examples (�rst type). 1) It is an easy exercise to show that f1g3 
 2 2Image(�(1)) (use fxg3 = f1=xg3 and fxg3 + f1 � xg3 + f1 � 1=xg3 = f1g3 to deduce�(1)([2]) = 78 f1g3 
 2 ).2) For p = 3 we consider the following linear combination:� = 4[1=3] + [1=4] + 8[2=3] + 2[3=4] :We compute�(1)(�) = 4(f1=3g3 
 3�1) + f1=4g3 
 4�1+ 8(f2=3g3 
 2=3) + 2(f3=4g3 
 3=4)= �� 2f1=4g3 + 8f2=3g3 � 4f3=4g3�
 2 + �� 4f1=3g3 � 8f2=3g3 + 2f3=4g3�
 3= 73 f1g3 
 2� 263 f1g3 
 3 :An even simpler element is � = 2[3]� [�3] ;for which �(1)(�) = 136 f1g3 
 3 :3) For p > 3 the preimages found become more and more complicated. We list ex-amples for p = 5; 7; 11. The data for the larger p can be viewed on the webpagehttp://www.exp-math.uni-essen.de/�herbert/�(1)�� 9[1=3]� 3[1=4] + 1[1=6] + 1[2=3] + 2[2=5]� 4[3=4]� 14[3=5] + 1[3=8]� 10[4=5] + 2[4=9] + 2[5=6] + 13[5=8] + 6[5=9]� 6[8=9] + 8[9=10] + 3[15=16]� 2[16=25]� 3[24=25]� 1[25=27] + 1[80=81]� 1[125=128] �= �2593 f1g3 
 2 + 1243 f1g3 
 5 ;�(1)� 4[1=3]� 10[1=4] + 86[1=7]� 22[1=8] + 4[1=9]� 5[1=28]� 4[1=49] + 2[1=64]� 2[2=9]� 6[3=4] + 70[3=7] + 25[4=7] + 20[6=7] + 24[7=8] + 4[7=9] + 2[7=16]+ 2[8=9] + 15[9=16]� 2[27=28] + 2[32=81] + 2[48=49] + 1[49=81] �= 634 f1g3 
 2 + 2083 f1g3 
 3� 114f1g3 
 7 ;4



�(1)� 12[1=3] + 2[1=4]� 12[1=5] + 2[1=6] + 1[1=9] + 17[1=11]� 6[1=12]� 4[1=16]+ 4[1=25] + 5[1=45]� 1[1=81]� 1[1=100]� 3[1=121]� 1[1=243]� 2[2=3] + 26[2=11]+ 8[2=27]� 4[3=4]� 2[3=5] + 1[3=8] + 30[3=11]� 5[3=25] + 1[3=128] + 4[4=5]+ 10[4=15] + 4[5=6]� 1[5=8]� 4[5=9] + 30[5=11] + 4[5=16]� 4[5=27] + 3[5=32]+ 43[6=11] + 7[8=9] + 38[8=11] + 14[8=33] + 6[9=10] + 41[9=11]� 11[9=20] + 2[9=25]� 2[9=64] + 48[10=11]� 19[11=12]� 44[11=15]� 23[11=16]� 41[11=20]� 4[11=27]� 16[11=36]� 7[11=75]� 20[15=16]� 10[16=25] + 5[16=27]� 30[22=25]� 35[22=27]� 21[24=25]� 8[25=27] + 28[25=33]� 2[25=36] + 2[25=121] + 1[25=729] + 8[27=32]� 9[32=33] + 2[32=275]� 6[40=121]� 33[44=45] + 14[54=55] + 7[55=64]� 2[64=75]� 5[81=121]� 7[96=121]� 9[99=100] + 1[120=121] + 14[121=125]� 4[125=128]+ 1[135=256] + 6[242=243] + 1[704=729] �= 326912 f1g3 
 2 + 9103 f1g3 
 3 + 8683 f1g3 
 5� 13303 f1g3 
 11:5. Examples (second type).Let p(t) be the algebraic function de�ned by the equationf(t; p(t)) = 0 ; wheref(t; x) = xa(1� x)b � t ; a; b 2 Z :For the non-critical points t 2 C let fpi(t)gi be locally analytic branches of p(t).Note that the sum Pi [pi(t)] is well{de�ned globally as a divisor on Z[OC ]G whereOC denotes the ring of locally analytic functions on the curve C with de�ning equationf(t; x) = 0 and G is the symmetric group on deg(f) elements.We deduce 1� pi = �Qi p1=bipa=bi ; 1� 1pi = �Qi p1=bip(a+b)=bi :Let c be de�ned by a+b+c = 0 and denote � =Pi[pi(t)] 2 Z[C(t)]. Notice that � 2 ker �2(up to 2�torsion).The element �(x; y) (cf. 2.b) was de�ned by Goncharov in [G2] via��(x; y) =�f1� xg3 + f1� yg3 +�1� x�11� y�1�3 ��1� x1� y�3�
 xy+ fxy g3 
 1� y1� x � fxg3 
 (1� y) + fyg3 
 (1� x) + fxg2 ^ fyg2 :Now we can compute (note that for an element � 2 R2(F ) the contributions fromV2 B2(F )cancel) 5



