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Preface

Multiple zeta values (MZVs for short) are real numbers of the form

1
C(S]_,SQ,...,SZ) = Z 51 _s2  _S¢» (01)

/”L n .--n
ni>ng>->ne>1 1 2 ¢

where all s; are integers greater than or equal to 1 and s; > 2, to ensure
that the sum converges. For ¢ = 1, these are the Riemann zeta values

1
¢(s) = Z s
n>1
Euler proved that, when s is even, ((s) is a rational multiple of 7*; for
example, ((2) = 72/6 and ((4) = 7*/90. The values at odd integers are
much more mysterious. Indeed, a folklore conjecture asserts that they are
all “new” transcendental numbers:

TRANSCENDENCE CONJECTURE. The numbers m,((3),((5),{(7),... are
algebraically independent.

This conjecture seems completely out of reach: at the time of writing,
we do not even know whether ((3) is transcendental, let alone the algebraic
independence with 7, or whether {(5) is irrational!

The case ¢ = 2 was also considered by Euler, back in his 1776 paper
Meditationes circa singulare serierum genus (“Meditations about a singular
type of series”) [Eul76]. In an attempt to find a closed formula for {(3), he
looked for linear relations with integer coefficients among the numbers 73,
72log2 and (log2)3. This led him to the discovery of remarkable identities
involving double zeta values, the simplest being

¢(3) =¢(2,1).

After more than two centuries of oblivion, multiple zeta values were
independently rediscovered in the 1990s by Hoffman and Zagier. It was
soon realized that these numbers appear in a wealth of different contexts,
including Witten’s zeta functions, deformation quantization, Vassiliev knot
invariants or the theory of mixed Tate motives. Most of these topics share a
physics flavour. In fact, roughly at the same time, the physicists Broadhurst
and Kreimer found that a lot of Feynman amplitudes in quantum field theory
can be expressed in terms of multiple zeta values. The next two decades saw
extensive work by Brown, Cartier, Deligne, Drinfeld, Ecalle, Goncharov,
Hain, Hoffman, Kontsevich, Terasoma, Zagier, and many others. Major
progress was made, but fundamental questions remain open and multiple
zeta values are still nowadays an active, rapidly moving field of research

The product of two multiple zeta values is a linear combination, with
integer coefficients, of multiple zeta values. For instance,

C(s1)C(s2) = ((51,52) + (52, 81) + ((51 + 52),
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an identity already known to FEuler. The Q-subvector space Z C R spanned
by all multiple zeta values has thus an algebra structure. Contrary to the
algebra generated by Riemann zeta values, which according to the tran-
scendence conjecture is simply a polynomial algebra in ((2),((3),¢(5),...,
multiple zeta values satisfy a plethora of relations which endow Z with a rich
combinatorial structure. One can argue that the main goal of the theory is
to understand all linear relations among these numbers.

To make this more precise, we attach to each ((si,...,s;) the integer
$1+ ...+ s;, which is called the weight. Let Z; C Z be the vector subspace
generated by multiple zeta values of weight k, with the convention that
Zy = Q and Z; = {0}. Based on a mix of numerical evidence and pure
thought, Zagier conjectured that there is a direct sum decomposition

Z:@Zk,

k>0
and that the dimension of each graded piece is given by
dimQ Z = dy,

where (dg)r>0 is a Fibonacci-like sequence of integers, defined recursively
by setting dg = ds = 1,d; = 0 and dg, = dg_o + di_3 for k > 3, so that the
generating series is equal to

1
2 : k _
k>0

This would imply that dimg Zj, grows like a constant multiple of r*. where
r = 1.3247... is the real root of 3 — & — 1, which is much smaller than the
number 272 of multiple zeta values of weight k.

Plan. The goal of these notes is to give a reasonably self-contained
proof of the following results towards Zagier’s conjecture:

THEOREM A (Deligne-Goncharov [DGO05], Terasoma [Ter02]). The fol-
lowing inequality holds:
dimQ Z < dj,.

THEOREM B (Brown, [Brol2]). Each multiple zeta value can be written
as a Q-linear combination of multiple zeta values with only 2s and 3s as
exponents, i.e. the following family generates the Q-vector space Z:

{C(s1,---,80) | 85 € {2,3}}. (0.3)

In fact, Hoffman conjectured that (0.3) forms a basis of Z. By a sim-
ple counting argument, this would imply the equality (0.2). Theorem B
addresses the “algebraic” part of this conjecture, which suffices to deduce
Theorem A. It is also worth mentioning that, taking these results for granted,
the algebraic independence of 7, ((3),{(5),... is a consequence of Zagier’s
conjecture. In a sense, we have “linearized” the transcendence conjecture.
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On the negative side, let us emphasize that, despite the progress made thus
far, we still do not know a single %k for which dimg Zj, > 1!

Surprisingly enough, the proofs of these easy-to-state theorems use the
machinery of motives. Kontsevich noticed that multiple zeta values of weight
k admit a representation as iterated integrals

C(s15--580) Z/M wo(t1) -+ wolts;—1)wi(ts, Jwolts;+1) - - wi(te),  (0.4)

where wq(t) = % and wi(t) = % are differential forms on P!\ {0,1, 0o},

and the integration domain AF C [0, 1]* is the simplex
{1>t1 >t >--- >t > 0}.

This exhibits multiple zeta values as periods of algebraic varieties. In
the words of Deligne, “whereas the notion of infinite sum is unfamiliar
(étrangére) to algebraic geometry, the study of integrals of algebraic quanti-
ties is one of its sources.” Thanks to the identity (0.4), “algebraic geometry,
and more precisely the theory of mixed Tate motives, is useful for the study
of multiple zeta values” [Dell3, p.3].

Usually, the philosophy of motives represents a powerful tool to predict
all algebraic relations between periods. However, when it comes to proving
them, one is confronted with the problem that even the first step in this
program—getting a category of motives with all the desired properties—
remains conjectural. In contrast, for mixed Tate motives over a number
field, there is an unconditional theory which relies ultimately on Borel’s
deep results about the K-theory of number fields. This gives good control
over the group governing the symmetries of multiple zeta values. Using this
group, one can construct a pro-algebraic variety, together with an action of
G, in such a way that the Hilbert-Poincaré series of its graded algebra of
functions H coincides with (0.2). The raison d’étre of this construction is the
existence of a surjective map H — Z compatible with the weight; we shall
refer to elements of ‘H as “motivic multiple zeta values”. This immediately
implies Theorem A. To prove Theorem B, one exploits the motivic coaction,
a new structure of H, invisible at the level of numbers, which allows one to
get relations amongst motivic multiple zeta values in a systematic way. A
variant of the Grothendieck period conjecture asserts that the algebras H
and Z are isomorphic, from which Zagier’s conjecture would follow.

Outline. Let us now give a more detailed description of the contents
of each chapter. The word cloud on the next page should also give a quick
idea of the main concepts involved.

Chapter 1 lays out what could be called the “minimal theory” of mul-
tiple zeta values. We first define them as infinite series and prove that
the product of two multiple zeta values is a linear combination of multiple
zeta values by decomposing the indexation domain. This so-called stuffie
product makes Z into a Q-algebra, conjecturally graded by the weight. We
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discuss Zagier’s conjecture for the dimension of the graded pieces, as well as
refinements due to Hoffmann, and Broadhurst and Kreimer. That progress
has been made towards these conjectures relies very much on the existence
of the integral representation (0.4). We prove that the decomposition of the
product of two simplices yields a new algebra structure on Z, the shuffie
product. Comparing the stuffle and the shuffle product, one gets many re-
lations amongst multiple zeta values but not all of them. As we explain in
the last section of the chapter, to conjecturally describe the full algebraic
structure, one needs to introduce a regularization process which assigns a
finite value to the divergent series (1, so,...,s¢).

The goal of Chapter 2 is to show that multiple zeta values are periods.
To begin with, we briefly recall the definition of the singular cohomology of
a differential manifold and de Rham’s theorem, according to which it can
be computed using analytic differential forms. Grothendieck’s breakthrough
was to realize that, if we are dealing with algebraic varieties, algebraic dif-
ferential forms suffice. This gives rise to algebraic de Rham cohomology and
the period isomorphism. After introducing these concepts, we give a first
interpretation, due to Goncharov and Manin, of multiple zeta values as pe-
riods of the moduli spaces M, of stable genus zero curves. We then move
to mixed Hodge structures (a first approximation to the notion of motive),
discuss a number of examples and compute the extension groups of Q(0)
by Q(n). We end the chapter with a discussion of the problem of finding a
geometric construction of these extensions, as well as a potential application
to irrationality proofs.

Chapter 3 introduces iterated integrals, a second way to interpret mul-
tiple zeta values as periods. We first present the basic definitions and tackle
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the question of which iterated integrals are homotopy invariant. We then re-
call the notions of affine group schemes and Hopf and Lie algebras, which will
be extensively used in the sequel. We define the pro-unipotent completion
of a group and we construct it, under some finiteness assumptions, following
work of Quillen. One of the main results of the chapter is Chen’s m1-de Rham
theorem, which roughly says that functions on the pro-unipotent completion
of the fundamental group of a differential manifold M are given by homotopy
invariant iterated integrals. A consequence, due to Hain, is that when M
underlies an algebraic variety, this pro-unipotent completion carries a mixed
Hodge structure. The general formalism being settled, we specialize every-
thing to P!\ {0,1,00}. Multiple zeta values are iterated integrals along the
straight path from 0 to 1. Since the endpoints do not belong to the space,
this forces us to work with tangential base points. The last section examines
in detail all the structures carried by the pro-unipotent completion of the
fundamental group of P!\ {0,1, 00}, including Goncharov’s coproduct.

In Chapter 4, we study the category of mixed Tate motives over Z.
The first two sections contain reminders of the Tannakian formalism, tri-
angulated categories and t-structures. We then sketch the construction of
Voevodsky’s triangulated category of mixed motives over a field k. It is
unknown how to extract an abelian category with good properties from it.
However, it was observed by Levine that, when k is a number field, Borel’s
results on K-theory enable one to extract an abelian category of mixed Tate
motives over k, which is moreover Tannakian. Even for k£ = Q, this cat-
egory is too large for the purposes of studying multiple zeta values. To
remedy this, one defines the subcategory of mixed Tate motives over Z. We
determine the structure of its Tannaka group and show, following Deligne
and Goncharov, that it contains a pro-object whose Hodge realization is the
pro-unipotent completion of the fundamental group of P!\ {0, 1, cc}.

Finally, in Chapter 5 we pull everything together to prove the main
results. In the first section, we construct the graded algebra H of motivic
multiple zeta values and a surjective map H — Z compatible with the
grading. Using the structure of the Tannaka group of the category of mixed
Tate motives over Z, we derive Theorem A. We then present the proof of
Theorem B, following closely Brown’s original paper.

Warning. Before continuing, we should warn the reader that the litera-
ture contains two competing conventions for multiple zeta values, sometimes
in the same paper! Other authors, including Brown, define {(s1, ..., s¢), for
s; > 1 and sy > 2, as the sum

Z :
S1,,52 Se*
1I<ni<no<--<ny 172 L

In fact, one needs to fix conventions for the order of composition of paths,
the definition of iterated integrals, and the expression of multiple zeta values
as iterated integrals. Things get simpler if they are compatible. We have
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chosen those conventions for which the monodromy of a local system is a
group morphism.

Prerequisites. The difficulty of the exposition increases as the notes
progress. In Chapter 1, besides a couple of digressions, the emphasis is
mainly on combinatorial aspects and very little background is required.
From Chapter 2 on, we assume some familiarity with algebraic varieties
and cohomology of sheaves, at the level of any introductory book. Chap-
ter 3 contains a crash course on algebraic groups and Lie and Hopf algebras,
which will play an important role in the sequel. However, we do not treat
topics such as Lie algebra cohomology or Galois cohomology which will only
appear in some proofs of the following chapter. Finally, in Chapter 4 we
freely use basic notions from category theory and homological algebra, for
example abelian categories. We have done our best to present all the materi-
als in the most clear and accessible way, but occasionally we were unable to
prevent the text from being sketchy. Unfortunately, Borel’s theorem about
the K-theory of number fields is used as a black box.
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1. Classical theory of multiple zeta values
(by J. I. Burgos Gil, J. Fresidn and U. Kiihn)

In this chapter, we introduce multiple zeta values and begin to study
their basic properties. These are the real numbers

C(s1y.vy80) = Z %

52
n n
ny>->np>1 1 2

associated to tuples of integers s = (s1,...,s) such that s; > 1 and s; > 2.
The quantity s1+- - -+ sy is called the weight and ¢ is referred to as the length.
Of great importance is that multiple zeta values cannot only be written as
infinite series, as above, but also as integrals. This gives two different ways
of showing that the product of {(s) and ((s’) is a linear combination, with
integral coefficients, of multiple zeta values or, in more algebraic terms, that
the Q-vector space Z C R generated by multiple zeta values has an algebra
structure. From the series representation one obtains the stuffle product,
whereas the integral representation gives the shuffle product. Comparing
both products yields many relations amongst multiple zeta values. However,
Euler’s identity ((3) = {(2,1) cannot be obtained by this method since the
product of multiple zeta values has always weight at least 4. A way to solve
this problem is to introduce a regularization process which assigns a finite
value to the divergent series corresponding to multi-indices with s; = 1.
There will be, in fact, two kinds of regularizations, modelled on the stuffle
and the shuffle product. Conjecturally, all relations amongst multiple zeta
values come from comparing them.

Good references for this chapter are the survey articles [Car02], [Wall2]
and [Zud03], as well as Chapter 3 of the book [Zhal6].

1.1. Riemann zeta values. The Riemann zeta function is one of the
most famous objects in mathematics. It is said that it encodes all arithmetic
properties of prime numbers: our task is to extract them.

DEFINITION 1.1. The Riemann zeta function is defined, on the half-plane
of complex numbers s with Re(s) > 1, by the absolute convergent series

1
C(s) = Z - (1.2)
n>1
and extended to a meromorphic function on the whole complex plane with
a single pole at s = 1.

The Riemann zeta function still keeps many mysteries. The most im-
penetrable of them is undoubtedly the Riemann hypothesis (the conjecture
that all the non-trivial zeros of ((s) lie in the line Re(s) = 1/2), which has
many far-reaching consequences in number theory.

The aim of these notes is to glimpse at other aspects of this function,
namely, what numbers do we get when evaluating { at integers? In fact, the
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story began 120 years before Riemann’s paper', with Euler’s solution to the
so-called Basel problem, that is, the computation of the value

Indeed, Euler showed much more:

THEOREM 1.3 (Euler, 1735). The values of the zeta function at even
positive integers are given by

k—1 (27T)2k

C(2k) = (-1) 22k D2k

(1.4)

Here By, are rational numbers, called Bernoulli numbers and defined by
the power series identity

t tk
e :1+ZBkH. (1.5)

REMARK 1.6. Note that the function
t 1. t(1+éh)
)= ——F t= o~
) et—1+2 2(et — 1)
is even, i.e. satisfies f(t) = f(—t). It follows that B; = —% and By = 0 for
all odd integers k > 3. The first Bernoulli numbers are easily computed:

k [2 4 6 8 10 12
Bk‘% 11 1 5 691

T30 42 30 66 2730

ProoOF OF THEOREM 1.3. The key ingredient is an identity for the cotan-
gent function, also due to Euler (see Exercise 1.19). For z € C\ Z,

1 2x
7TCOt(7T$) = ; -+ Z m (17)
n>1

Expanding the quotient inside the summation sign as a geometric series and
interchanging the order of summation, we obtain

7 cot(mz) = % -2 Z C(2k)z?F L, (1.8)
k>1

Besides, we have

ol
—_
a
ol

1 e
t_q1 L 1 and  ——; 1~ T 1
e — ez —e 2 e - €2 —e 2

I¥or the prehistory of the Riemann zeta function we refer the reader to Weil’s beautiful
account [Weig9].
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from which the identity

e

_|_ B t2k; 1
+2Z 2’“

—e E>1

w\w [MIE
w\w M\«*

e

=

follows, using (1.5) and the vanishing of By, for odd k& > 3. Therefore,

2miz 2mix
Teot(mT) = Mi—5m——5m7 = — — " 1.9
( ) 627r27,1 o 6_22 T ; (2k)' ( )
and we conclude by identifying the coefficients in (1.8) and (1.9). O

REMARKS 1.10.
(1) Euler’s formula (1.4) implies the equality

QI¢(2),¢(4),---] = Q[r*]
of subrings of the real numbers.

(2) Thanks to the functional equation

W_%F<§) ¢(s) :w—l?r<1;5) C(1—s), (1.11)

where I' is the gamma function, we deduce the values of the Rie-
mann zeta function at negative integers:

By
k) = —
¢(=k) E+1
for all £ > 1. In particular, ((—2k) = 0 for all & > 1; these are the
“trivial zeros”. One can also compute ((0) = —

1
5

1.1.1. Odd values. By contrast, despite the many efforts of the mathe-
matical community, nobody has been able to give closed formulas for the
values of the Riemann zeta function at s = 3,5,7,... in terms of previously
known numbers like 7. This led to the following conjecture:

CONJECTURE 1.12 (Transcendence conjecture). The numbers

m,¢(3),¢(5),...

are algebraically independent, that is, for each integer k > 0 and each non-
zero polynomial P € Z[xy, ..., x|, we have P(mw,((3),...,((2k + 1)) # 0.

This conjecture seems completely out of reach of the current techniques
in transcendence theory. The transcendence of m was proved by Lindemann
in 1882 [Lin82]. It follows from Euler’s formula (1.4) that the numbers
((2k) are all transcendental. But we do not even know whether ((3) is
transcendental —not to speak of the algebraic independence with m— or
whether ((5) is irrational. The few known results, as the moment of writing,
are summarized below. The Bourbaki seminar [Fis04] is an excellent survey.
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o Apéry [ApéT79, vdP79] proved that ((3) is irrational. Different
proofs are now available [Beu79], but none of them seems to gen-
eralize to other odd values.

e Rivoal [Riv00] and Ball and Rivoal [BRO1] proved that, if n is an
odd integer > 3, then

dimg(1,¢(3),¢(5), .-, {(n)) > 3 los(n).

