Some Computations in Weight 4 Motivic Complexes
Herbert Gangl

Abstract We perform computations using the candidates for motivic cohomology as proposed by Goncharov,
thereby giving evidence for his general conjecture about motivic complexes which would imply (among others)
Zagier’s conjecture on polylogarithms and values of Dedekind zeta functions. As a by-product, we obtain a family

of functional equations for the 4-logarithm.

1. Motivation. One of the important problems in algebraic K-theory is to find an
explicit description of higher K-groups in terms of generators and relations.

After Bloch’s pioneering work [Bl] for the case of K3(F'), F' a number field, Zagier [Z1]
gave conjectural candidates for all Ko, 1(F) ® Q (for number fields, m > 2). Goncharov
[G1] went further and proposed explicit candidates for motivic complexes whose cohomol-
ogy groups for any field should coincide (at least rationally) with appropriate pieces of
K-groups. These complexes not only led him to a stronger (and more conceptual) conjec-
ture, but they also enabled him to prove a consequence of Zagier’s conjecture for m = 3
to the effect that (#(3) for any number field F is expressible in terms of modified triloga-
rithms L3(x;) (see below) where the arguments z; lie in F' (the corresponding result for
m = 2 had been shown earlier by Suslin [Su], and a weaker version also by Zagier [Z2]).

The fact that Goncharov’s conjectures are stronger than Zagier’s original one can
be seen already in the case m = 4 and F = Q, where K;(Q) ® Q = 0 and Zagier’s
conjecture is true for trivial reasons: the modified 4-logarithm is identically zero on the
real line. Nevertheless the corresponding conjectured property for Goncharov’s motivic
complex B(F;4)* (see below), namely being exact in degree 2, constitutes a non-trivial
statement. This also gives some evidence for Zagier’s conjecture.

Goncharov suggested to investigate the latter statement which should give evidence
in favor of his conjecture and is outlined as “key question” below. Roughly, it claims that
the image of certain degenerate configurations (of 8 points in 3-space) should coincide with
the image of generic configurations.

In order to state the problem formally, we need to introduce some notation. Let F
be a field. Let Z[F*] be the free abelian group generated by the elements of F'* . In [G2]
Goncharov constructed certain subgroups

R (F) C Z[F*].

In particular the modified n-logarithm function (cf. [Z1])
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annihilates the group R, (C). Here

Lin(2) = / Lin_1(z)dlog z,  Lis(2) = —log(1 — ),
0

is the classical polylogarithm function and B; the j-th Bernoulli number. Set

One can show that R, (F) belongs to the kernel of the map
On: Z[F*]— B,_1(F)® F*,

given on generators by 0, : {z} — {z},_1®z, (n>2),andby d:{z}— (1—2)Ax
for n = 2. Consider the following cohomological complex (cf. [G1], [G2])

(1) (2) (3)
B(F;4)°: B4(F) LI Bs(F) ® F* LA Bg(F)@/\QFX LA /\4F><

where B4(F) is placed in degree 1, and the differentials 6 are given on generators by
(5(1){.’17}4 — {.’17}3 Rz,

0 {zls @y {z} @z Ay,
G {za@yAz—= 1—z)AzAyAz.
It was conjectured in [G1], [G2] that

Hi(B(F;4)°)Q =gry Ks_i(F)q . (*)

It follows from the results of [G2]-[G4] and standard conjectures on mixed motives that
one should have a weight 4 motivic complex of the following shape:
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where G4(F) is a certain abelian group containing the group B4(F) and is generated by
certain configurations of 8 points in P3(F) (for details, cf. [G4], 5.4-5).
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Key question. Is it true that 6(YB4(F)q ;WGZ;(F)Q, i.e. do the degenerate
configurations as above already generate the image of all configurations?

In this note we present the results of computer experiments for F' = Q supporting a
positive answer to the latter question.

2. The evidence. Notice that for F' =
torsion for all i. Since we also expect H*(G(Q

Q we have gr] Ks_;(Q)q = 0 modulo
,4)*)

= gr] K3 ;(Q), any a € ker §(?)

)

2



should belong to §(VG4(Q). Therefore, if B4(Q)q = G4(Q)q we should be able to write
any a € ker 62 as the boundary of an element in B4(Q).

In the following we consider two types of non-trivial elements in ker §(2) .

a) The first type consists of elements of the form

{1}3®Q7 qEQX

(note that {1}2 = 0 in By(Q)). We show that they are indeed bounded by elements in
B4(Q), if the primes which have non-trivial valuation at ¢ are < 59.