��(�; y) =Xi �f1� pig3 + f1� yg3 + �1� p�1i1� y�1�3 � �1� pi1� y �3�
 piy+Xi fpiy g3 
 1� y1� pi �Xi fpig3 
 (1� y) +Xi fyg3 
 (1� pi)=Xi �f1� pig3 + f1� yg3 + �1� p�1i1� y�1�3 � �1� pi1� y �3+ ab fpiy g3 � ab fyg3 � 1bXj fpjy g3 + a+ bb fyg3�
 pi+Xi �� f1� pig3 � f1� yg3 � �1� p�1i1� y�1�3 + �1� pi1� y �3�
 y+Xi �fpiy g3 � fpig3�
 (1� y) :If we use functional equations for the 3{logarithm we �nd that ��(�; y) is equal toXi � 1abc� Qj pjya(1� y)b�3+ 1aXj f1� pj1� y g3 + 1c Xj f1� y�11� p�1j g3 + 1b Xj f ypj g3 � 1aXj f1� pjg3 + fy � 1y g3� f1� pi1� y g3 + f1� y�11� p�1i g3 � 1b Xj f ypj g3 + f1� pig3 + f1� yg3+ ab f ypi g3 + fyg3�
 pi+ �� 1bc� Qj pjya(1� y)b�3 � (a+ b)f1� yg3�Xj f1� pj1� y g3 � ac Xj f1� y�11� p�1j g3 � ab Xj f ypj g3 +Xj f1� pjg3 � afy � 1y g3+Xj f1� pj1� y g3 �Xj f1� y�11� p�1j g3 �Xj f1� pjg3�
 y+ �� 1ac� Qj pjya(1� y)b�3� baXj f1� pj1� y g3 � bcXj f1� y�11� p�1j g3 �Xj f ypj g3 +Xj fpjg3 � bfy � 1y g3�Xj f ypj g3 +Xj fpjg3�
 (1� y) :6



Here the functional equations for the trilogarithm are given as the �rst 2 lines of each ofthe 3 large brackets in the previous expression. But the last element is the boundary ofthe following one:�a;b(t; y) = 1abc� Qj pjya(1� y)b�4 + baXj f1� pj1� y g4 � bcXj f1� y�11� p�1j g4 � ab Xj f ypj g4� baXj f1� pjg4 � bfy � 1y g4 � cfyg4 :Remark. Zagier initially gave the corresponding element for � = [x]+[1=x], more precisely:�(�; y) = d1(�A(x; y)), whereA(x; y) =12�x(1� y)2y(1� x)2	4 � 12fxyg4 + 12�xy 	4 + 2�1� x1� y 	4 + 2�y(1� x)x(1� y)	4 + 2� x� 1x(1� y)	4+ 2�y(1� x)y � 1 	4 � fyg4 � 2f1� xg4 + 2f1� yg4 � 2�x� 1x 	4 + 2�y � 1y 	4 :6. Corollary. There exists a family of functional equations in 2 variables for the4-logarithm of the following form: let fpj = pj(t)g and fqk = qk(u)g be the set of roots ofC1 : xa(1 � x)b = t and C2 : xd(1 � x)e = u, respectively (a; b; d; e 2 Z, a + b + c = 0 =d+ e+ f). Denote D = bd� ae = ce� bf . Then L4 vanishes on the following element inZ[OX ] where X is the product of the two curves C1 and C2:1abcDXk � tqak(1� qk)b � + 1def DXj � updj (1� pj)e �� 1adXj;k �1� qk1� pj � � 1cf Xj;k �1� p�1j1� q�1k � � 1beXj;k �pjqk �+ 1f Xk �qk � 1qk � � 1c Xj �pj � 1pj � :Proof. Write �(Pj [pj ];Pk[qk]) in two di�erent ways:Xk �(Pj [pj ]; qk) = �(Pj [pj ];Pk[qk]) =Xj �(pj ;Pk[qk]) :Each of the summands on the left and right hand side can be expressed as the boundaryof some element in Z[OX ], e.g. (using the anticommutativity of �):Xk �(Pj[pj ]; qk) = �Xk d1��a;b(t; qk)� ;7
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