In particular, infinitely many ((2k + 1) are irrational.

e Zudilin [Zud01] proved that at least one out of the four numbers
¢(5), ¢(7), ¢(9) and ¢(11) is irrational.

REMARK 1.13. Recently, Brown has suggested in [Brol6] a common
geometric framework for these irrationality proofs. The approach is based
on the study of periods of the moduli spaces My, of curves of genus zero
with n marked points (see paragraph 2.8.3).

DIGRESSION 1.14. Despite their “simplicity”, special values of the Rie-
mann zeta function are linked to much interesting mathematics. For in-
stance, K-groups and regulators provide an explanation of why the values
at even integers are easier to understand.

Let F' be a number field and Op its ring of integers. The Dedekind zeta
function of F' is defined, for Re(s) > 1, by the convergent series

1
Cr(s) = Z W,

where a runs through all non-zero ideals of O and N (a) denotes the absolute
norm. In particular, (g agrees with the Riemann zeta function (1.2).

The Dedekind zeta function extends to a meromorphic function on the
complex plane, with a simple pole at s = 1. Its residue is given by the
celebrated class number formula

o1 (27)72
lim (s — 1)¢p(s) = 2 em) *hrBr
s—1 wrg ’dF‘

)

where r1 (resp. 2r2) denotes the number of real (resp. complex) embeddings
of F', hg is the class number, wp is the number of roots of unity contained
in F', and dp stands for the discriminant.

The remaining term Ry is defined using the Dirichlet regulator map
p: Of — RH" (1.15)
u — (log [|ulv)o-
Here v runs over all archimedean places of F' and we write
]y = {|a(u) if v = o is a real place,
" )le))? if v={0,7} is a complex place.
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The product formula [, [|u||l, = 1 implies that p lands in the hyperplane
of points whose coordinates sum to zero. In fact, Dirichlet showed that
the image of p is a lattice in R™ 7271 that is, a subgroup of the form
Zvy & - - - @ ZLvp 4r,—1 for linearly independent vectors vy, ..., vp 4ry—1. By
definition, its covolume is the Lebesgue measure of the set

{z1vi 4+ + T g1V o1 | 2 €R, 0 <2y < 1}

The covolume of the lattice p(OF) is a real number Rp, abusively called
Dirichlet regulator as well.

Borel generalized this picture to other values of the Dedekind zeta func-
tion. The role of the units O} is replaced by the higher K-groups K, (Or),
certain finitely generated abelian groups which carry a lot of information
about the “hidden” arithmetic of F. Borel computed the rank of these
groups and defined, for each n > 2, a map from Ks,_1(OF) to a suitable
finite-dimensional real vector space, the Borel requlator map, whose image
is again a lattice. Its covolume is a real number R,, also called Borel reg-
ulator. Letting (j:(1 — n) denote the first non-vanishing coefficient in the
Taylor expansion of the Dedekind zeta function at s = 1 —n, he proved that
there exists a rational number ¢, such that

(p(l—n) = guRn.
The Dedekind zeta function satisfies a functional equation similar to (1.11).

Using it, it follows that (z(n) is, up to some easy factor involving the square
root of the discriminant and powers of 7, a rational multiple of R,,.

When F' = Q, the K-group Ko,_1(Z) has rank one if n > 3 is odd, and
zero otherwise (see Section 4.4 below). Therefore, R,, = 1 for even n. Thus,
((n) is given by a rational number times a power of 7 for even n, while it
involves the “mysterious” Borel regulator for odd n. This result will play
a pivotal role in the motivic approach to multiple zeta values. For more
details, we refer the reader to the original papers [Bor74] and [Bor77], the
monograph [BGO02] or the short survey [Soul0].

1.1.2. Double zeta values. In order to investigate possible relations among

zeta values, Euler looked at the algebraic structure of these numbers. If we
multiply two Riemann zeta values, we obtain a new kind of interesting sum:

SRS By B e

ng>1 1 no>1""2
Z :
- S1..82
n,"n
ning>1 1 2
= s1, s2 52,51 ns1ts2
n{n ns"n n
ni>ng>1 1772 no>nip>1 21 n=ni=ns>1
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The first two terms in the last line are called double zeta values and
admit the various representations

C(31782) = Z sll S9

1
- Z (n + m)81n82 ’

m,n>1

With this notation, equation (1.16) can be rewritten as

((s1)-Cs2) = ((s1,82) +((s2,51) + Cs1+ 52) . (1.17)
—_——
product of zeta values sum of zeta and double zeta values

This identity already appears in Euler’s work [Eul76, p.144] under the name
of “prima methodus”.

EXAMPLE 1.18. One has ¢(2)? = 2((2,2) + ¢(4), hence ¢(2,2) = 120 by
Euler’s formula (1.4). Similarly, ¢(2k,2k) is a rational multiple of 74

As we have seen, products of two Riemann zeta values are linear combi-
nations of zeta and double zeta values. To handle products of more factors,
multiple zeta values of higher length are needed. These new numbers satisfy
many linear relations with rational coefficients, and one can argue that the
main goal of the theory is to fully understand them.

* k x

EXERCISE 1.19. Prove that the logarithmic derivative of Euler’s product
expansion for the sine function

sinrz _ ry <1_>

n>1

yields the identity
t( — e C\7z),
7 cot(mx) + nz;l .732 > (x \Z)

and deduce formula (1.8) in the proof of Theorem 1.3.

EXERCISE 1.20. Prove that the Taylor expansion of the logarithm of the
gamma function at z = 0 is given by

logT(1—2)=vz+ Y <(n)£

n>2
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where 7 is the Euler-Mascheroni constant

(1
v = nh_}n;() ( T log(n)) .
k=1

EXERCISE 1.21 (Tornheim sums). Given three integers a,b,c > 0, con-

sider the series )

S@be)= D et e

m,n>1
which is sometimes called Tornheim sum, in reference to [Tor50].
(a) Prove that S(a,b,c) converges if and only if a +¢ > 1, b+ ¢ > 1,
and a+b+c> 2.
(b) Show that the following Pascal triangle-like recurrence holds

S(a,b,c) =S(a—1,b,c+ 1)+ S(a,b—1,c+1).
(c) Deduce that S(a,b,c) is a linear combination, with integral coeffi-
cients, of double zeta values, e.g. S(1,1,1) =2¢(2,1).

(d) Prove by direct computation that
S(1,1,1) =¢(2,1) + ¢(3)
and deduce Euler’s identity ¢(3) = {(2,1).
[Hint: use the equality —-L — = L (1 _ min

mn(m+n) = m2
over n into a telescoping series].

) to transform the sum

1.2. Definition of multiple zeta values. We now introduce multi-
ple zeta values, the main character of these notes. In doing so, it will be
convenient to use the following terminology:

DEFINITION 1.22. A multi-index
s=(s1,...,50) €2

is called positive if s; > 1 for all i = 1,...,¢ and admissible if it is positive
and, in addition, satisfies s; > 2. By convention, the empty multi-index
(¢ = 0) will also be considered to be admissible.

LEMMA 1.23. Let s = (s1,S2,...,5¢) be an admissible multi-index. Then
the following series converges:

C(S):C(317327‘--735): Z %

S¢
ni>ng>->np>1 1772 14

PRrROOF. Since ((0) = 1, we may assume that the multi-index s is non-
empty. In view of the inequality

C(s) <((2,1,...,1),
N——

-1



16 J. 1. BURGOS GIL AND J. FRESAN

it suffices to show that ((2,1,...,1) converges. Using the estimate

which is obtained by comparison with the integral fln df, one gets:

1
2,1,...,1) = .
< ) 2

n1>ng>->np>1

n -1
1 1
S
n>1 k=1

< Z %. (1.24)

n
n>1
The last series converges, as can be seen as follows: since

L log(1 +log(n))

n—r+00 log(n) =0

there exists an integer ng such that (1+log(n))~! < y/n for all n > ng. The

tail of the series (1.24) is thus bounded by the convergent series ), -, n=3/2,

DEFINITION 1.25. The multiple zeta value associated to an admissible
multi-index s = (s1,...,$¢) is the real number

¢(s) = Z 313217222

ny Ny
ni>ng>->np>1

The weight of ((s) is the sum of the exponents s; + - + sy, and £ is called
its length”. We write:

wt(((s)) = wt(s) = s1 + - + sy, (1.26)
({(s)) =4L(s) = L. (1.27)

We shall adopt the convention that ¢(0)) =1, so wt(1) = £(1) = 0.

REMARK 1.28. Strictly speaking, only the weight and the length of s
are well defined, since we may have ((s) = ((s’) for different multi-indices.
Conjecturally, when such an equality holds s and s’ have the same weight,
hence the notation (1.26) makes sense. By contrast, the length is only well
defined at the level of multi-indices, as Euler’s relation {(2,1) = ((3) already
shows that the same value can be represented by multi-indices of different
lengths (see Exercise 1.21 or Corollary 1.57 below).

2Also called depth in the literature.
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EXAMPLE 1.29. Let 2"} be the admissible multi-index of length n whose
entries are all equal to 2. We compute the value of ¢(2{"}) using the method
of generating series and Euler’s product expansion

sinmr =11 <1 - > . (1.30)

n>1

Plugging the definition of ¢(2{™}) into the power series below we get:

Y ceM=ar=37 <‘:;><_:;>

n>0 n>0 mip>--->mp>1
332
= (1-—=
m
m>1
2n
_Z 2 1 )332".
n
n>0

The second equality above comes from the elementary observation that, in
the development of the infinite product, the terms of degree 2n correspond
bijectively to choices of n integers mp > mg > -+ > my > 1. The third
equality is the combination of (1.30) and the power series expansion of the
sine function. Now, identification of the coefficients yields

71'2”

L (1.31)

et =
Note that this agrees with the result {(2,2) = 120 from Example 1.18.

1.2.1. The algebra of multiple zeta values.

DEFINITION 1.32. We will write Z for the Q-subvector space of R gen-
erated by all multiple zeta values

= (1,¢(2),¢(3),¢(2,1),¢(4), .. ).
Given integers k, ¢ > 0, we also consider the subvector spaces of Z:

2= (C(s) | wi(s) = K)g,
FZ = (((s) | U(s) < O)g,
FiZ, = (C(s) | wi(s) =k, £(s) < .

In particular, Zp = Q and Z; = {0}.

REMARK 1.33. The subspaces FyZ define an increasing filtration of Z:
Q=FRZCHZCKhZC....

There is an obvious inclusion FyZ;, C F;Z N Z;. This is actually expected
to be an equality, but not known so far.
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Equation (1.17) is the first indication that the Q-vector space Z has
the richer structure of an algebra. Recall that this simply means that Z is
equipped with a bilinear “multiplication” Z x Z — Z.

THEOREM 1.34. The multiplication of real numbers induces an algebra
structure on Z which is compatible with the weight and the length filtration
in that, for all non-negative integers €1, s, k1 and ko, one has:

Ff1Zk1 : F£22k2 - F€1+fzzk1+k2'

The theorem affirms, in particular, that every product of multiple zeta
values can be written as a linear combination of MZVs.

COROLLARY 1.35. FEvery polynomial relation between Riemann zeta val-
ues C(k) gives rise to a linear relation between multiple zeta values.

Thus, finding algebraic relations among zeta values amounts to finding
linear relations among multiple zeta values; this is a first interpretation of
what we meant by “linearizing Conjecture 1.12” in the preface .

1.2.2. Proof of Theorem 1.3/. The result will directly follow from lem-
mas 1.40 and 1.41 below. Before stating them, we need to introduce the
stuffle of two multi-indices.

CONSTRUCTION 1.36. Given positive multi-indices
s =(s1,82,...,80), s = (8,85, ..., 8u),
consider the set of all 2 x £’-matrices, for integers ¢’ = max(¢,¢),..., 0+,
satisfying the following properties:
(1) the entries of the first row are the numbers s;, 1 < i < ¢, in this
order, plus some interlaced zeros;

(2) the entries of the second row are the numbers s}, 1 < i < ¢, in this
order, plus some interlaced zeros;

(3) no column has two zeros.
Each such matrix defines a new positive multi-index s” = (s{,...,s},) by
adding the two entries of each column.

An equivalent construction will be given in Exercise 1.47.

EXAMPLE 1.37. For the multi-indices s = (2,1,1) and s’ = (2, 3), two
possible choices of such a matrix are

0 211
2 03 0)°

from which we get the multi-index s” = (2,2,4,1), and

2 11
2 0 3)°

which gives s” = (4,1,4). Observe that the length of s” varies.
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DEFINITION 1.38. Let s, s’ and s” be positive multi-indices. The stuffle
multiplicity st(s, s’; ") is the number of times that the multi-index s” ap-
pears in the previous construction.

By definition, the stuffle multiplicity is a non-negative integer.

EXAMPLE 1.39. In the easy case s = (2) and s’ = (2), all possible

matrices are
2 2 0 0 2
2/ 0o 2/’ 2 0/’

from which one gets multi-indices (4), (2,2) and (2,2). Hence
1 §"=(4)
st(s,858")=¢2 " =(2,2).
0 otherwise

From conditions (1)—(3) above, we immediately deduce the following
properties of the stuffle multiplicity:

LEMMA 1.40. Let s, s’ and s” be three positive multi-indices such that
st(s, 8’;8") > 0. Then the following holds:
(1) wt(s") = wt(s) + wt(s');
(2) U(s") < l(s) +L(s");
(3) if s and s’ are admissible, then so is s”.

The main reason to introduce the stuffle index is the following result
which, together with the previous lemma, implies Theorem 1.34.

LEMMA 1.41. Let s = (s1,82,...,8¢) and s’ = (s},s5,...,s)) be admis-
sible multi-indices. Then

((s)-C(s) =) st(s,s;8")C(s").
s//
Proor. Multiplying the series

()= ), sllnzg and ((s)= > %7

n ’
ny>->ng>1 1 my>->myr 21 mll ce mg/z

one gets

de)sh = Y S (1.42)

S
ny>-->np>1 nil ce nzemll c é/l/
m1>-~>m2/21
We now decompose the sum (1.42) according to the possible orderings of
the terms of the sequence nq,...ny, m1,...my. For instance, if £ = ¢ =1,

we distinguish the three cases n1 >my, Ny = m1 and ny < myq, hence:

1
Z s1 St = Z s1.Sh + Z 51+51 + Z

ni>1 T 1My ni>mya>1 T MYy ni>1 M m1>n1>1 nl 1
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By construction, the number of times a given sum
1
(s = > S
ke >k >1 Kyt kg
appears in this process is precisely the stuffle multiplicity st(s, s’;s”). O

ExAMPLE 1.43. Let a, b, c be integers such that a,c > 2 and b > 1. We
decompose the product ((a,b)((c):

1
C(a,b)¢(c) = Z I
ni>ng>1 nlnzm
m>1

1 1 1
ZZﬁﬂLZWJFZW

méenin
m>ny>n2>1 172 m=ni>n2>1 1 2 ni>m>na>1 2

1 1
+ZW+ZW

a
ni>m=no>1 ning ni>ng>m>1 2

= ((¢,a,0) + C(a+¢,b) + ((a, ¢, b) + ((a, b+ ¢) + ((a, b, ).

More examples will be presented in the next sections.

* K x

EXERCISE 1.44. It would have been possible, as Euler did in length two
(see Figure | below), to define multiple zeta values as

1
C*(Sl,Sg,...,Sg): Z W

.St
P e TR
Find the relation between ((s1,s2,...,s¢) and (*(s1, s2,...,S¢).
Eoo TN ST T 1IN LT Lol CHNE &
I‘"‘*z?’l(E‘ Ze _f—rsf,n"(l +;§+5; .+E(T+§+§+§J+mé

FIGURE 1. Euler’s definition of double zeta values in [Eul76].

EXERCISE 1.45. Given an integer s > 2, let s{"} be the length n multi-
index (s,...,s).

(a) Adapt the argument from Example 1.29 to prove that

ZC(s{n})xn — exp Z(_l)k,l C(Zk) ok

n>0 k>1
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(b) Deduce that ¢(st"}) belongs to the ring Q[¢(s),((2s),((3s),...].
More precisely, consider an infinite collection of weighted variables
(k)k>1, where xy, is given weight sk. Then, for each n > 1, there
exists a polynomial with rational coefficients P, (z1,...,zy), homo-
geneous of weight sn, such that

C(s™) = Pa(C(5),¢(25), .., ¢(ns)).
Combined with this, Euler’s formula (1.4) implies that, for even s,
the multiple zeta value ¢(s™) is a rational multiple of 75

(c) Some explicit formulas:

npy __ (2m)t npy . 6(2m)°"
¢(atnh) = 21 (4n  2)1 ¢(6m) = on+ 30

Note that the last factor is rational despite its appearance.

EXERCISE 1.46. Use the stuffle product to prove that, for each pair of
integers n, k > 1, the following holds:

n—k
C(2k + )¢ =3 (2!, 2k 4 1,207
=0

+ ) (2 2k 4 3, 20nh1),

n—k—1
=0

EXERCISE 1.47. Let st(¢, ¢';r) denote the set of surjective maps
o {L,2,...0+0}——={1,2,... 0+ 0 —r}
satisfying o(1) < o(2) < - <o) and c(L+ 1) <--- < oL+ 1).
(a) Determine the cardinality of st(¢,¢';r) and show how to get from
o a matrix like the ones in Construction 1.36.
(b) Prove the identity
min(£(s),4(s"))

Sstls,sis ) = Y Y (0 (0o,

(
=0 oest(,;r)

where s”(o) is the multi-index with
54, if o71(k) = {3}, i <,
s"(0)k = { 8, if o= (k) = {£ +j},
si+ s, if oM (k) = {i, 0+ j}.
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1.3. Relations among double zeta values. We now undertake the
task of finding linear relations among multiple zeta values by elementary
methods. Historically, one of the first techniques consisted of reordering
multiple sums by means of a partial fraction decomposition. In what follows,
we show how this yields linear relations among double zeta values.

1.3.1. Partial fraction expansions. For a,b integers with b > 0, we shall
use the standard convention for binomial numbers:

<Z> _ a(a—l)"[;!(a—b‘l‘l)' (1.48)

In particular, (3) =1 for all @ and, if b > a > 0, then () = 0.