We can restrict ourselves to the case of a prime number p, and we have been able to
check the above for p < 59 (we only give examples for p < 11, though). We can proceed
by induction, showing first that {1}s ® p, € Image(6(")) for p, in some small set P, and
then it suffices to show that {1}3 ® p € Tmage(6(")) modulo the subgroup generated by
{1}3 ® p, where p, € P. For 11 < p < 59 it was enough to take P C {2,3,5,7}. We
always compute modulo torsion in Q*.

b) The second type of evidence comes from the following considerations (also suggested
by Goncharov): in [G1] was given, for any field F', an element r(z,y) (given below, s.5.)
in the difference kernel of the following map

(Bg(F)@FX) @/\2BQ(F) 5(2@;0) BQ(F)®/\2FX7

where §(?) is defined on generators as {z}sA{y}s — {yloA(1—2)Az—{2}2A(1—y)Ay . For
any linear combination & = ). n;[z;] € Z[F*] we can form x({,y) (extended linearly),
and if ¢ corresponds to a functional equation of the dilogarithm, it is zero in By(F'), and
the projection of k(£,%) to the first summand Bs(F) ® F* lies in the kernel of §(?) (the
projection to the second giving zero) and should be the boundary of an element in By(F) .

We will construct those “bounding” elements for infinitely many functional equations
¢ (in one variable). We have performed similar calculations for certain Q-—specializations
of the five term relation which always could be bounded. We have not been able to obtain
the corresponding result for the general five term relation, which should enable one to
define B4(F) explicitly.

3. How to compute. We take finitely many elements [z;] in Z[Q*] and compute
their image under the map 4 : Z[Q*] — Sym?(Q*) ® /\2 Q> given on generators by
[] » z®@z®x A (1—2x). The images actually lie in a finitely generated subgroup, and the
computer finds elements in ker 34 by looking for linear dependences among the images.

We expect 6(1)(€) to lie in {1}3® Q* as indicated above, and this is exactly what we find.
For each valuation v : Q% — Z let 1,0 (¢) denote the following homomorphism:

W B3(Q)® QY — B3(Q)
{r}a@y > 1(y) - {z}s.

We have checked numerically that Lvé(l)(g) for each valuation v : Q* — Z is mapped
under the trilogarithm map to a rational multiple of {(3) (the denominator of this rational
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multiple divides 12). This numerical check could be made rigorous by deriving 1,61 (¢)
from specializations of functional equations.

If, for p as above, this rational multiple is non—zero (this is proved(!) numerically),
we are done.

4. Examples (first type). 1) It is an easy exercise to show that {1}3 ® 2 €
Image(6(D) (use {z}s = {1/z}5 and {z}3 + {1 — 2}3 + {1 — 1/z}3 = {1}3 to deduce
dW([2) = §{1}s®2).

2) For p = 3 we consider the following linear combination:
& =4[1/3]+ [1/4] + 8[2/3] + 2[3/4] .

We compute

6D (€) =4({1/3}3 ®37") + {1/4}3 @47
+8({2/3}3 ®2/3) + 2({3/4}3 ® 3/4)
=(—2{1/4}3+8{2/3}3 — 4{3/4}3) ® 2+ ( — 4{1/3}3 — 8{2/3}5 + 2{3/4}3) ® 3
7

26
:5{1}3@)2—3{1}3@3-

An even simpler element is
n=2[3] - [-3],

for which 13
5 (n) = 5 {1}s®3.

3) For p > 3 the preimages found become more and more complicated. We list ex-
amples for p = 5,7,11. The data for the larger p can be viewed on the webpage
http://www.exp-math.uni-essen.de/~herbert/

S (—9[1/3] — 3[1/4] + 1[1/6] + 1[2/3] + 2[2/5] — 4[3/4] — 14[3/5] + 1[3/8]
— 10[4/5] + 2[4/9] + 2[5/6] + 13[5/8] + 6[5/9] — 6[8/9] + 8[9/10] + 3[15/16]
— 2[16/25] — 3[24/25] — 1[25/27] + 1[80/81] — 1[125/128] )

259 124
= —?{1}3 ®2+ 7{1}3 ®9,

oW (14[1/3] — 10[1/4] + 86[1/7] — 22[1/8] + 4[1/9] — 5[1/28] — 4[1/49] + 2[1/64]
—2[2/9] — 6[3/4] + 70[3/7] + 25[4/7] + 20[6/7] + 24[7/8] + 4[7/9] + 2[7/16]
+2[8/9] + 15[9/16] — 2[27/28] + 2[32/81] + 2[48/49] + 1[49/81] )

- %{1}3 ©2+ ?{1}3 ©3—114{1}3® 7.
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oM (112[1/3] + 2[1/4] — 12[1/5] + 2[1/6] + 1[1/9] + 17[1/11] — 6[1/12] — 4[1/16]
+ 4[1/25] + 5[1/45] — 1[1/81] — 1[1/100] — 3[1/121] — 1[1/243] — 2[2/3] + 26[2/11]
+ 8[2/27] — 4[3/4] — 2[3/5] + 1[3/8] + 30[3/11] — 5[3/25] + 1[3/128] + 4[4/5]
+ 10[4/15] + 4[5/6] — 1[5/8] — 4[5/9] + 30[5/11] + 4[5/16] — 4[5/27] + 3[5/32]
+43[6/11] + 7[8/9] + 38[8/11] + 14[8/33] + 6[9/10] + 41[9/11] — 11[9/20] + 2[9/25]
— 2[9/64] + 48[10/11] — 19[11/12] — 44[11/15] — 23[11/16] — 41[11/20] — 4[11/27]
— 16[11/36] — 7[11/75] — 20[15/16] — 10[16/25] + 5[16/27] — 30[22/25] — 35[22/27]
— 21[24/25] — 8[25/27] + 28[25/33] — 2[25/36] + 2[25/121] + 1[25/729] + 8[27/32]
— 9[32/33] + 2[32/275] — 6[40/121] — 33[44/45] 4 14[54/55] + 7[55/64] — 2[64/75]
— 5[81/121] — 7[96/121] — 9[99/100] + 1[120/121] + 14[121/125] — 4[125/128]
+ 1[135/256] + 6[242/243] + 1[704/729] )