LEMMA 1.49. Let i,5 > 1 be integers. The following equality of rational
functions holds:

i+j—1 r—1 (7"71)
1 _ Z (i*l) Jj—1 (1 50)
Zlflyj — (37 + y)TyH*j*T (ZL’ + y)rwiJrj*T : :

PrROOF. We proceed by induction on ¢ and j. The proof in the case
i = j =1 is a simple check. Assume that (1.50) holds for a given pair (3, j).
Derivating with respect to x, we find that ﬁ is equal to

(i) r(-1) (i+i-1(o)
HJ 4 y 7"+1 ’L—‘r] r (.%' + y)r-l-lxi-‘rj—r (1’ + y)Tmi+j+1—T
(Gl 09 B G V) ]

(iL' + y)ryi+1+j—r (.’L‘ + y)r$i+1+j—r

G =)

n Z x_i_y Txl"l‘]“!‘l T’

H—] 1

*Z

i+j
1 J

?
r

Thanks to the identities
=D =i, =D =6—-H(0)

and the convention (1.48), the previous expression becomes

3 : (") (=)

x4 y)ry T (@ 4 )t

r=1
which agrees with the right-hand side of (1.50) for (i 4+ 1, 7). The induction
step from (7, ) to (i,j + 1) is completely symmetric. O

COROLLARY 1.51. Let p,q > 1 be integers. For any non-zero complex
number a, the following equality of rational functions holds:
1 (q+k—1 q— prk—1
1 «— (G5) ("o
e — A DY k_ Ap=l/
up(u_a)q—( 1) kzo“p kaq+k+kz—0 P s v S CRCR)
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PROOF. Take y = w and z = a — w in (1.50). To transform the obtained
expression into (1.52), one notes that the binomial number (gj) vanishes

unless ¢ < r < p+qg—1, hence r can be written asr = g+kfork =0,...,p—1.

The same holds for (;j) O

1.3.2. Applications. A straightforward consequence of the partial frac-
tion decomposition of Lemma 1.49 is the shuffle relation
k—1
COICk =)= 6D+ (5] <k —7) (1.53)
r=2
for any £ > 4 and 2 < j < k — 2. Replacing the product in the left-hand
side of (1.53) by the stuffle formula (1.17) we get the linear identity

k—1
=S [67 + ()] ok ), (1.54)
r=2

which is called a double shuffie relation. The reason for these names will be
apparent in Section 1.5.

A more sophisticated application of partial fraction decompositions gives
the following result, essentially what Euler calls “tertia methodus” in [Eul76].
We refer the reader to [Har17] for a nice exposition of his techniques.

THEOREM 1.55 (Euler, 1776). Given integers p > 2 and q > 1, the
following equality holds:

q—2
C(prq) =D (=DF(EEE g — k)P + k)
k=0
p—2
+ (=D (TENCp — kg + F)
k=0

+ (DTN +a) +Cp+ g —1,1)].

REMARK 1.56. The assumptions p > 2 and ¢ > 1 ensure that all the
terms in the formula are convergent series. Euler also allowed the case p = 1.
Then the sum contains divergent terms such as (1) or ¢(1, 1) that one needs
to regularize, see [Har17] for a rigorous treatment of Euler’s method.

Making ¢ = 1 we immediately get:

COROLLARY 1.57 (Euler’s sum formula). If s > 3, then
s—2
C(s) =Y _Cls —4,9). (1.58)
j=1

In particular, ((3) = ((2,1).
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PROOF OF THEOREM 1.55. We follow [Nie65, III, §18, p. 48]. Let us
first observe that

o= > —— —Z<21> (1.59)

nP(n — a)?
n>m>1 n>2

Applying the partial fraction expansion of Corollary 1.51 to each sum-
mand in the right-hand side and separating the terms coming from k = p—1
and k =q — 1, gives:

n—1 p—2n—1 q+k: 1)
ann_a Zznp o
a=1 k=0 a=1
p—
B Bp I e
k=0 a=1
o 1
2
+ (_l)q(q—;ﬁl )231 [nalﬂ-q—l N aPti=(n — a)
a:

The sum over n of the first two terms in the above expression converges,
whereas the sum of each individual summand of the third term diverges.
We will show later that the sum over n of the third term is also convergent.

Applying equation (1.59) to the first term we obtain

p—2n—1 +k1)

p—2
20Ty > pkaq—l—k_ qkz—o ("HENCp — kg + k).

n>2 k=0 a=1
We next observe that

ZZ n—apaq

n>2a= 1

which implies that the sum over n of the second term is equal to

q—2n—-1 [__ )k(p+k 1) q—2
ZZZaHk n— )ik = D (DFEIRNa — k)X + k).
n>2 k=0 a=1 k=0

For the last term we use the identity

= artii(n - a)
a<ly n—1 1
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We note that
1
Z W =¢(p+a)

(B
n>2 \2
n even

and

n—1
ZZMZWW—H)‘

n>2 a>%

We finally estimate the remaining term. For N > 2, one has:

)Y DS N o -
_ q\pta—1 Z _ +q—1
=\ = n(n — a)pPta p (n —a)apta

- nap‘i‘q_l.

n>% a=N-—-n+1

Using that p+ ¢ —1 > 2, one sees that the last term converges to zero as NV
goes to co. The theorem follows from summing up all the computations. [J

COROLLARY 1.60 (Nielsen). If n > 2, the following equalities hold:

n—1

3
; C(2r,2n —2r) = ZC(Zn),
n—1
Y ¢@r+1,2n—2r—1)= %C@n).
r=1

ProOF. We follow [Nie65, III, §19, p. 49]. We shall use the following
identity, which follows from the decomposition (1.17) of the product of two
zeta values and Euler’s sum formula (1.58):

p—1
>SSl —r+1) =pC(p+1) = 2(p, 1). (1.61)
r=2

Theorem 1.55 for p = 2 and ¢ = 2n — 2 yields the equality

2n—4

(2n—2)[¢(2n) + ¢2n — L) = > (~DF(k+ 1)¢(k +2)¢(2n — k — 2).

k=0

Note that the term ((k +2)((2n — k — 2) is invariant under the substitution
k + 2n — k — 4 and that it appears with multiplicity (—1)*(2n — 2) in the
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sum in the right-hand side. Therefore,

2n—4
2[¢(2n) +¢2n - 1,1)] = Y (-1)F¢(k+2)¢@2n —k - 2)
k=0
n—1 n—2
= ¢@2r)¢@2n—2r) = ¢(2r+1)¢(2n - 2r - 1). (1.62)
r=1 r=1

Summing and subtracting equations (1.62) and (1.61) for p = 2n — 1

yields the recursion formulas

n—1
> ¢(2r)¢(2n - 2r) =
r=1
n—2
D Cer+1)¢@2n—2r—1) =
r=1

2n+1
2

¢(2n), n>2,
2n—3

5 n>3.

¢(2n) - 2(2n — 1,1),

The statement is proved by replacing the products of zeta values in the left

hand sides by (1.17).

0

REMARK 1.63. The previous corollary was rediscovered by Gangl, Kaneko
and Zagier, see [GKZ06, Thm. 1] and Exercise 1.67.

1.3.3. Relations in low weight. We now show how to use the above re-
sults to get linear relations among multiple zeta values of low weight.

COROLLARY 1.64. The following relations hold in Z:

(1) in weight 3:

¢(3)

(2) in weight 4:

¢(2,1).

((4) = 4¢(3,1),
<(27 2) = 3C(3’ 1)'

(8) in weight 5:

¢(5)

—4¢(4,1) +2¢(2,3),

€(3,2) = —5¢(4,1) +¢(2,3).

(4) in weight 6:

¢(6) = 4¢(5,1) +4¢(3,3),

C(2,4) = 0(5,1) + 2(3,3),
4 2
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ProOF. All the relations follow from Theorem 1.55 together with the
decomposition (1.17). We have already seen that the equality ((3) = ((2,1)
is the first instance of FKuler’s sum formula.

Let us now derive the two relations in weight 4. On the one hand,
Theorem 1.55 for p = q = 2 gives ((2)% = 2¢(4) + 2¢(3,1). Combining this
with the identity ¢(2)? = 2¢(2,2) + ((4), we obtain

(1) +20(3,1) = 20(2,2).
On the other hand, by Euler’s sum formula, {(4) = {(3,1) + {(2,2), hence
((4) =4¢(3,1) and ((2,2) = 3¢(3,1).

The remaining identities are left as an exercise. O

1.3.4. An upper bound for the dimension of F» 2. Putting together all
the identities of this section, one gets upper bounds for the dimension of the
Q-vector space generated by zeta and double zeta values of a given weight.
However, as we will see in the next section, these bounds are not expected
to be optimal in general (see Remark 1.94).

PROPOSITION 1.65. If k > 4, then the Q-vector space of zeta and double
zeta values of weight k satisfies

dimg Fy 2, < V;ﬂ .

PROOF. The space F»Z is generated by the k — 1 elements (k) and
C(j,k—j) for j=2,...,k — 1. Recall from Corollary 1.57 that they satisfy
Euler’s sum formula

(2 k=2)+---+¢(k—-1,1) = (k) =0,
as well as the double shuffle relations (1.54)
CUr k= 3)+C(k = j,) + ¢ (k)
k—1
-1 -1 .
=3[0+ D] k=), G=2. k-2
r=2
Since the latter are symmetric with respect to j +— k — j, it suffices to
consider the equations for j < k — 7, that is j < L%J

One gets one equation from Euler’s sum formula and L%J — 1 equations
from the double shuffle relations. We claim that these ng equations are
linearly independent. As k — 1 — L%J = [k—f], this implies the statement.
Indeed, by the convention (1.48), the double shuffle relations take the form

k—1
> a(rk—r)—((k)=0, j=2,... k-2,
r=j+1
with a, positive integers. The matrix of relations is thus upper triangular
with non-zero entries in the diagonal, hence invertible. O
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* % *
EXERCISE 1.66. Derive the remaining relations of Corollary 1.64.

EXERCISE 1.67 (Gangl-Kaneko-Zagier). Define the generating function
of double zeta values of weight &k as

Te(X,Y)= > ((rs)X 'yt

r+s=~k
r,s>1

(a) Use the double shuffle relation (1.54) to show that the following
functional equation holds for all integers k& > 3:
Ty(X +Y,Y) + Th(X + Y, X)
Xk—l _ Yk—l
X-Y
(b) Give an alternative proof of Corollary 1.60 using the above func-
tional equation for (X,Y) = (1,0) and (1, —1).

= Tk(Xv Y) + Tk(Y7X) + C(k)

1.4. The Zagier and the Broadhurst-Kreimer conjectures. As
we have seen in the previous section, there are many linear relations between
multiple zeta values. In order to elucidate the structure of the algebra Z,
one can start by performing numerical experiments.

1.4.1. Numerical experiments. The first step is to use clever techniques
to accelerate the convergence of the infinite series defining multiple zeta val-
ues. With these techniques, one can compute them with very high precision
(for instance 800 significant digits) in reasonable time’. Then we can ap-
ply lattice algorithms such as the LLL algorithm or, more efficiently, the
PSLQ algorithm to find linear relations with integral coefficients among the
computed multiple zeta values. At a given precision, we will find many
spurious relations (as we are only working with rational approximations),
but we can easily distinguish between true relations and spurious ones. The
true relations should have small coefficients compared to the inverse of the
used precision. Moreover, the true relations will survive after doubling the
precision, say from 100 to 200 significant digits.

After extensive experimentation by many mathematicians, no non-trivial
linear relations between multiple zeta values of different weight have been
found: all known relations are homogeneous. Moreover, we can write a
table with the “experimental” dimension of each vector space Zj. Below, k
is the weight, ;" is the apparent dimension of Zj, given by the experiments
and 2F-2 is the number of admissible multi-indices of weight k, that is, the
dimension Z;, would have had if there were no Q-linear relations at all.

3See e.g. §4 of [Bro96] for a description of such techniques, as well as [BBV10] for
the state of the art some years ago.
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k|12 3 45 6 7 8 9 10 11 12 13
28211 2 4 8 16 32 64 128 256 512 1024 2048
deP 1112 2 3 4 5 7 9 12 16

TABLE 1.1. Experimental dimension

Of course, the experiments are not conclusive. There may exist linear
relations with “big” coefficients that we have not yet found; then the dimen-
sion of Z;, would be smaller than dZXp. In fact, there is not even a single k
for which the inequality dimg Z; > 1 is known.

Many of the relations obtained experimentally can be proved theoreti-
cally. For instance, Euler’s sum formula (1.58) gives

C(S) = C(Q, 1)7
the expected relation in weight 3. In weight 4, there are four admissible
multi-indices but d;® = 1; we thus need to find three independent relations.
Indeed, according to Corollary 1.64 and Example 1.132 below, we have

€3 1) = 360, ¢2.2) =S¢, 21,1 =)

In weight 5, we expect six relations. In fact, by Corollary 1.64 and Exercise
1.138 below, we have the linear relations

()= §03.2) + p02.3),  C(41) = —£C(3,2) +£C(2.3),

) 5
4(5) :C(Z,l,l,l), <(4, 1) ZC(3,1,1), (1.68)
C(27 L, 2) = <(2a 3)? <(27 2, 1) = C(3, 2)'

However, given the lack of a theoretical proof, it is conceivable that
experimental relations survive up to the number of significant digits that we
have used but fail with higher precision.

1.4.2. Does the weight define a grading? The fact that all known rela-
tions between multiple zeta values are homogeneous led to the following:

CONJECTURE 1.69. The subspaces Zi, C Z are in direct sum:

z=(pz.

k>0

Together with the fact that Zy, - 2y, C Z, 4k, (Theorem 1.34), the
conjecture would be reformulated below as the statement that the weight
defines a grading on the Q-algebra Z.

REMARK 1.70. Assuming Conjecture 1.69, we immediately deduce that
all multiple zeta values of positive weight are transcendental numbers. In-
deed, let s be an admissible multi-index of weight w > 0. If {(s) were alge-
braic, it would satisfy a polynomial equation of the form ZZ:O arC(s)* =0,
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where the aj, are rational numbers. But then one would have

00C(8) € Zua 0 D) Zuur,
d'<d

hence agq = 0 since subspaces of different weights intersect only at 0.

1.4.3. Zagier’s conjecture. In order to give the conjectural dimension of
the Q-vector spaces Zj, we need to introduce a Fibonacci-like sequence of
integers. Set dy =1, dy =0, do = 1 and, for k > 3,

dp = dg—2 + dp_3.
These numbers fit together into the generating series
k
Z dkt _ _ t3
k>0

There is an overwhelming amount of numerical evidence for the following
conjecture, stated by Zagier in [Zag94, p. 509] “after many discussions with
Drinfel’d, Kontsevich and Goncharov”.

CONJECTURE 1.71 (Zagier). The equality dimg Zi = dj, holds.

Hoffman proposed the following refinement of Zagier’s conjecture, in
which not only the dimension of Z; but also a particular Q-basis is postu-
lated [Hof97, Conj. C, p. 493]:

CONJECTURE 1.72 (Hoffman). For each weight k, multiple zeta values
C(s1y...,80) with s; € {2,3} form a Q-basis of Zy,.

This would imply the following representations of the spaces Zj:

= {(2))a

= ({(B3))a

= (((2,2))e

=<C(2,3), (3,2))0

Zs = (€(2,2,2),((3,3))0

27 =(¢(2,2,3),¢(2,3,2),¢(3,2,2))0

REMARKS 1.73.

(1) The previous discussion shows that Z5 is generated by ((2,3) and
€(3,2). Thus, the first step towards the conjecture would be to
prove that these numbers are Q-linearly independent.

(2) Having the right number of elements does not mean finding a basis.
For instance, one could have thought that the elements

C(2TL1 + ]-a s 72n7‘ + 1)C(2)ka
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for r > 0,k > 0,n; > 1, form a basis of Z, since their number
in a given weight agrees with the conjectural dimension (see Ex-
ercice 1.99). However, Gangl, Kaneko and Zagier [GKZ06, p.74]
discovered the relation

28¢(3,9) + 150¢(5, 7) + 168¢(7,5) — %g(m),

which disproves such an expectation.

1.4.4. Algebra generators of multiple zeta values. In what follows, by a
Q-algebra (without any further qualifier) we will mean an associative com-
mutative algebra with unit.

DEFINITION 1.74. A graded Q-algebra is a Q-algebra A, together with
a direct sum decomposition (called grading)

A= A

keZ
into Q-vector spaces Ay such that Ay - Apr C Agypr. Note that the unit of
the algebra then belongs necessarily to Ag, hence there is a map n: Q — Ap.
A graded Q-algebra is said to be connected if Ay = 0 for all k < 0 and n
is an isomorphism. Moreover, A is said to be free if it is isomorphic to a
polynomial algebra Q[X7, ..., X,,...] with X; homogenous of some degree.

DEFINITION 1.75. Assume that all Ay are finite-dimensional. Then the
Hilbert-Poincaré series of A is defined as

Hu(t) = Z dimg Aktk.
keZ

If A is connected, then its Hilbert-Poincaré series has only positive de-
grees and the constant coefficient is equal to 1.

LEMMA 1.76. Let A be a connected graded free Q-algebra, and let Dy
denote the number of generators in degree k. Then

Ha(t) = [ —t%)=Px, (1.77)

k>1

Proor. Let X11,...,X1,pys.--,X¢1,...,Xep,, ... be aset of homoge-
nous generators of A, with X; ; of degree i > 1. It suffices to observe that the
coefficient of t* in the power series expansion of the product (1.77) agrees
with the number of monomials of degree k in the variables X; ;, and hence
with the dimension of Ay since we are dealing with a free algebra. O

We now explain how to compute the number of algebra generators in
terms of the logarithm of the Hilbert-Poincaré series. Let us keep the as-
sumption that A is connected, and write

log Ha(t) = chtn. (1.78)

n>1
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Recall that the Mobius function p takes the value 1 (resp. —1) on square-
free integers with an even (resp. odd) number of prime factors, and 0 on
non-square-free integers. In particular, u(1) = 1. The Mdbius inversion
formula is the statement that, if two sequences of complex numbers (an)n>1
and (bn)n>1 are related by the equality a, = de by for all n > 1, then

by = Z M(d)an/d

dln

LEMMA 1.79. Let A be a connected graded free Q-algebra, let Dy, denote
the number of generators in degree k and let ¢, be the coefficients of log H 4(t)
as in (1.78). Then the following equality holds:

d
d|k

ProoOF. Taking the logarithm of the identity (1.77) and using the formal
power series expansion —log(l —xz) =3 -, £ one gets

k tkd Dn/d n
logHA(t):—ZDklog(l—t):ZDk27:Z Z 7 t".

k>1 E>1 d>1 n>1 \ dn

Comparison of coefficients then yields
Dyya
RS

din

and the equality (1.80) follows from Mébius inversion. O

Let us specialize the above discussion to the algebra Z of multiple zeta
values. According to Zagier’s conjecture, its Hilbert-Poincaré series is
1

Hz(t)zil_#_tg.

CONJECTURE 1.81. Z is a graded free algebra.

Assuming this and Zagier’s conjecture, we would like to compute the
number Dy, of algebra generators in weight k. For this, we define a sequence
of integers (Py)4>1 by the equality

d
E at’ = E degt® = t—dt log Hz(t) =
d>1 d>1

Then P, =0, P, =2, Py =3 and P; = P;_o+ Py_5 for all d > 4. Therefore,
Lemma 1.79 gives

2t2 + 3t3
1—t2—t3

1
Dy =+ Z pu(k/d) Fy.
dlk
The first values of P, and Dy, are given in Table 1.2.
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k

8

9 10 11 12 13

P,

10

12 17 22 29 39

1
0
Dy |0

=N N

3
3
1

O DO >~
=] U1 Ut

6 7
5 7
01

1

11 2 2 3

TABLE 1.

\]

. Conjectural values of Dy, for the algebra Z

Recall that Hoffman’s conjecture 1.72 predicts that multiple zeta values
with exponents equal to 2 and 3 form a graded Q-basis of Z. It is only
natural to try to extract from these elements a set of algebra generators;
this is done through the theory of Lyndon words.

DEFINITION 1.82. Let X be the alphabet {a, b} and equip the set X* of
words in X with the lexicographic order for which a < b. A Lyndon word
is a non-empty word w € X* such that, for each non-trivial decomposition
w = uv, the inequality w < v holds.

For example, ab is a Lyndon word because ab < b, but none of the words
aa, ba, bb is Lyndon.

CONJECTURE 1.83. Z is the free Q-algebra generated by Lyndon words
on the alphabet {2,3} with the order 2 < 3.

Assuming that the conjecture holds, the algebra generators in weights
up to 13 are listed in Table 1.3.

weight | generators | weight generators
2 ) 5 ((2.3.3)
3 ¢(3) 9 €(2,2,2,3)
4 0 10 €(2,2,3,3)
5 ¢(2,3) 11 €(2,2,2,2,3),¢(2,3,3,3)
6 0 12 €(2,2,2,3,3),¢(2,2,3,2,3)
€(2,2,2,2,2,3),((2,2,3,3,3),
7 €(2,2,3) 13 ((2,3,2,3,3)

TABLE 1.3. First Lyndon words on the alphabet {2, 3}

1.4.5. The Broadhurst-Kreimer conjecture. So far we have only taken
into account the weight of multiple zeta values. To add the length to the
picture, the first difficulty one needs to face is that the length is only ex-
pected to induce a filtration and not a grading, as it is already evident from
the existence of relations such as ((3) = ((2,1).

DEFINITION 1.84.

(1) A filtered Q-algebra is a Q-algebra A, together with an increasing
collection of vector subspaces

- CF  ACFRACF 4AC. ..
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indexed by ¢ € Z and such that FyA-Fp A C Fy p A. The filtration
is called separated if (), FyA = 0, and exhaustive if | J, FyA = A.

(2) Given a filtered algebra (A, F,), the associated graded algebra is
Gr" A= P FA/F 1A
Lel

Note that the compatibility of the product and the filtration guar-
antees that Grf" A inherits an algebra structure.

(3) A filtered graded Q-algebra is a Q-algebra A with a filtration F, A
and a grading A = @5 A which are compatible in the sense that

FA =P FiA;.
kEZ

Given such an algebra, we set
Ak’g = Grf Ak = FgAk/Fg_lAk

and form the associated bigraded algebra @k,éez Apg.

Returning to the algebra of multiple zeta values, we see that the length
defines a separated and exhaustive filtration

FiZ2 = (C(s) | £(s) < b)q-
Assuming Conjecture 1.69, Z is hence a filtered graded algebra.

The associated bigraded algebra is not free, since ((2) - ¢(2) = 3¢(4)

implies that ((2)? vanishes in Z4 2. To remedy this, we consider the quotient
by the ideal generated by ((2):

Z° = Z/(C(2)).
It is a graded filtered algebra as well. Moreover, we equip Q[((2)] with the
filtration Fy = Q C F1 = Q[¢(2)], and the grading that gives ((2) weight 2.
The following is a refinement of Conjecture 1.81.

CONJECTURE 1.85.

(1) Grf' 2° is a free bigraded algebra.

(2) By the first part of the conjecture, there exists a morphism of filtered
graded algebras Z° — Z that is a section of the quotient Z — Z°.
Then the induced map Z° ®g Q[((2)] — Z is an isomorphism of
filtered graded algebras.

Definition 1.75 and lemmas 1.76 and 1.79 extend to bigraded algebras.
In particular, if A =& k0 Ak,e is a connected free bigraded algebra, then

HA(ZL‘, y) = Z (dimQ Akj)xkye = H (1 _ ‘,L,kyﬁ)—Dk,g7
k£20 k0>1

where Dy, 4 is the number of generators in bidegree (k,¢).
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Extensive numerical experiments support the following refinement of
Zagier’s conjecture, due to Broadhurst and Kreimer [BK97, §2]:

CONJECTURE 1.86 (Broadhurst-Kreimer). Define integers (Dj ¢)k>3,0>1
by the product expansion formula

B 1
H H(l -ty = 1—0(z)y+ S(x)y? — S(z)y*’ (1.87)

k>30>1

where O(x) and S(x) are the formal series
3

=3+ +a"+ a2+,
1— 22

x12

(1 —a2%)(1 — )
Then Dy, is the number of generators of Z° of weight k and length €.

O(x) =

S(z) = =2 410 4 18 4 220 4 222 4 024

For shorthand, write BK%(z,y) for the power series expansion of
1
1-0(z)y + S(x)y* — S(z)y*

Arguing as in Lemma 1.79, the numbers Dy, , are given by the formula

d
Dy = #ld) - coefficient of xgyg in log BK®(z,), (1.88)

d|(k,0)

where (k,¢) denotes the greatest common divisor of k& and /.

Taking Conjecture 1.85 for granted, the multiplicative formula (1.87)
becomes equivalent to the following additive version, which is the one usually
found in the literature:

CONJECTURE 1.89 (Broadhurst-Kreimer). Define non-negative integers
(di)ke>0 by the generating series

> dipatyt = L+ By
) - IR SR 1
k,0>0 1 - O(x)y + S(z)y? — S(z)y
where
E(z) = - =2 +at+2%+ 2%+
1 — 22 e

Then dyp coincides with the dimension of the space of multiple zeta values
of (precisely) weight k and length ¢, that is

dkj = dim(@ Z]Cyg.
REMARK 1.90. The series E(x) counts even zeta values, while O(x)

counts the odd ones. More interestingly, Zagier realized that S(z) agrees
with the generating series

S(z) =) (dimg Sk)z",

k>1
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where S} stands for the vector space of cuspidal modular forms of weight &
for the full modular group SLs(Z). It is a classical result that

L%J k even, k # 2 mod 12,
dimg Sk =< |45] —1 k=2 mod 12,
0 otherwise

(see e.g. §1.3 and §2.1 of [Zag08] for an elementary proof).

Let us denote by BK(z,y) the power series expansion of
1+ E(z)y
1-O0(2)y + S(x)y® — S(x)y*
Expanding the fraction as a geometric series and collecting the terms with
lower powers of y, we obtain

BK(z,y) = 1+ [E(z) + O(2)]y + [(E(z) + O(2))O(z) — S(z)]y*
+ [(O(x)? = 28(2))O(z) + (O(x)? — S(x))E(x)]y® + .. ..

REMARK 1.91. Observe that di; = 1 for all £ > 2. Since FpZ = Q,
the Broadhurst-Kreimer conjecture holds in this case if and only if ((k) is
irrational, which is only known for even k and k = 3.

The first values of dj 2 and dj, 3 are given in Table 1.4.

k|1 23 45 6 7 89 10 11 12 13 14 15 16 17
dg2|0 00011223 3 4 3 5 5 6 5 7
dg3|0 00000011 3 3 6 6 9 8 14 13

TABLE 1.4. First values of dj o and dj, 3

Similarly, we derive
log BK’(z,y) = —log(1 — O(a)y + S(z)y* — S(x)y")

—0la)y+ (00 - 5() ) 2+

+ (;O(m)?’ - O(x)S(x)) P

REMARK 1.92. Note that Dy, = 0 if £ and ¢ have different parity.
Indeed, in this case the integers d contributing to formula (1.88) are all odd,
so k/d and ¢/d have again different parity. However, it is clear from the
above expression for log BKY(z, y) that only monomials in which the degree
of x and the degree of y have the same parity appear.

LEMMA 1.93.
(1) If k is even, then Dy o = L%J

2-1

(2) If k is odd, then Dyz = | &=3°=1 ],
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PROOF. Specializing (1.88) to the case £ = 2, we get

1
Dy, 9 = coeff. of zFy? — icoeﬂ“. of xgy in log BK%(z,v)
1 1
= coeff. of 2* in (20(1‘)2 - S(:U)) —5 coeff. of z2 in O(z).

Since O(2)? = 3" j>6 “522*, we find that
%—L%J k=0 mod 4
Dps =< %% —|£] k=2mod 4,k #2mod 12
%—L%J k=2 mod 12,

and it is a simple matter to check that this quantity agrees with L%J The

proof of the second assertion follows the same pattern (Exercise 1.102). O

REMARKS 1.94.

(1) The numbers Dy, o and Dy, 3 are known to be upper bounds for the
number of generators of length 2 and 3, see [Zag93, §3] for £ = 2
and [Gon98, Thm. 1.5] for £ = 3. From this it follows that, in
lengths ¢ = 1,2, 3, one has the inequality:

dimg (FrZ2k/Fr—12k) < dj .
(2) In particular, for double zeta values we get
dimg Fo. 2, — 1 < dj; 5.
By contrast, Proposition 1.65 yields the upper bound

4
dimg Fy2), — 1 < {Zw :

The right-hand side of this last inequality agrees with the coefficient
of degree k of the power series (E(x)+ O(x))O(x), while dj, 2 is, by
definition, the coefficient of degree k in (E(x) + O(x))O(z) — S(x).
Therefore, the bound of Proposition 1.65 is not optimal for those
weights k such that Sj is non-trivial.

(3) Brown reformulated the Broadhurst-Kreimer conjecture in terms
of the homology of a certain Lie algebra [Brol3al.

1.4.6. Known results. Not much is known about these conjectures, es-
pecially the last one. The goal of these notes is to explain in detail the
following two results towards Zagier’s and Hoffman’s conjectures. In spite
of their elementary formulation, this will carry us far away since the only
known proofs are based on the theory of motives.

THEOREM 1.95 (Terasoma [Ter02], Deligne-Goncharov [DGO05]). The
number di is an upper bound for the dimension of the Q-vector space of
multiple zeta values of weight k, that is

dim(@ Z < d.
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THEOREM 1.96 (Brown, [Bro12]). Every multiple zeta value can be writ-
ten as a Q-linear combination of ((s1,...,s) with s; € {2, 3}.

REMARK 1.97. As we will see at the very end of the text, in paragraph
5.5.1, a corollary of these two theorems is that Zagier’s conjecture implies
the algebraic independence of odd zeta values (Conjecture 1.12).

* k x

EXERCISE 1.98. Prove that the sequence (dj)r>0 satisfies

lim (dj, — kr*) =0
k—oo
where k = 27;13 and r is the real root of 2% — z — 1.

EXERCISE 1.99. Let d; denote the number of ordered tuples of integers
(s,n1,...,n,) such that s >0, r >0, n; > 1, and

k=2s+2n;1+1+---4+2n, + 1.

Show that dg = 1, 61 = 0, 02 = 1 and 6 = Op_o + 0p_3 for all k& > 3.
Therefore, 0, = dy,.

EXERCISE 1.100. Assume that the numbers ((2),((3),¢(5),... are al-
gebraically independent, so that Q[((2),{(3),...] is a free graded algebra.
Apply Lemma 1.79 to compute the dimensions of the graded pieces, and
compare them to the conjectural dimensions of multiple zeta values. Then
find an example of a multiple zeta value which is not expected to be in the
algebra generated by Riemann zeta values.

EXERCISE 1.101. Show that either Hoffman’s or the Broadhurst-Kreimer
conjecture implies Zagier’s conjecture.

(k:—3)2—1J.

EXERCISE 1.102. Prove the equality Dy 3 = [~

1.5. Integral representation of multiple zeta values. We have de-
fined multiple zeta values as sums of infinite series. Using this representa-
tion, we proved that the vector space generated by these numbers forms
an algebra under the stuffle product. We also derived some linear relations
among multiple zeta values by means of the partial fraction method. Kont-
sevich found a different representation in terms of integrals. This way of
writing multiple zeta values is central to the theory. From a combinatorial
point of view, it yields a new structure, the shuffie product, from which many
other linear relations are obtained in a systematic way. More importantly,
from a conceptual point of view, the integral representation shows that mul-
tiple zeta values are periods of algebraic varieties. This will allow us to use
algebro-geometric tools to study them, and paves the road for applications
to a wealth of different areas such as knot theory or quantum field theory.
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1.5.1. Two examples.

ExaMPLE 1.103. The following identity holds:

B dty dty [P 1 (" dty
((2) = / 7511—752_/0 (tl/o T dty. (1.104)

1>t1>t2>0

Indeed, for 0 < t5 < 1 we have the geometric series expansion

1 _
1—+t9 :Ztg g

n>1

and thus

t1 dt2 t1 +n
= thtdty =) L.
[ e M AR S

n>1 n>1

Therefore we get

1 t 1 1
1M dty £ dty 1 _ 1
/t/ : tdtlz/E:ltZE /t’fldtlz§ —.
o t1Jo 1—t2 o S n

n>1

ExaMPLE 1.105. The identity

dt1 dts dts
T A
1>t >t2>t32>0
holds. Indeed,
/ dty dtz dtz / 1 Z ty dtq dto
tl 1—t21—t3_ tl nl—tg
1>t >t2>13>0 1>t >t,>0 21

1 tn—i—m—l
— / 0 Z 2 - dty dts

1>t >t,>0  m21

_ / 3 e dty
5150 nmS1 (n+m)n t

1
- Z (n+m)2n

n,m>1

=((2,1).

REMARK 1.106. As we will see in Section 3.7, the above integrals are
particular cases of iterated integrals, but for the moment we will think of
them just as ordinary integrals over a simplex.
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1.5.2. The integral representation. A piece of notation is needed to de-
scribe the general integral representation of multiple zeta values.

NOTATION 1.107. Given a real number 0 <t < 1, we define
AP(t) = {(t1,...,tp) ERP[t > t; >ty > --- > 1, > 0},

When ¢t = 1, we will simply write AP = AP(1). Furthermore, consider the
measures on the open interval |0, 1]

dt dt
)= — )= ——.
wlt) =%, w() =
If s = (s1,...,8) € Z! is a positive multi-index (i.e. all s; > 1), we
write r; = s1 + .-+ s; for each ¢ = 1,...,[. In particular, r; = s; and 7 is

the weight of s. For convenience, we also set g = 0. Let wg be the measure
on the interior of the simplex A%*(%) given by

L

ws = [ Jwoltr,141) - woltr—1) wi(tr,)-
=1

s;—1 times
For example, one has:
dt1 dity
W(Q) - ? 1— t2,
dt1 dity dtg dty

YT Tty by 1t
_dty dty  dts
w1 = ?1 — 191 —t3’
dty dto dts dty
w(3) = PR

1—t1 tg t3 1 —ty4

The following result is attributed to Kontsevich:

THEOREM 1.108. Let s = (s1,...,5¢) be an admissible multi-index. The
multiple zeta value ((s) can be obtained by a convergent improper integral:
C(s) =C(s1,---,50) :/ Ws. (1.109)

Awt(s)

In order to easily prove this theorem, we introduce the polylogarithm
functions, which will also be of use later in Chapter 3.

DEFINITION 1.110. Let s = (s1,...,S¢) be a positive multi-index and ¢
a complex number with |¢| < 1. We define

tm

Lig(t) = —_—.
is() > ning - nyt

ni>ng>->ng>1

We call Lig the (multiple) polylogarithm function (of one variable).
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REMARK 1.111. Similarly, one can define multiple polylogarithms of sev-
eral variables by

e t?l
Lls(tl,. ..,tg) = E —1 53 5
n n PR n
ni>ng>->np>1 0 L2 ¢

whenever the complex numbers ¢; satisfy |¢t1] < 1 and |t;| < 1fori=2,...,¢.

The following proposition is a straightforward consequence of basic re-
sults in complex analysis:

ProprosITION 1.112. If s is a positive multi-index, then the function Lig
is holomorphic on the open unit disk |t| < 1. Moreover, if s is admissible,
then Lig can be extended continuously to the closed disk |t| <1 and

Lis(1) = ¢(s).

For instance,

Liy (t) = Z% = —log(1—1t) = /Ot s (1.113)

= 1-%

An important property of polylogarithms is that they satisfy many func-
tional equations, the easiest being:

PROPOSITION 1.114. The following identities hold for all |t| < 1:

t
. dt .
/ L1817~--»8z(t1)t711 :L151+17~--,Se(t)7 (1'115)
0
t
. dt .
/ Llshm:sz(tl)l : :L11751,~~~78e(t)' (1'116)
0 -t

t dty ¢ ' dt
. B 1 1
/0 LISI,...7sg(t1)Tl —/O > iyt h

L)
ni>ng>-->np>1
t™

= Z s1+1,_s2 S¢

ni>ng>-->nyg>1 nl TL2 T nl
= Lisl+17"'7sﬁ (t)'

Similarly, equation (1.116) follows from the manipulations

. m
/0 Llsh...,sg (tl) 1—1 :/ E 5182 e E 1] dty

0 n1>ng>->ng>1 172 ¢ m>0
tno
Z noni'ny? ... n,*

no>ni>-->ng>1
= L11,817--~7Se (t)a

where we have written ng =n1 +m+1 > ny. O
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Now Theorem 1.108 is a particular case of the next result.