3269 910 868 1330
{1}3 +—{1}3®3+—{1}3 5——{1}3

5. Examples (second type).
Let p(t) be the algebraic function defined by the equation

ft,p(t)) =0,  where

flt,x) =z%(1 —z)’ —t, a,beZ.

For the non-critical points ¢t € C let {p;(¢)}; be locally analytic branches of p(t).

Note that the sum >_, [p;(t)] is well-defined globally as a divisor on Z[O¢]% where
Oc¢ denotes the ring of locally analytic functions on the curve C' with defining equation
f(t,z) = 0 and G is the symmetric group on deg(f) elements.

We deduce " b
Hp/ 1 [T, »}’

, 1——=4= .
a/b ’ . a+b
p/ Di p(+)/

7 7

1 —
Let c be defined by a+b+c = 0 and denote { =) _.[p;(t)] € Z[C(t)]. Notice that & € ker 6,

(up to 2—torsion).

The element k(z,y) (cf. 2.b) was defined by Goncharov in [G2] via

(- (25 (5]

e L~ {ehe (1= + {gha® (1-a) + {shA (.

Now we can compute (note that for an element ¢ € Ry (F) the contributions from A\? By (F)
cancel)



e =3 (0-msr0-ms {05 {5} ) e

;;{3}3(@11;;{pi}3®(ly)+;{y}3®(1pi)
:Z({1—pi}3+{1—y}3+{1:;{1}3_{11—_1;}3

| +3 {pz}g——{yh__z{pg}g a+b

S (oo {125 (2] o

# X (- ) @ (1),

If we use functional equations for the 3-logarithm we find that —x(&,y) is equal to
S (- L i
—~ \abe (y*(1 - y)° ),
—pj l—y ', 1 y 1
—Z{ J}s Z{ Sl A=t —= ) {1-p;
;P b p a5

1 —p; 1—y! 1 y
—{ y}3 + { p-_1}3 —EZ{F}z-I- {1 —pits+{1-y}s

1— 1 —p;

{y}3> ® pi

+ 2Ly, +Huk) o

(i), oo

YA e _1}3—%%:{%}3+zj:{l—pj}s—a{y;

+Z{ pﬂ}—Z{ _1}3 —;u—mg)@

+<_${y{1[—p]y)}

-2 (- Z{ _1}3—2{ et 3 00)
—;{zo—j}w;{pj}g)@ (1-y).

1}3

6



Here the functional equations for the trilogarithm are given as the first 2 lines of each of
the 3 large brackets in the previous expression. But the last element is the boundary of
the following one:

ol = ) S L - f
) METHRIL

}4 —c{y}s.

Remark. Zagier initially gave the corresponding element for & = [z]+][1/x], more precisely:
K’(é-', y) = dl(_A('r7 y))7 where

+2{“1—:”}4+2{ﬁ}4

"’2{—}4

y(1 - =)
2{ﬁ}4 {y}

6. Corollary. There exists a family of functional equations in 2 variables for the
4-logarithm of the following form: let {p; = p;(t)} and {q = qx(u)} be the set of roots of
Cp:2%(1 —2)" =t and Cy : 2%(1 — 2)¢ = u, respectively (a,b,d,e € Z, a+b+c=0 =
d+ e+ f). Denote D = bd — ae = ce — bf. Then L4 vanishes on the following element in
Z[Ox] where X is the product of the two curves Cy and Cs:

1 t 1 U
abcD§[q,‘j(l—qk)b] + defDZ[pJ(l—pg) ]

- a S - s - T

D 1—qk ik qx

Zq’“‘l —EZV’J—‘H-

;. Pi

Proof. Write x(3_;[p;], > xlax]) in two different ways:

ZK(Zj[ijQk) = ’i(z [pj Zk Qk ZK pmzk Qk

k

Each of the summands on the left and right hand side can be expressed as the boundary
of some element in Z[Ox], e.g. (using the anticommutativity of &):

Y R(pilak) = =) di <77a,b(t= Qk)> :
k

k



and the difference of the left and right hand side is therefore expressible as di( for some
¢ € Z[Ox]. Tt remains to check that ¢ is (up to elements in kerd;) the one given in the
theorem—we have used functional equation (4.1.6) from [Gal:

ch{l—pj}4 - acZ{pj}4 - abZ{pj;1}4 =0,

p

to simplify the expression.

Remark. 1. Kummer’s functional equation for the 4-logarithm can be recovered
e.g. as the special case (a,b) = (1,1), (d,e) = (1, —2).

2. The family in the corollary is essentially the one given in [Ga], Thm. 4.4.
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