THEOREM 1.117. If s is a positive multi-inder and 0 < t < 1 a real
number, then the following identity holds:

Lis(t) = / Ws.
Awt(s) (t)

PROOF. The proof is by induction on the weight of s. If wt(s) = 1,
then s = (1) and the statement is just formula (1.113). The inductive
step follows from the functional equations in Proposition 1.114. Indeed, let
s = (s1,...,8¢) be a positive multi-index and assume that the result is true
for all multi-indices of lower weight. If s; > 1, we write ' = (s1—1,...,s¢).
Then, by the identity (1.115) and induction,

t dt t dt
Lis(t):/ Lis,(tl)lz// Wy 1:/ Ws.
0 tl 0 Awt(s’)(tl) tl Awt(s)(t)

The case s; = 1 is similar, using equation (1.116) instead. O

1.5.3. The shuffle product. Since multiple zeta values are integrals along
simplices, certain combinatorial properties of the latter translate into rela-
tions among the former. Let us first illustrate this with an example.

ExaMpPLE 1.118. We have the following equalities:

C(2) - / tl(l — tg) / U1(1 — UQ)

1>t1>t22>0 1>u12u2>0
/ dtl dtQ du1 d’u,z
tl(l — tg)ul(l — UQ>
1>t >t2>0
1>u1>u2>0

Z/ dtl dtQ du1 dUQ
t1(1 —ta)ur (1 — ug)
=((3,1) +¢(3,1) +¢(2,2) +¢(3,1) + €(3,1) +¢(2,2)
=4¢(3,1) +2¢(2,2),
where the sets U;, i = 1,...,6, are defined by
Uy ={12>t >u >ty >uy >0},
Up={12>1t1 >u >ug >ty >0},
Us={12>t >ty >u1 >up >0},
Us={12>u1 >t >ug >ty >0},
Us={l2>wu >t1 > t2 > uy >0},
Us={1>u1 >up >ty >ty >0}.
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The third equality comes from the decomposition
6
{(t1 2, un,u0) | 128 =49 >0, 1> uy > up > 0} = | U,
i=1
and the fourth one from Theorem 1.108.

REMARK 1.119. This expression of ((2)? as linear combination of double
zeta values is different from the one obtained by means of the series repre-
sentation in Example 1.18. Combining both, we recover one of the relations
which was proved in Corollary 1.64 using the method of partial fraction
expansions, namely:

¢(4) =4¢(3,1)
To generalize the previous example, we consider shuffles:

DEFINITION 1.120. A permutation o of the set {1,2,...,7+ s} is called
a shuffle of type (r, s) if the following two conditions are satisfied:

o(l)<o(2)<---<a(r)
or+1l)<o(r+2)<---<o(r+s).
We denote the set of all shuffles of type (r,s) by wi(r, s).

REMARK 1.121. By definition, a shuffle is a permutation that respects
the ordering of two distinguished subsets. The name comes from the way
gamblers shuffle a deck of cards in western saloons.

ExXAMPLE 1.122. The set of shuffles of type (2,2) consists of
Id, (23), (243), (123), (1243), (13)(24).
Shuffles allow us to decompose a product of two simplices into a union

of simplices, and therefore to express a product of integrals over simplices
as a linear combination of integrals.

ProOPOSITION 1.123. Let r,s > 0 be integers, 0 < t < 1 a real number
and p, € {wo, w1} fori=1,...,r+s. Then

/ :ul(tl) e ”T(tr) / ,ur+1(tr+1) e ,LLrJrs(trJrs)

AT (t) As(t)

= > / to=1(1)(t1) * g1 (rps) (Erts)
oEL(T,8) Ars (4)
Proor. Using the decomposition

AT(t) x AS(t)

= U {1 tes) 2ty > - 2 tg1pgy 2 0},

o€e(r,s)
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together with the fact that the intersection of two simplices on the right-
hand side is a set of measure zero we obtain

/ pa(tn) - pr(tr) / Pr1(trg1) - s (Brss)

An(t) As(t)

= / pi(tn) - prss(trys)

AT (£)x As(t)

= Z / H1 (tl) T MT+S(tr+s)

o€L(r,s) t2t, 11y 2ty—1 (4520

= Z / Ho=1(1) (tl) T Ho=1(rts) (tT+S)7

o€W(r,8) Arts (t)

where, in the last equality we have made the change of variables t; = t,-1(;
to put the set ¢ > t,-1(1) > -+ > t,-1(45) > 0 as A™F(t). O

1.5.4. Multi-indices and binary sequences. To easily exploit the preced-
ing proposition to derive relations among polylogarithms, and in particular
among multiple zeta values, we need a new notation.

DEFINITION 1.124. A binary sequence is an element o € {0,1}*. We
call k the weight of a, while its length is defined as the number of ones in
the sequence. A sequence is called positive if it ends in one and admissible
if it ends in one and starts with zero.

We will use the following notation to go from multi-indices to binary
sequences and the other way around.

NOTATION 1.125. To each positive multi-index s = (sq, ..., s¢) we attach
the positive binary sequence

bs(s) = (01511 1, .. olse=1} 1)

where 01*} means that the entry zero is repeated s times. By convention,
the empty binary sequence is admissible of weight and length both equal
to zero. Clearly, bs is a bijection between the set of positive multi-indices
and the set of positive binary sequences which respects the weight and the
length. Moreover, it restricts to a bijection between the subsets of admissible
objects on both sides.

If « = (e1,...,&r) is a binary sequence we will set
Wo = Wey + -+ We,.-

In particular, if s is a positive multi-index then

Ws = Whs(s)-



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 45

Moreover, if a is positive we will denote Liq(t) = Lijg-1(,)(t) and if it is also
admissible, we write ¢(a) = ¢(bs™(a)).

1.5.5. The shuffle product.

DEFINITION 1.126. Let o = (e1,...,&,), & = (€741, - ,&r+s) and & be
three binary sequences of lengths 7, s and t respectively. Then the shuffle
index W(a, ;@) is the number of shuffles of type (r, s) which send aa/ to
o. That is,

Ww(a,o;0") = #{o e w(r,s) | & = (e5-1(1), - - -y Eo=1(r15)) }-

Clearly, W(a,a’;a”) =0 unless t =7 + s.

The next result is the analogue of Lemma 1.40 for the shuffle index; it
follows directly from the definition as well.

LEMMA 1.127. Let a, o and o be three binary sequences such that
W(a,o;a") > 0. Then

(1) wt(a") = wt(a) + wt(«);
(2) U(a”) = (a) + £(d);

(3) if both o and &' are positive (resp. admissible), then so is o.

With this notation, Proposition 1.123 translates into the following result,
which is the analogue of Lemma 1.41 for shuffles.

LEMMA 1.128. Let o and o be positive binary sequences. Then
Lio(t) Lia () = Y wi(ev, 0’3 ") Lign (t).
a//

Moreover, if o and o are admissible, then

(@) - ¢a)) = wile,a';a”)¢(a”).

1.5.6. An involution. Another useful identity comes from exploiting the
symmetry ¢t — 1 — .

PROPOSITION 1.129. Let o = (e1,...,&,) be an admissible binary se-
quence. Then

/ e (t1) e (£) = / Ge, (t1) - e (1),
1>t1>-->1->0 1>t1>-->1.2>0

where wy = w1 and W1 = wy.

PROOF. The change of variables s; = 1 — t; transforms the measure
wo(t;) into wi(s;) = @o(s;), and wy(t;) into wo(s;) = @1(s;). Hence

[ oenwe = [ @l e,

1>1>5>t,>0 0<s; < <sp<1
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The sought formula follows after renaming the variables in the right as
S; = trfi. O

DEFINITION 1.130. For a binary sequence o = (g1, ...,¢&,), we write
T(a)=(1—¢p,...,1—¢1).
If « is admissible, then so is 7(«).
As a consequence of Proposition 1.129 and Theorem 1.108, we deduce
COROLLARY 1.131. If « is an admissible binary sequence, then
() = ¢(r(a)).
EXAMPLE 1.132. We have:

C(4) = C((()? 0,0, 1)) = C((()’ 1,1, 1)) = <(27 L, 1)'

* k Kk

EXERCISE 1.133. Justify the exchange of the integral and the summation
sign in the computations of examples 1.103 and 1.105.

EXERCISE 1.134. Show that the number of shuffles of type (r,s) is the

binomial number (Tts) .

EXERCISE 1.135. Manipulating series, show directly that

dty dts  dts
3) = e
<) / t ty 1—tg

1>t >t2>t3>0
and, more generally,

dt;  dte_q dis
t tseq1 1—tg

((s) =

EXERCISE 1.136. Use Lemma 1.128 to check the shuffle relation (1.53)
for (2)(¢(3). Same in the general case ((i)((7).

EXERCISE 1.137. Find a formula for {(s){(p, q) with shuffles.
EXERCISE 1.138. Check the identities
¢(5) =¢(2,1,1,1),  ¢(4,1)=¢(3,1,1),
€(2,1,2) = ((2,3), €(2,2,1) =¢(3,2)
with the help of Proposition 1.129.
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1.6. Quasi-shuffle products and the Hoffman algebra. In the pre-
vious sections, we have seen two methods to express a product of multiple
zeta values as a linear combination of MZVs. The first, using the series rep-
resentation, is called the stuffle product, and the second, using the integral
representation, is called the shuffle product. As seen in examples 1.18 and
1.118, both methods may give different linear combinations for the same
product of MZVs leading to linear relations among MZVs. The stuffle prod-
uct is easily expressed in terms of multi-indices as in Lemma 1.41, while
the shuffle product is expressed more conveniently using binary sequences
as in Lemma 1.128. We now want to put a little order to make clearer the
combinatorial structure of MZVs.

1.6.1. Alphabets and the quasi-shuffle product.

NOTATION 1.139. Let A = {a;}ics be a countable set. The elements of
A will be called letters and A is called an alphabet. Let QA be the Q-vector
space with A as a basis. Let Q(A) be the non-commutative polynomial
algebra over A, i.e. Q(A) = (ai,, i, .., a;,)q is the vector space with
the set of words in the letters of A as a basis, which is equipped with the
concatenation product

a/il... a/Zn .a/jl... a]m :ail... a/inajl... a]m.
We say that a word w = aj - - - a,, has length {(w) = n and set £(1) =0, as
we consider 1 as the empty word.

DEFINITION 1.140. Let A be an alphabet and let

0:QAxQA— QA
be a commutative and associative product. We define a new product *; on
Q(A) recursively by setting 1 % w = w %y 1 = w and
aw x¢ bv = a(w ¢ bv) + b(aw *¢ v) + (aQb)(w *¢ v),

for any pair a,b € A of letters, and w,v € Q(A) of words. This product
is extended to Q(A) by Q-linearity and is called the quasi-shuffle product
associated to <.

THEOREM 1.141 (Hoffman [Hof00]). The vector space Q(A) equipped
with the product x¢ is a commutative Q-algebra.
PRrROOF. Let us check the commutativity
Up k¢ U = U *¢ UL (1.142)

by induction on #(uy) + #(usz). If one of uy or ug is the empty word, then
(1.142) holds trivially. Thus let u; = aw and ug = bv with letters a,b € A
and words w,v € Q(A). Then, by definition of the product *, and the
induction hypothesis, we get

U ko Uz — U2 ¢ u1p = (aOb)(w *o v) — (bOa) (v *¢ w).

Since ¢ is assumed to be commutative, (1.142) follows from induction.
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The proof of the associativity is similar and is left as an exercise. ([

Let us give some examples of quasi-shuffle products.

1.6.2. Stuffle product. We first introduce the stuffle product. Let Y be
the alphabet with letters y1, 42,3, ..., together with the product

01: QY x QY — QY YiQ1Yj = Yitj-

The product ¢; is commutative and associative. The product *¢, on
Q(Y) will be denoted by * and called the stuffle product. By definition, it
is given by

yw * Y0 = yi(w * y;v) + y; (yiw * v) + yipj(w * v). (1.143)

EXAMPLE 1.144. We have y; *x y; = y;y; + y;¥i + ¥i4+; and

Y2 * Y3ya = y2(Ysya) + y3(y2 * ya) + ys5(ya)
= y2y3ya + y3(y2ya + yaye + ye) + ysya
= Y2U3Y4 + Y3Y2Ya + Y3yay2 + Y3Ye + Ysy4-
NOTATION 1.145. A positive multi-index s = (s1, ..., s¢) defines a word

Ys = Ysy = Ysy-
In fact, the set of positive multi-indices and the set of words in the alphabet
Y are in bijection. We will use this bijection to identify both sets.

LEMMA 1.146. The stuffle product is given by
Ys x Yo = >_st(s, 88" Yyar.

SII

PROOF. Let s = (s1,...) and 8’ = (s|,...) be two positive multi-
indices. Thus ys = ys,v and y, = Ysyw. The matrices used to define

the stuffle indices st(s, s’; 8”) in Definition 1.38 fall into three types.

81 .. 0 .. 81 ...
0 ...}’ s o) s )
The matrices of the first type give rise to the term ys, (v * ys), the matrices

of the second type to the term yy (ys*w) and the matrices of the third type
to the term yg, ¢ (v*w). O

Since the words of the alphabet Y are related to multi-indices and the
product of Q(Y") is the stuffle product, one may expect to have a morphism
of Q-algebras

Ys1 =" Ysy — C(Slw";sf)'
But since multiple zeta values are defined only when s; > 1 we have to

restrict the source of this map. Later, in Section 1.7 we will see how to
extend the evaluation map to the whole (Q(Y'), %).
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DEFINITION 1.147. A word w = ys, ...ys, is called admissible if s1 > 1,
i.e. if it corresponds to an admissible multi-index. We will denote by Q(Y')°
the subspace of Q(Y') generated by admissible words.

PROPOSITION 1.148.
(1) (Q(Y)°, %) is a subalgebra of (Q(Y), ).
(2) We have a morphism of Q-algebras
QY)Y - z
determined by the assignment

Ysy - Ys, > C(S1,. ., 81).

ProOF. The first statement can be checked directly from the definition
of the product . Alternatively, it follows from Lemma 1.146 and part (3) of
Lemma 1.40. The second statement follows from lemmas 1.146 and 1.41. [

Since we have identified positive multi-indices with words in the alphabet
Y, we often just write {(w) instead of ((s1,...,s;) for w =ys, ...ys,, thus
C(w=v) = ((w)¢(v) (1.149)
for all words w,v € Q(Y)°.
1.6.3. Shuffle product. We now introduce the shuffle product. Let X be
the alphabet in two letters X = {xg, 21}, equipped with the trivial product

a{2b = 0. We will denote by LU the corresponding product *,, and call it
the shuffle product”.

DEFINITION 1.150. We call = (Q(X), ) the Hoffman algebra.

PROPOSITION 1.151. Given two words xe, ... %
the alphabet X, their shuffle product is given by

and Te, ... Te,, ON

T

Ty oo T, WX o0 Ty = g Te, 1y Tey 1y
oew(r,s)

PRrRoor. Exercise 1.163. O
ExXAMPLE 1.152. We have
ToT1 W xox1 = 2x0T1T0T1 + 4x%x%

Tox1 L m%xl = xomlx%xl + 3w3x1x0x1 + 63:837%.

NOTATION 1.153. There is an obvious bijection between binary sequences
and words in the alphabet X: to a binary sequence a = (e1,...,&,) we as-
sociate the word z, = ¢, ...Zs,. Using this bijection, we can transfer the
shuflle index, as introduced in Definition 1.126, to words in the alphabet X.
The resulting index will be denoted by LW(u, v;w).

AThis justifies the name quasi-shuffle.
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With this notation, Proposition 1.151 can be rewritten as
uLI_Iv:ZI_I_I(u,v;w)w. (1.154)
w

This equation hints at the existence of an algebra morphism from §) to
multiple zeta values. As in the case of the alphabet Y, one needs to restrict
to the space where the series are convergent.

DEFINITION 1.155. A word in the alphabet X is said to be positive if it
ends in z1 and is said to be admissible if it ends in x1 and starts in xg.

Let $! (resp. $°) be the subspace generated by positive (resp. admissi-
ble) words, so that

HoH DN
PROPOSITION 1.156.
(1) (9°, W) and (H', W) are subalgebras of ($,L).
(2) There is a morphism of Q-algebras
(9 -z
given by the assignment
T — ().
(Recall that the multiple zeta value corresponding to an admissible
binary sequence was defined as ((bs™!(a)) in Notation 1.125).

Proor. Exercise 1.164. O

Since we are identifying binary sequences and words in the alphabet X,
we will often write ((x,) instead of ((a)). With this notation, Proposition
1.156 says that the following identity holds for all w,v € $H° :

C(ww o) = (w)l(v). (1.157)

1.6.4. Double shuffle relations. In the same way that positive multi-
indices can be translated into binary sequences, there is a map between
Q(Y) and $. This map does not preserve the product structure, the stuffle
product on one side, the shuffle product on the other. We can define a
second product on ) that is compatible with the stuffle product in Q(Y").

DEFINITION 1.158. The stuffle product in $), denoted *, is defined in-
ductively as follows:

lyw=wx1l=w YweS$HN
zhxw = wx 2f = wal) Vp>0,Vwe$H

2pW * 2qU = 2p(W * 2q0) + 24(2pw * V) + Zppq(w x V) Y w,v € H,

_ p-1
where z, = x; 1.
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PRrRoPOSITION 1.159.

a) ($,x*) is a commutative and associative Q-algebra.
b) The map

(Q(Y), %) <= (9,%)
Yi = zj = xé‘lxl.

s an algebra monomorphism.

Proor. Exercise 1.165. ([
THEOREM 1.160. Let ¢ : H° — R be as before. Then we have

C(wwv—w=*wv)=0.
Proor. This follows from equations (1.149) and (1.157). O

This theorem is a source of relations among MZVs called double shuffie
relations. Nevertheless, it is clear that they are not enough to describe all
relations among MZVs. For instance, we do not obtain any relation in weight
3, while we know the Euler relation, and we can only produce one relation
in weight 4, while there are at least 3 independent relations in weight 4. In
order to obtain the needed relations we will need to consider products with
non-admissible words. This will be done in the next section.

* k Kk

EXERCISE 1.161. Show that

(r+ s)!xr+5

r s _ —
ToWxyg=2g...2oWZTo... 20 = sl 0

EXERCISE 1.162. Prove that, for a letter ¢ and words u and v, the
following identity holds:

allluy = (aWu)v+ u(a L v) — uav.
EXERCISE 1.163. Prove Proposition 1.151.
EXERCISE 1.164. Prove Proposition 1.156.
EXERCISE 1.165. Prove Proposition 1.159.
EXERCISE 1.166. Given a multi-index s and an integer M > 0, we set

Cu(s) = Z %

ml .. .ml
M>mq1>ma>-->myp>0

(a) Show that, if s is admissible, then limys—o0 Car(s) = ((s).
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(b) Recall that we identified words and multi-indexes. Prove that
(v (9% = Q
is a group morphism, i.e. for all w,v € $H!
Car(w x v) = Car(w)Car (v).

EXERCISE 1.167. Using the identification between words in the alphabet
X and binary sequences, we obtain a map

Li: $' — C¢>®((0,1)).
Prove that this map is a homomorphism, that is, for all w,v € $!,

Liwwo(t) = Lin(t) - Liy(t).

1.7. Regularization and the Ihara-Kaneko-Zagier theorem. In
this section, we discuss how to extend multiple zeta values to non-admissible
words and use this extension to derive relations among them. Conjecturally,
all relations can be obtained in this way. We follow the paper [IKZ06].

1.7.1. The stuffle algebra as a polynomial ring.
THEOREM 1.168. The map of (Q(Y)Y, x)-algebras

p: QY)[T] — Q(Y)
T — U

18 an isomorphism.

Proor. We first show that ¢ is surjective, which amounts to saying
that any w € Q(Y) can be written as a polynomial in y; with coefficients
in Q(Y')°. The bijection between the sets of multi-indices and words in the
alphabet Y induces a grading by the weight wt and a filtration by the length
[ on the space Q(Y) given by

Wt(ysl ySe) :Sl++8£
E(ysl T yse) = /.
If we show that, for a fixed length ¢ and word w € F;Q(Y), there are
elements v; € F,Q(Y)? and vy, v3 € F,_1Q(Y) such that
w = V1 + Vg * Y1 + U3, (1.169)

then the claim follows by induction on /.
Any word of length £ can be written as

W=Y1 Y1Yss Yspy = UL} Ysi " Yspmm
N——

m

with s; # 1 and m > 0.
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We next prove, by induction on m, that w can be written as in (1.169).
For m = 0, we have w € Q(Y)?. Thus we can choose v; = w, v = v3 = 0.
For the induction step we compute

{yl}milysl e Ysp g XYL =

f—m

mew+ Y Y e Ys Y1Ysis  Yseo — U3
i=1

with vz € Fy_1Q(Y). Applying the induction hypothesis with respect to m
we deduce that w can be written as in (1.169). It follows that ¢ is surjective.

To prove the injectivity of ¢, we write each non-zero P € Q(Y)°[T] as
P =wT" + wy
with 0 # w1 € Q(Y)Y and wy of degree less than m in the variable T. Then
o(P) = mly"wy + vo

where all the words in vy have less than m factors y; in the front. Thus
©(P) # 0 and ¢ is injective. O

1.7.2. The shuffle algebra as a polynomial ring. Mutatis mutandi, one
can prove the analogous result for the shuffle product.

THEOREM 1.170.
(1) The map of ($°, 1)-algebras
P T —
T — I
s an isomorphism.

(2) The map of (9, 11)-algebras

o HU] —
U — Xy
18 an isomorphism.

Therefore the map of (H°, 1)-algebras

Y .60[T, uj — 9
T — X1
U —  Zo

18 an isomorphism.

PRroor. Exercise 1.203. O
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1.7.3. Regularized zeta values. Using the previous theorems we define
the stuffle and shuffle regularization maps.

DEFINITION 1.171. The stuffle regularization map

regl: Hl=QY) — 9T = Q(Y)°[T]

1 while the shuffle reqularization maps

is defined as reg! = ¢~
regl : 91 — $°[T], and
reghV: 5 — 90T, U]

— T _
as regl, = (I L and regujU =L

Theorems 1.168 and 1.170 allow us to extend the function ¢ in a formal
way.

DEFINITION 1.172. The stuffle reqularized zeta map, denoted ¢!, is the
composition

r T
QY) =5 Q(Y)'[7] = Z[1] C R[T).
We denote by (. the composition of (I with the evaluation at T = 0.

The shuffle reqularized zeta map, denoted by (L, is the composition

§1 B 5017 S, Z(7) ¢ R[T).

T

Similarly, we write Q_U’U for the composition

T,U
§ "8 607, U] -5 Z[T,U] C R[T, U]

We denote by (., the composition of CS’U with the evaluation at T'=U = 0.
We will also denote by ¢y its restriction to $'.

By identifying (Q(Y'), *) with ($', %), we will also consider ¢! as a map
from ($!,*) to R[T]. This map is characterized by the conditions

Fw)=¢(w) eR,  ifwef,
(L) =T,
G (v w) = ¢ (V)¢ (w).
In the same way, the map (! is characterized by the identities
¢L(w) =¢(w) e R, if we H,
((x) =T,
Cin(w ww) = i (v)¢, (w).

The maps (., (u and (UT_{U are determined by similar conditions. For
future reference we single out the properties characterizing (..
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PROPOSITION 1.173. The map (u: H — R is the only map satisfying

Cw(w) = ¢(w) € R, if w e H°, (1.174)
Cu(zo) = 0, Cu(r1) =0, (1.175)
CLU(U LU 'LU) = Cu_l('U)Cl_u(w)' (1.176)

COROLLARY 1.177. The image of (., agrees with Z.

PrRoOOF. By Theorem 1.170, every element w € § can be written as a
polynomial in g and x; with coefficients in $° with respect to the shuffle
product. By Proposition 1.173, we deduce (,(w) € Z. O

EXAMPLE 1.178. On the one hand, we have
¢H(1,2) = ¢ (n112)
= ¢ (Y2 * y1 — yavn — u3)
=¢(2)T - ¢(2,1) = ¢3),
which yields (,(1,2) = —((2,1) — ((3). On the other hand,
¢4(1,2) = (L (zrzoan)
LTu(wofEl Wz — 2307171)
C(2)T —2¢(2,1).
Therefore, ¢,,(1,2) = —2¢(2,1).

1.7.4. Comparing the shuffle and the stuffle regularizations. As we just
saw in the previous example, the regularizations (I (w) and ¢! (w) are in
general different from each other. In order to compare them, we introduce
the formal power series

A(u) = e™T'(1 +u) = exp Z

n>2

where v is the Euler-Mascheroni constant, and the second identity follows
from Exercise 1.20. We write
u) = Z yruk.

£>0
Observe that 4, is a linear combination, with rational coefficients, of multiple
zeta values of weight k. Here are the first values:

k |01 2 3 4
¢(2 C3) <22 | 3¢ €23) <32 1K
w0 G <@ EE L K i g
We define an R-linear map o : R[T] — R[T] by
= P e =S L 1.179
o1") = g (ACIT)| =S e (1.179)
u= =0
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THEOREM 1.180 (Thara-Kaneko-Zagier, [IKZ06]). The following iden-
tity holds for all words w € H :

¢Ew) = o(¢f (w)).

EXAMPLE 1.181. Since 79 = 1 and 7; = 0, we have p(1) = 1 and
o(T) = T. Combining this with Example 1.178 we find

o(G (1,2)) = o(C(2)T = ¢(2,1) = ((3))
=¢@2)T —¢(2,1) = ¢(3).
On the other hand,
¢h(1,2) = ¢(2)T - 2¢(2, 1),
hence we recover Euler’s relation ((2,1) = ((3).
PROOF OF THEOREM 1.180. The idea is to view (I (w) = o(¢T (w)) as

an identity of functions in 7. Let M > 0 be an integer and w = (ys, - - - ¥s,)
a word in the alphabet Y. We write

1
w = e .
CM( ) E: m?”_mz’e
M>mq1>ma>--->my>0

Note that, if w is admissible, then limps_,o Car(w) = ((w). We extend (ar
to a map Q(Y) — R by linearity. Then (y; satisfies the stuffle relation

Car(w1)Cur (w2) = Cur(wr * wa).

From the approximation of the harmonic series

1
= log M —
og +’Y+O<M>

g()—1+1+1+ +
MWL) =Ty Ty M—1

and the representation of ¢! (w) as a polynomial on (.(1), it follows that
there exists j > 0 such that, for M large enough, one has

Carlw) = (oM (1) + O(M " log? M), (1.182)
where (1677 (1) means the evaluation at T = log M + ~ of ¢ (w).

Recall that, to each positive multi-index s we have associated a poly-
logarithm function. Using the identification of positive multi-indices with
words in the alphabet Y and linearity, we attach, to each element w € $' a
function Li, on the segment (0,1). If w € $H°, then

lim Li,(t) = {(w).
t—1-

Moreover we have for all w,w’ and t € (0, 1)
Liy (t) - Liy (t) = Liyur (t).

Since

) 1
Liy, (t) = log <l—t> )
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when t — 1~

1

Liy(t) = dﬁg(f)( )+ O <(1 —t)log? <1it>> (1.183)
og( i

for some j > 0 depending on w. Here CLU )(w) means the evaluation at

T= log< )0f§m()

By explicit calculations,

D DU e

my>mao>-->mp>0

1
= Z Z mslmsz . mzé tm

m>1 \m>mo>-->my>0 2
=D Gt (w) = Gn(w))t™

m>1

1=1)> Cm(w)t™ .

m>2

In the last equality we use that ¢;(w) = 0.

We now need Lemma 1.184 below. We apply it to the polynomials
P(T) = C*T(w) and Q(T) = o(¢I (w)). We derive

Li,(t) = (1 —t) ng )t

m>2
(l 182) N log m—+~ m—1 _ logjm m—1
1=t (W™ (1= >0 (m ¢
m>2 m>1
20 (1og ) 1o ((1—t)logl (——
- 51 ¢ &\1-t))°

Comparing with the asymptotic expansion we get the claimed identity
¢L(s) = e(¢! (9))- :
The next lemma, is used in the proof of Theorem 1.180.

LEMMA 1.184.
(1) Let P(T) € R[T] and Q(T) = o(P(T')). Then

3 Pllogm) + )" = - >+o(10g (11_t>)

)_\/\

ZPlog + ~)tml ﬁQ log

for some j €N, ast — 17.
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(2) Ast — 17, we have

log/ m ., ; 1
—— " = log ™t — ) ). 1.1
Z - t O<og <1—t>> (1.186)

m>2
PROOF. Let us prove (1.1806) first. Since

1 1
—tm =1 Zlog(1—t
> - s log(1—1),

m>2

for 7 = 0 the left hand side of (1.186) is of type O <log (ﬁ)) ast — 17,

which proves the statement in this case. Now we proceed by induction on
j. We have

, " log’ n
log/!(m) < ¢; )
n
n=1

for m > 1, 5 > 0. This follows easily from the integral

z T T

[ g @y, o
. )
Hence for ¢ < 1 we obtain

Zlog ( tm 1<CJZ

m>1 m>1

1
jzog nlzr+n—1

n>1

cor (S0 (L (11).

n>1

tml

Now (1.186) follows by induction on j for all 7 > 0.

We now establish the identity (1.185). By construction o0 is a linear
map on R[T] and it therefore suffices to prove (1.185) for P(T) = (T — ~)™.
Thus we put Q(T') = o((T'—7)™). Then, by equatlon (1.179),

_ (T(1+u)e™)

du™

Q) = T (Aw)e)

du™
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%_t@ <10g <1l_t>> - % <m> ‘uo

a" D(m +u) oy
- AT m
du™ Z

Hence

2 T(m) ~
o F(n)(m) m—1
=2 Ty U

m>1

where T'™)(m) is the n-th derivative of the T' function evaluated at m. Now
we use that, for m — oo and all n, we have the estimate

PO o (g m)
Ton) = logtm) +0< - > (1.187)

Using this and (1.186) we obtain

3y Fg ()g;) 7 =3 log™ (m)¢™ ! + 0 <log" <1t>>

1
m>1 m>1
m—1 n 1
m>1 o
concluding the proof of the lemma. ([l

1.7.5. The extended double shuffie relations. We now introduce the ex-
tended double shuffle relations. We first recall the two commutative dia-
grams

(5, W) ——% (90, W)[T] (B ) = (99, %)[T]
h iw»—&“(w),T}%T > iwr—){(w),T*—)T
(& (@
R[T] R[T]

(1.188)

DEFINITION 1.189. Let (R,-) be a Q-algebra and Zz: $° — R a map.
We say that (R, Zr) satisfies the finite double shuffle relations if Zg is an
algebra homomorphism Zg: (9°, W) — (R,), as well as an algebra homo-
morphism Zr: (°, %) — (R, ), that is:

Zrp(wwwv) = Zr(w) - Zr(v) = Zr(w *v). (1.190)

Composing Zr with the regularization maps reg’, and reg!, we obtain
extensions

ZE ., (9Yw) — R[TY,
Z o (9% %) — RI[T).
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Since R is a Q-algebra that receives a map from $°, we can define the formal
power series

(=D"

n

Ap(u) =exp | Y

n>2

ZR(Yn)u"

By analogy with p, we can define a linear map og : R[T| — R[T] by
or(e?™) = Ap(u)e™. (1.191)

DEFINITION 1.192. Assume that (R, Zr) satisfies the finite double shuffle
relations. We say (R, Zr) satisfies the extended double shuffle relations, if
in addition, for all w € $', one has

Zh = or(Zf .(w)). (1.193)

Combining theorems 1.160 and 1.180 we obtain the main result of this
section.

THEOREM 1.194. The pair (R,() satisfies the extended double shuffle
relations.

In particular, since for wg € H° we have that z; W wg — 1 * wg € H
(Exercise 1.198), we deduce the Hoffman relation

C(a:l LW wy — x1 * ’LU()) =0. (1.195)

Moreover, the following holds for all wg € $°

T=0(21 % wg) = 0.

1.7.6. The universal algebra satisfying the extended double shuffle rela-
tions. Let p: R — R’ be a morphism of Q-algebras. If (R, Zg) satisfies the
extended double shuffle relations, then so does (R, o Zr). Let Rgpg be
the universal algebra with this property. Thus Rgps is a quotient of $° by
certain relations and, for any (R, Zr) satisfying the extended double shuffle
relations, there exists a map ¢r: Rgps — R such that the following diagram
commutes

9" — Reps

PR

R.

The following conjecture describes the structure of the algebra of multi-
ple zeta values.

CONJECTURE 1.196. The map pRr is injective, that is the algebra Z of
MZVs is isomorphic to Rgps.

REMARK 1.197. The finite double shuflie relations are linear and homo-
geneous with respect to the weight. Moreover the extended double shuffle
relations are also homogeneous (Exercise 1.201). Since the coefficients of the
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power series Ar are polynomials in zeta values, the extended double shuffle
relations relations are polynomial in the MZVs. Since products of MZVs can
be reduced to linear combinations of MZVs using either the shuffle or the
stuffle product, we can reduce the extended double shuffle relations relations
to linear ones. Hence all possible relations among MZVs are conjectured to
be generated by homogeneous linear relations.

* * *
EXERCISE 1.198. Show that, if w € $°, then z1 Ww — z1 * w € HO.

EXERCISE 1.199. Deduce Euler’s sum formula (1.58) from the Hoffman
relation. [Hint: take w = z,.]

EXERCISE 1.200. Show that 7y is a polynomial in {(2),{(3),..., that is
homogeneous of weight k.

EXERCISE 1.201. Use Exercise 1.200 to prove that the EDS relations are
homogeneous.

EXERCISE 1.202. What identities do we get from a comparison of (,(1, 1, 2)
and (,(1,1,2)7?

EXERCISE 1.203. Prove Theorem 1.170.

EXERCISE 1.204. Verify

n

Cu(s) =) <logM+’y+O (L))k

k=0
- 1
=S anllog M +)* +0 (10" (1))
k=0
EXERCISE 1.205. Prove (1.187).
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2. Periods of mixed Hodge structures

In this chapter, we introduce the first tools from algebraic geometry that
will be needed for the study of multiple zeta values. The main goal is to
show that all these numbers can be obtained by integrating an algebraic
differential form over a topological cycle on a variety defined over Q; the
extra structures carried by cohomology will then give non-trivial informa-
tion about these numbers. With this in mind, we begin by recalling the
definition of the singular cohomology of a topological space M. If M un-
derlies a complex algebraic variety X, this cohomology can be computed
using differential forms with polynomial coefficients: it is isomorphic to the
algebraic de Rham cohomology. A remarkable consequence is that, when
X is defined over Q, we get two different rational structures on the same
complex vector space which are not compatible. This is not bad news, quite
the opposite: the comparison between them produces an interesting class
of complex numbers called periods. Another important consequence is that
the cohomology of X is equipped with two filtrations, whose interaction
gives rise to a mixed Hodge structure. We explain the definition and give
many examples, in particular of Hodge structures of mixed Tate type. Con-
jecturally, Hodge structures capture all algebraic relations between periods.
As an illustration, we explain in detail how to interpret ((2) as a period of
an algebraic variety and how this can be used to prove that it is a rational
multiple of 72.

2.1. Singular homology and cohomology. We begin by briefly re-
calling the definition of the singular homology and cohomology of a topo-
logical space. For each integer n > 0, let

n
Agﬁcz{(to,...,tn)ERn+l’Ztizl, t;>0,i=0,...,n}
=0

be the standard simplex of dimension n. For each ¢ = 0,...,n, there are
face maps 6] : Agt_l — Al given by

5?(250, ce ,tnfl) = (to, ey tiz1, 008, ,tnfl).

Let M be a topological space. A continuous map o : Ay — M is called
a singular n-chain. For each n > 0, let

Cn(M) = @ZJ

be the free abelian group generated by singular n-chains. Elements of C,,(M )
are thus finite Z-linear combinations of continuous maps o: A}, — M.
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For each n > 1, we define a boundary map

8n : Cn(M) — Cn_l(M)
o—> Z o0 d6m). (2.1)

Thanks to the alternating signs, these maps satisfy 0,_1 0 3, = 0, thus
making (Ce(M), Ds) into a complex (see Exercise 2.18).

DEFINITION 2.2. The singular homology of M is the homology of the
complex (Co(M), Ds), that is
M)/1 =

Hn(M, Z) _ C()( )/ m(@l) n 0,

Ker(0y,)/Im(0p41) n > 1.

Elements in the kernel of the boundary map 9, are usually called (closed)
cycles and Im(0,,41) is the group of boundaries.

The above construction is functorial: if f: My — Mbs is a continuous map
between two topological spaces, sending a singular n-chain o: A}, — M; to
foo: A — My induces a morphism of complexes f.: Co(Mi) — Co(M2),
hence a group morphism

foi Ho(My,Z) — Hy,(My, 7).

EXAMPLE 2.3. Let M = C\ {0} be the punctured complex plane. Con-
sider the singular chains

e Agt — M, 1—1
o1: AL — M, (t,1 —t) — exp(2mit).

Then Ho(M,Z) and Hi(M,Z) are both free groups of rank one, generated
by o9 and o respectively. All the other homology groups vanish.

Dualizing, we find the free abelian group of singular n-cochains
C" (M) = Homz(C\, (M), Z),

as well as coboundary maps d": C*(M) — C™1(M) which yield again a
complex (C*(M),d®), this time cohomological.

DEFINITION 2.4. The singular cohomology of M is the cohomology of
the complex (C*(M),d*), that is:
Ker(d" =
o, z) = 4 e () o=l
Ker(d")/Im(d"™") n > 1.

REMARKS 2.5.
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(1) We have defined singular homology and cohomology with integral
coefficients, but the same construction extends to other coefficient
rings such as Q or R. Most of the time it will be enough for our
purposes to work with rational coefficients.

(2) Singular homology and cohomology are invariants defined for any
topological space. When M is a differentiable manifold, instead of
continuous maps o: A, — M we may use piecewise smooth maps
or even smooth maps. The resulting groups are the same.

(3) Working with rational coefficients, we can identify singular coho-
mology with the linear dual of singular homology
H"(M,Q) ~ Hom(H,(M,Q),Q),

and think of cohomology classes as linear functionals on homology.
This isomorphism cannot hold for integral coefficients since the
group Hom(H,(M,Z),7Z) is always torsion free, while H"(M,Z)
may have torsion (see Exercise 2.19).

In the sequel, we will mainly consider the singular cohomology of topo-
logical spaces given by the complex points of algebraic varieties over subfields
of C. It deserves a special name:

DEFINITION 2.6. Let k be a subfield of C and X an algebraic variety
over k. The Betti cohomology Hp(X) is the singular cohomology of the
space of complex points X (C) equipped with the analytic topology:

Hy(X) = H*(X(C), Q).

2.1.1. Relative homology and cohomology. There is also a relative version
of homology and cohomology: if ¢: N — M is a topological subspace, the
morphism of complexes t,: Co(N) — Co(M) is injective. Recall e.g. from
[Wei94, 1.5] that its cone is the complex Co(M, N) = cone(i,) given by

Cpn(M,N)=Cp_1(N)® Cr(M)
in degree n, together with the differential
d(a,b) = (—0a, —i«(a) + Ob).

DEFINITION 2.7. The relative homology of a pair of topological spaces
(M, N) is the homology of this complex:

H*(Mv N;Z> = H*(Co(Ma N))

We refer the reader to Exercise 2.20 for an alternative definition.

By construction, Ce (M, N) fits into a short exact sequence of complexes
00— Co(M) — Co(M,N) — Co(N)[-1] — 0,

where the left map sends b to (0,b), and the right map sends (a,b) to —a.
Above, the shifted complex Co(N)[—1] has C),—1(N) as degree n term, with
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01

FIGURE 2. A basis of H1(C\ {0},{p, ¢};Z)
differential —d,,—1, so that the relation H,,(Ce(N)[—1]) = H,—1(N,Z) holds.
The associated long exact sequence then reads

. H,(M,Z) H,(M,N:7) H,_1(N,Z)

n—1 - n—l( ) T, (28)

and the connecting morphisms are nothing other than the maps
v Ho(N,Z) — H,.(M,Z)
induced by the inclusion ¢: N — M.

REMARK 2.9. An element of the relative homology H, (M, N;Z) is rep-
resented by a pair (o, o)) consisting of singular chains oy € C,,—1(N) and
oy € Cp(M) such that dony = 0 and dopr = —i.on. Since ¢, is injective,
the singular chain oy is determined by the latter condition, which implies

the former. In other words, relative homology classes are represented by
chains in M whose boundary is contained in N.

ExAMPLE 2.10. Consider M = C\ {0} and let N = {p,q} C M be
a subspace consisting of two distinct points. Let o2: Al — M be any
continuous map such that o2((0,1)) = p and 02((1,0)) = ¢. Then

doo =p—qc C()(N)a
so o9 defines a relative chain. It follows from the long exact sequence (2.8)
that the only non-trivial relative homology group is Hy (M, N;Z), which has
a basis given by the chain o; from Example 2.3 and o9 (see Figure 2).

In a similar way, one defines relative cohomology groups

H™(M,N).
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2.1.2. Properties of singular homology. Singular homology and cohomol-
ogy have many useful properties such as

(1) Homotopy invariance: if M; and Mj are topological spaces with
the same homotopy type, then H.(M;,Z) ~ H.(Ms,Z).

(2) Mayer-Vietoris: for any two open subspaces U and V such that
M = U UV, there is a long exact sequence

H,(UNV,Z) H,(U,Z)® H,(V,Z) —— H,(M,Z)
/
/
H, (UNV,Z)

(3) Kinneth formula: there is a natural isomorphism
H,(My x My, Q) ~ @ Hi(My,Q) ® H;(Mp, Q).
i+j=n
Note that, for the Kiinneth formula to be true as stated we need

rational coefficients. A more more complex formula that involve
Tor groups is true with integer coeflicients.

2.1.3. Sheaf cohomology. We have already introduced singular cohomol-
ogy. To define periods, we will also need another type of cohomology called
algebraic de Rham cohomology. But before we can introduce it we need
to discuss general sheaf cohomology. We will give now give a brief sum-
mary sheaf cohomology. More details can be found, for instance in [Har77,
Chapter IT] or in [KXS06].

DEFINITION 2.11. Let M be a topological space. A sheaf of abelian
groups F' on M is an assignment that to each open subset U C M assigns
an abelian group F(U) satisfying the following properties

(1) If U C V is an inclusion of open subsets, then there is a restriction
map pyv: F(V) — F(U). The notation

tlu= puy(t)
is frequently used.
(2) If U € V C W are inclusions of open subsets, then

PUW = PUV © PV, -

3 IHU=J..;U;, with U and U;, i € I open subsets, and t € F'(A
i€l
such that ¢ |7,= 0 for all ¢ € I then t = 0.

(4) If U = U;¢; Ui as before and t; € F(U;) are such that
ti |UmUj: tj |UiﬂUj7 vZ?j € 1

then there exists ¢t € F'(U) such that ¢ |y,= t.
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Properties 1 and 2 are summarized stating that F' is a functor from
the category Op(M) of open subsets of M to the category Ab of abelian
groups. Property 3 is the locality property, while 4 is the gluing property.
Since all of the sheaves we will see in this notes are sheaves of abelian groups,
for shorthand we well use the word sheaf as a synonym of sheaf of abelian
groups.

The category of sheaves (of abelian groups) ShAb(M) is an abelian
category. In particular all the paraphernalia of abelian categories applies
to sheaves. For instance it makes sense to talk about kernels, cokernels
and images, of complexes of sheaves and of the cohomology of a complex
of sheaves, also the notion of exact sequence of sheaves is well defined and
the usual definition of injective object in homological algebra also applies to
sheaves.

Given a sheaf F' and an open subset U C M, the elements of F(U) are
called sections of F' over U. The group F(M) is also denoted by I'(M, F)
and its elements are called global sections. The assignment F' — I'(M, F')
gives rise to the global section functor I': ShAb — Ab. This functor is not
exact, but only left exact: if

0—>F —Fy—F3—0
is an exact sequence of sheaves, then the sequence of abelian groups
0—ID(M,F)—T(M,Fy) - T'(M,Fs)

is exact, but the rightmost map does not need to be surjective. This ob-
servation is the starting point of the definition of sheaf cohomology. In the
language of derived categories (see Section 4.2), sheaf cohomology is the
derived functor of global sections.

The category ShAb(M) has enough injectives. This means that, for
each sheaf F'| there exists a long exact sequence

0= F 1051t 512 .

where all the I’ are injective sheaves. Such an exact sequence is called an
injective resolution. Taking global sections yields a complex

D(M,I°) — T(M, I') — T(M, I?) — - -
and the sheaf cohomology groups of F' are defined as
H"(M,F)=H"(T'(M,I*)).
The resulting group does not depend on the choice of the injective resolution.

For theoretical purposes, injective resolutions are very nice, but it is not
easy to write them down explicitly and it is useful to have more concrete
ways to compute cohomology. A sheaf A is called acyclic if H/(X,A) = 0
for all i > 0. An acyclic resolution of a sheaf F' is an exact sequence

0= F— A 5 A 5 A% 5 ...



68 J. 1. BURGOS GIL AND J. FRESAN

where all the A° are acyclic sheaves. The sheaf cohomology of F' can be
computed using any acyclic resolution, that is

H™(M, F) = H"(T(M, A*)).

REMARK 2.12. Every sheaf F' has a canonical acyclic resolution called
the Godement resolution. It is constructed as follows: one first assigns to
each open subset U of M the product

(F)W) =[] F
zelU
of the stalks of F' at all points in U. Together with the obvious restriction
maps, one obtains a sheaf C°(F) on M. Moreover, the natural morphism of
sheaves F' — C°(F) is injective. Then one defines

CL(F) =C(C%F)/F).
Iterating this process yields the Godement resolution

C*(M, F): C'(F) — CYF) — C*(F) — - --

An important property of the Godement resolution is that it gives a
functorial way of choosing an acyclic resolution: if F' — G is a morphism
of sheaves, then there is a morphism of complexes C*(M, F) — C*(M,G)
compatible with the composition of morphisms.

ExAMPLE 2.13. Under mild assumptions on the topological space M,
singular cohomology can be identified with the sheaf cohomology of the
constant sheaf. More precisely, let Z be the sheaf that assigns to each
open subset U C M the group Z(U) = Z™U) where my(U) stands for the
number of connected components of U. Note that Z(U) can be identified
with the group of locally constant functions U — Z. Then, if M is a locally
contractible topological space, then

H(M,Z) = H* (M., ),

where the left-hand group is singular cohomology and the right hand group
is sheaf cohomology. The same result is true for other rings of coefficients.

2.1.4. Hypercohomology. Consider now a complex of sheaves of abelian

groups
F* .. ol 4 opn dopngl

For the cohomology of F'* we can mean two thinks. The first is to take
the cohomology in the abelian category ShAb, in this case the cohomology
objects will be sheaves. The second is to consider the derived functor of the
functor of global sections I'. In this second case the cohomology objects will
be abelian groups. In order to distinguish between these two possibilities
the second is classically called the hypercohomology of the complex.

Recall that a resolution of F'* is a complex D®, together with a quasi-
isomorphism F'* — D®. If all the sheaves D" are injective, we say that D®
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is an injective resolution. If all the sheaves D™ are acyclic, then D* is called
an acyclic resolution.

DEFINITION 2.14. The hypercohomology of F'*® is the cohomology of the
complex of global sections of any acyclic resolution D® of F'*:

H"(X, F*) = H"(I'(X,D*))

ExXAaMPLE 2.15. Since Godement’s canonical resolution of Remark 2.12
is functorial, we can use it to construct a resolution of any bounded below
complex of sheaves. Let

N - LN 2 N
be a complex of sheaves, with F"* = 0 for n < ng € Z. For each n, let
C*(M, F™) be Godement’s canonical resolution. By the functoriality of
Godement’s resolution, there are commuting maps
drer. C™(M, F™) — C™(M, F™Y,  d¥ . C™(M, F™) — C™ Y (M, F™).
The total complex of C*(M, F*®) is the complex Tot*(C (M, F)) with
Tot™(C(M,F)) = @ C9(M,F?)
ptg=n
and differential d given, for x € C?(M, FP) by
dz = d™z + (—1)Pd .

There is sheaf quasi-isomorphism F* — Tot*(C(M, F')) that makes
Tot*(C(M, F)) an acyclic resolution of F**. Thus

H"(X, F*) = H"(T'(X, Tot*(C(M, F)))).

Spectral sequences will also be needed at some point. The reader can
find an introduction to spectral sequences, for instance, in the book [BT82].
In particular, the hypercohomology of a complex of sheaves comes always
equipped with a spectral sequence

EP = HY(X, FP) = HPY(X, F*). (2.16)

EXAMPLE 2.17. As we have seen in Example 2.13, singular cohomology
can be writen as sheaf cohomology. In the same spirit, relative cohomology
as in 2.1.1 can be writen as the hypercohomology of a complex of sheaves.
Let X be a topological space and ¢: Y — X a closed immersion. The sheaf
t+Ly is defined as

uLy(U) = Zy(UNY).
There is a morphism of sheaves Zy — t.Zy. If X and Y are both locally
contractible, then

H*(Y,Z) = H*(X,1.Zy), H*(X,Y,Z)=H"(X,Zx — t.Zy).

* k x
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EXERCISE 2.18. Prove that the boundary (2.1) satisfies 9,,—1 0 9, = 0.

EXERCISE 2.19. Prove that there is a natural short exact sequence
0 — Ext(H,—1(M,Z2),2) — H"(M,Z) — Hom(H,(M,Z),Z) — 0.

Whenever H,,_1(M,Z) is torsion-free, the Ext group vanishes and we get an
isomorphism between H™(M,Z) and the linear dual of H,(M,Z).

EXERCISE 2.20 (An alternative definition of relative homology). We keep
the notations from paragraph 2.1.1. Given a topological space M and a
subspace N, show that the boundary maps 0,, yield a complex
Cn(M) Cp—1(M)
Cpn(N) Cn-1(N)
which is quasi-isomorphic to Ce(M, N). Therefore, one can also define the
relative homology of the pair (M, N) as the homology of (2.21).

(2.21)

EXERCISE 2.22. Combine the Mayer-Vietoris exact sequence with Ex-
ample 2.3 to compute the homology of the Riemann sphere P*(C).

2.2. Algebraic de Rham cohomology. Inspired by ideas of Atiyah
and Hodge, Grothendieck introduced the de Rham cohomology of algebraic
varieties over fields of characteristic zero in the paper [Gro66], written
shortly after Hironaka’s proof of resolution of singularities. In this section,
we explain the definition and give some elementary examples.

2.2.1. Motivation: de Rham’s theorem. Before going into Grothendieck’s
construction, we shall give a quick review of the more familiar objects in dif-
ferential geometry. The reader is encouraged to consult [BT82] for a very
nice exposition of the subject.

Let M be a differentiable manifold of dimension n. Recall that a differ-
ential p-form can be written in local coordinates as

w = Z fz'l,...,ip (1‘1, . ,$n>d$z‘1 FANRREIAN dxz-p, (2.23)
1<i1 <ig<+ip<n

where f;, i (21,...,2,) are C*-functions. Let EP(M) denote the real vec-
tor space of differential p-forms and

E(M) =P EP(M).
p=0

The exterior derivative d: E(M) — E(M) is the unique R-linear map
which sends p-forms to (p + 1)-forms and satisfies the axioms:

(a) If f is a smooth function, df is the differential of f.
(b) d? =0.
(c) If a is a p-form, then d(a A B) = da A S+ (—1)Pa Adp.
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We thus get a complex
0— EOM) -5 BY(M) -% - -5 EM(M) — 0,
whose cohomology H ({R(M ) is called the de Rham cohomology of M.

A classical theorem of de Rham asserts that the singular cohomology
H*(M,R) can be computed using differential forms.

THEOREM 2.24 (de Rham). Let 0 < j < n. The map
H’p (M, R) — HI(M,R)

which sends the class of a differential form w to the integration functional
Jw: Hj(M,R) = R is an isomorphism.

Remarkably enough, when M is the underlying topological space of a
complex algebraic variety, it suffices to consider differential forms with poly-
nomial coefficients. In this way, one obtains a purely algebraic definition of
cohomology, as we now explain.

2.2.2. Kahler differentials. We first recall the notion of Kéahler differen-
tials, the algebraic substitute for the differential forms (2.23). Let k be a
field of characteristic zero and A a finitely generated reduced’ k-algebra, so
that X = Spec(A) is an affine algebraic variety over k.

DEFINITION 2.25. A k-linear derivation on A is an A-module M, to-
gether with a k-linear morphism D: A — M satisfying the Leibniz rule

D(ab) = aD(b) + bD(a) (2.26)

for all a,b € A. Note that (2.26) implies that Dr = 0 for all r € k, that is,
elements of k are “constants”.

DEFINITION 2.27. The module of Kahler differentials Qh/k is the quo-
tient of the free A-module generated by symbols da, for a € A, by the
submodule spanned by the following elements for all » € k£ and all a,b € A:

dr, d(a+b) — da — db, d(ab) — adb — bda.

By construction, the map d: A — Qk/k sending a to da is a k-linear
derivation. It is actually the universal one, in the sense that, given any k-
linear derivation D: A — M, there exists a unique morphism of A-modules
P: Qi} e M such that the following diagram commutes:

d

N

M.

(2.28)

S5Recall that reduced means that there are no non-zero nilpotent elements in A.



72 J. 1. BURGOS GIL AND J. FRESAN

EXAMPLE 2.29. Let A = k[z1,...,xy,). Then QlA/k is the free A-module
generated by dx1,...,dx,. Indeed, let D: A — M be any k-linear deriva-
tion. It follows from the Leibniz rule (2.26) that

D) =Y 5 D),

0x;
i=1 g

where 9f /Ox; stands for the partial derivative in the usual sense. Thus, D
is determined by the images of the x;. More generally, if

A:]C[ZEl,---7l‘n]/(fl7"'afm)v

then the module of Kahler differentials Qi‘ Ik has generators dx1,...,dz,

and relations df; = > 1" | g—gdxi for j=1,...,m.

2.2.3. Algebraic de Rham cohomology of affine varieties.

PROPOSITION 2.30. If X = Spec(A) is smooth of dimension n, then the
module of Kahler differentials Qh/k is locally free of rank n.

We refer to Exercise 2.57 for an example of why the smoothness condition
is necessary. For each integer p > 0, let

1
QZ/k = ApQA/k
be the p-th exterior power. In particular, Q?ﬁl/k = A and Qi/k =0 for p > n.
The derivation d extends canonically to a complex
1 2

DEFINITION 2.31. The algebraic de Rham cohomology of X = Spec(A)
is the cohomology of this complex

Hin(X) = H* (% 0)-
EXAMPLE 2.32. Consider the affine variety G,, = Speck[t,t!], the al-
gebraic analogue of Example 2.3. The de Rham complex reads
k[, —% k[t ¢ dt
™ — mt™ L.

The cohomology is thus given by the kernel and cokernel of d. Since all t™dt
are in the image of d except for m = —1, one finds:

ko i=0,
Hig(Gm) = { k¢ i=1,
0 else.
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EXAMPLE 2.33. Let a,b € k be such that 4a3 + 276> # 0. Then the
polynomial f(z) = x> 4+ az + b has no double roots, hence the equation
y? = f(zx) defines an affine elliptic curve X C A%. In the language of
algebraic geometry, X = Spec(A), where A is the ring

A= ka,g)/(* — & — az —b),
Again, H{;(X) = k and Hig(X) vanishes for i > 2. The only interesting
cohomology is Hls (X) = Coker(d: A — Q).
Since f and f’ are coprime, there exist polynomials P,@Q € k[z] such
that Pf + Qf’ = 1. We consider the differential
w = Pydz +2Qdy € Q.
Using that, in QY4, the identity 2ydy = f/(z)dx holds, one finds

dr = yw, dy = =f'(z)w. (2.34)

Thus, any element of Q% can be uniquely written as (R + Sy)w for polyno-
mials R, S € k[z]. By (2.34), all differentials of the form Syw are exact, so
we only need to decide when Rw is exact. For this, compute

1
d(Ty) =T'ydx + Tdy = (T'f + in’)w

for T' € k[x]. Choosing T' with leading term ﬁmm for m > 0, one gets
d(Ty) = (™2 + ... )w, from which it follows that the image of the differen-
tial d consists of elements (R + Sy)w with R, S € k[z], R of degree at least
two and S arbitrary. We deduce that

HéR(X) = <wa xw>k-

Let us now turn to the situation where X is any smooth variety over k,
not necessarily affine. Glueing the differential forms on affine open subsets,
we get a sheaf on X.

PROPOSITION 2.35. There exists a unique coherent sheaf Q%{/k on X
whose restriction to every affine open subset U of X is the Ox-module as-
sociated to 1} .

Ox(U)/k

Recall that the Kihler differentials Q% form a locally free sheaf of rank
n, equipped with the universal k-derivation d: Ox — Qﬁ( Let Q’X denote
the i-th exterior power of Qk Then d extends to maps d': Q4 — Q?Ll
satisfying d't1od’ = 0. We denote by (9%, d) the resulting de Rham complex
of locally free sheaves:

0%: Ox ok 505 5. (2.36)
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2.2.4. Algebraic de Rham cohomology.

DEFINITION 2.37. Let X be a smooth projective variety over a field
k of characteristic zero. The algebraic de Rham cohomology of X is the
hypercohomology of the de Rham complex:

Hip (X) = H'(X, Q%)

REMARK 2.38. When X is affine, there is no need to use hypercoho-
mology. In this case, we let QP(X) denote the space of global p-differentials
on X. Then (2°(X),d) is a complex of k-vector spaces called the global de
Rham complex. The algebraic de Rham cohomology agrees with the coho-
mology of this complex:

Hip(X) = H(O(X) = QYX) = Q*(X) — ---). (2.39)

In general, when X is not affine, the cohomology of the global de Rham
complex does not coincide with the algebraic de Rham cohomology. For
example, QP(X) vanishes for p > n, hence so does the right-hand side of
(2.39), while a variety will in general have non-trivial cohomology Hjy (X)
up to degree 2n. Most of the varieties of these notes will be affine, so we
will often be able to use the global de Rham complex.

2.2.5. Relative de Rham cohomology. There is also a relative version of
algebraic de Rham cohomology. For simplicity, we explain the construction
only in the affine case. Let X be a smooth affine variety over k, and consider
a smooth closed subscheme ¢ : Z < X, which is hence automatically affine.
There is a restriction morphism of complexes t*: Q°(X) — Q°(Z). Note
that, in contrast to the situation for relative singular homology, the map +*
is far from being injective. Let Q°(X, Z) denote the complex

O(X,Z)=0"(X)o Q" Y2),
together with the differential
d(OéHB) = (dOé, [,*(Oé) - dﬂ)

REMARK 2.40. It is instructive to compare this complex to the one used
to define relative homology in Section 2.1.1. Mimicking the construction of
the cone for cochain complexes, we obtain:

cone(L*)" = Q" (X) @ Q" (2),

with differential
d(a, B) = (—da, —t* () + dp).

Therefore, recalling that the shift [—1] changes the sign of the differential,
we see that Q°(X,Z) coincides with the complex cone(:*)[—1]. This last
complex is also called the simple of ¢*. The use of the simple or of the cone
of a morphism of complexes depends on whether we want that the degree
in the obtained complex agrees with the degree in the source complex or in
the target complex.
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DEFINITION 2.41. For X a smooth affine variety and Z < X a smooth
closed subscheme, the relative de Rham cohomology of the pair (X, Z) is the
cohomology of the complex Q°(X, Z):

Hir(X,Z)=H"(Q%X, Z2)).

Again, a relative de Rham class is represented by a pair of differential
forms («, B) such that « is closed and the restriction of « to Z is equal to df.
However, in general, « is not determined by S.

EXAMPLE 2.42. Consider X = Speck[t,t!] and let Z = {p,q} be the
closed subscheme of X defined by two rational points. Then Q°(Z) is con-
centrated in degree zero, Q°(Z) = k @ k and the map

X)) =kt QN 2) =k k
is given by evaluating functions at p and ¢, that is, *(f) = (f(p), f(q))-
Therefore, the complex Q°(X, Z) reads
d: k[t,t 7] — k[t,t Nt k@ k
fr— (f'@®)dt, f(p), f(a)). (2.43)
The differential d is injective and has image
Im(d) = ((0,1,1), (nt"~1dt, p", ") | n € Z\ {0},

from which it follows easily that H éR(X , Z) is the k-vector space generated
by the relative differential forms

w1 = (Oa 170)7 w2 = (dt/t,0,0)

REMARK 2.44. The de Rham cohomology of affine smooth varieties van-
ishes above the dimension. If n = dim X, and Z C X is a closed smooth
subscheme of smaller dimension, then a useful part of the long exact se-
quence of relative cohomology is

o= HW(Z) — Hig(X,Z) — Hig(X) — 0. (2.45)

2.2.6. The case of normal crossings divisors. In the sequel, we will also
need to use relative de Rham cohomology in the case where Z is not smooth,
but a simple normal crossings divisor. Using some homological algebra, the
above definition extends to this setting.

DEFINITION 2.46. A divisor D on a smooth algebraic variety X has
simple normal crossings if all the irreducible components are smooth and,
for each p € X, there exists a local equation of D of the form z;---x, for
independent local parameters x; € Ox, and r < dim X.

It follows from the definition that the intersection of m distinct irre-
ducible components of a simple normal crossings divisor D is a smooth
subvariety of codimension m in X.
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CONSTRUCTION 2.47. Let X be a smooth irreducible affine variety over
k and D a simple normal crossings divisor, with irreducible components
Dy, ..., D,. For simplicity, we assume that all the D; are defined over k as
well. For each subset I C {0,...,r}, we set

D;=(Di.
el
We define D° = X and, forp=1,...,r+1,
pr= ][ br.
[7|=p
Then there is a double complex of k-vector spaces
KP4 = Q4(DP),

where the vertical differentials dV*" are (—1)Pd, and the horizontal differen-
tials d"°" are linear combinations, with +1 coefficients, of restriction maps.
More precisely, dP": KP4 — KP+14 is given by

P e 0)dr,
\Il=p
|J|=p+1
IcJ
where dyj: Q4(Dy) — Q4(Dy) denotes the restriction map and the sign
e(I,J) is defined as follows: if J = {jo,...,Jjp} with jo < ... < jp, and

I={jo,---Jtr---Jp}, then e(I,J) = (1)~
Note that, thanks to the factor (—1)? in the definition of d"*", the vertical

and the horizontal differentials anticommute. Let Q°(X, D) denote the total
complex associated to KP4, that is

(Q.(X, D) = @ KP4, 9= dhor 4 dver) )

ptg=e

DEFINITION 2.48. The relative de Rham cohomology Hjip (X, D) is the
cohomology of the complex Q°*(X, D).

As for any total complex associated to a double complex, the cohomology
can be computed by means of the spectral sequence

EP? = HY(Q*(DP)) = HIZY(X, D). (2.49)
Let n = dim X. By definition, a class in the top degree cohomology
H™(X, D) is represented by a tuple

n

(Wo, -+, wn) € @ QP (DP).

p=0
What is more, one can always choose w, = 0 for p = 1,...,n, so that
all classes in H"(X, D) are indeed represented by some w € Q"(X). The
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key point is that the restriction maps Q" P~1(DP) — Q" P~1(DP+1) are all
surjective [HMS17, Lemma 3.3.20]. We will see in the example below how
to use this to find a representative; the general case is analogous.

EXAMPLE 2.50. Let X = A% = Speck[z, y] and let D C X be a triangle.
After an affine transformation, we may assume without loss of generality
that D is the union of the lines

Dy = {z =0}, Dy = {y =0}, Dy ={z+y=1}

Do

Ficure 3. The triangle D

In this case, the double complex is equal to

2
(Q°(A?),d) — PO (Di), ~d) — P (Q°(DiND;),d) — 0.
i=0 0<i<j<2

To make all the above terms and maps explicit, we write Dy = Speckly],
Dy = Speck[z] and we parametrize Dy = Speck[z,y]/(x +y — 1) by the
coordinate z = x. Then one gets:

klx,yldz A dy

1

klz, y]dr @ klx, y|dy —— k[z|dx @ kly|dy @ k[z]dz

i d

k[z,y] - ] & kly] & k[2]

kokok,
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where the maps a and b are given by

a: f(x,y) — (f(0’$)vf(yvo)7f(z7 1- Z))’
b: (f(x),9(y), h(z)) — (g(0) = £(0), h(0) — f(1), (1) — g(1)),
and c is induced from a in the obvious way.

Therefore, the spectral sequence (2.19) reads

0

k—kDk®dk—kdkDk

where the first map sends a to (a,a,a) and the second one is given by
(a,b,¢) = (b—a,c—a,c—b). Since the only non-vanishing cohomology of
the bottom complex is in degree two, generated by (1,0, 0), the second page
of the spectral sequence is reduced to 1522 0 — k. Tt follows that HQR(AQ, D)
vanishes for 7 # 2 and is one-dimensional for ¢ = 2.

To produce a differential w € Q?(A2) representing the cohomology class,
we follow the “zig-zag” method, which consists of

e finding wy € k[z] ® k[y] & k[z] such that b(w1) = (1,0,0),
e applying d"°" to get wy = —dw; one row upper,
e choosing w3 € k[z,y|dr & k[x,y]dy such that c(ws) = —ws.
Then, setting w = —dws, one has
O(w1 + w3) = b(w1) — dwi + c(w3) + dws = (1,0,0) — w,

so w and (1,0,0) are cohomologous.

w

T

W3 <=— w2

W] <— (1, 0, 0)

FIGURE 4. The zig-zag method

It is straightforward to check that one can take

w1 = (y—1,0,0), we=(—dy,0,0), ws3=(1—2x)dy—ydz.
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This yields the differential form w = 2dx A dy, which defines a relative
cohomology class since it has top degree. In conclusion:

(dx Ndy)r =2,

Hin(X,D) =
dR( ) {O otherwise.

* Kk k

EXERCISE 2.51. Prove that the axioms (a)-(c) of the definition of the
exterior derivative imply that, in local coordinates,

"0
d(fdwi, A+ Adag) = a:f-
i=1 "

dx; N dl’il VAN dCL',L'p.

EXERCISE 2.52. Let k be a field of characteristic zero. Show that
HO%: (A7) = k and that all the other cohomology groups vanish.

EXERCISE 2.53. In Example 2.33 we saw that a basis of the de Rham
cohomology of an affine elliptic curve X C Ai is given by the classes of
the differentials w and zw. Let X C IP’% be the projective completion of X,
that is, the smooth projective curve obtained by adjoining to X the point
at infinity O = [0 : 1 : 0]. Prove that w extends to a holomorphic differential
on X, whereas 2w has a double pole at O.

EXERCISE 2.54. We have defined de Rham cohomology for varieties over
a field of characteristic zero. Show by means of an example that the same
definition gives pathological results in positive characteristic (for instance,
the cohomology of Al has infinite dimension).

EXERCISE 2.55. Show that the differential w; from Example 2.42 is coho-
mologous to (ﬁdt, 0,0). Deduce that (dt/t,0,0) and (dt,0,0) form another
basis of the relative cohomology group H. éR(IP)l \ {0, 00}, {p, q}) and compare
it to the previous one.

EXERCISE 2.56. Let A be a k-algebra and A®; A — A the multiplication
map which sends an element ), a; ® b; to Y a;b;. Set

I =Ker(A®, A— A).
The goal of the exercise is to prove that 9}4 e~ I/I? as A-modules:

(a) Show that the map a — 1 ®a — a® 1 induces a k-linear derivation
A — I/I?, hence, by the universal property (2.28), a morphism of
A-modules ¢: Qi‘/k — I/I2.

(b) Consider the ring R = A ® Qz/k, where A acts on (2114/11C through
the A-module structure and the product of two elements of Qh Jk
is always zero, together with the map

Prove that the module of Kéhler differentials is equal to QY =1 /1% and
the universal k-derivation is given by ¢ — 1 ® a —a ® 1.
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EXERCISE 2.57 (Ké&hler differentials are not locally free for singular va-
rieties). Set A = k[z,y]/(ry) and X = Spec(A). By Example 2.29, the
module of Kahler differentials Q}( Ik has generators dr and dy, and one re-
lation zdy = —ydx. Let w = zdy.

(a) Show that k[w] is a torsion submodule of Q2 /5 Which sits into an
exact sequence 0 — k[w] — Q% e klx]dx & k[y]dy.

(b) Prove that Q3% = (dz A dy)y.

2.3. Periods. In this paragraph, we introduce a class of complex num-
bers called periods. They will form a countable subring of C halfway between
algebraic and transcendental numbers: although they tend to be transcen-
dental, they share with algebraic numbers the property that they contain,
in some sense, “a finite amount of information”. Moreover, this informa-
tion has geometric nature. From the modern point of view, periods appear
when comparing de Rham and Betti cohomology of algebraic varieties over
number fields. We refer to [HMS17] for a detailed exposition of the subject.

2.3.1. Naive periods. The following elementary definition was first writ-
ten down by Kontsevich and Zagier [KZ01]:

DEFINITION 2.58. A period is a complex number whose real and imagi-
nary parts are values of absolutely convergent integrals

/ fz1,...,xp)dey - - - day, (2.59)

where f is a rational function with rational coefficients and ¢ C R" is a
subset defined by finite unions and intersections of domains of the form
{g9(z1,...,2) > 0} with g a rational function with rational coefficients.

One may replace “rational function” by “algebraic function” and “ra-
tional coefficients” by “algebraic coefficients” in the above definition, and
still obtain the same class of numbers. Standard examples of naive periods
include the following;:

e All algebraic numbers (see Exercise 2.74).

e The number 7 = fz2+y2<1 dxdy.

e Logarithms of rational numbers log(q) = 1q %Z.
C e oo dr

e Elliptic integrals [ NEEETEE

2.3.2. The comparison isomorphism. Let k be a subfield of C and X a
smooth algebraic variety over k. As we have seen, the singular cohomology
of X(C) is a graded Q-vector space and the de Rham cohomology of X is
a graded k-vector space. Both are related by Grothendieck’s comparison
isomorphism.
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THEOREM 2.60 (Grothendieck, [Gro66]). Let X be a smooth variety
over a subfield k of C. Then there is a canonical isomorphism

compg gr : Hig(X) ® C = HE(X) ®q C. (2.61)

When X is an affine variety, all classes in de Rham cohomology are rep-
resented by differential forms. Then the comparison isomorphism is induced
by the pairing '

Hip(X)® H(X(C),Q) — C
wRo — [ w.
The fact that (2.62) depends only on the classes of w and o, and is thus well
defined, follows from Stokes’ theorem.

(2.62)

REMARK 2.63. Later on, we will also need the inverse of the comparison
isomorphism compg gr, which will be written as

IDEA OF THE PROOF. The strategy to prove the comparison isomor-
phism is to relate Betti cohomology to an analytic version of de Rham
cohomology. Indeed, by “analytification”, the algebraic de Rham complex
(2.62) becomes the analytic de Rham complex

_.X'an: Og’gli)Q%(ani)QQang
of the analytic complex manifold X&" associated to the base change X x;, C.
The hypercohomology of 2%.. defines the analytic de Rham cohomology
groups Hj; (X2") and, again by analytification, we get a canonical morphism
of complex vector spaces:

Hig(X) @, C — Hig(X2). (2.64)

Besides, according to the Poincaré lemma, the complex Q5%.. is a resolu-
tion of the constant sheaf Cxan. Since singular cohomology is isomorphic to
sheaf cohomology with values in the constant sheaf, we obtain a canonical
isomorphism

Hp(X) ®g C > Hig(XE").
The proof is thus reduced to show that (2.64) is an isomorphism. If we
assume X to be proper, this is a straightforward consequence of Serre’s
GAGA theorem, together with the existence of spectral sequences relating
algebraic (resp. analytic) de Rham cohomology to the sheaf cohomology
HY(X,0%) (resp. HI(X2, O%..)). The proof of the general case is more
difficult. O

REMARK 2.65. The theorem does not hold if the smoothness assumption
is removed. For instance, if X is the affine plane curve defined by the
equation 2% + y® + 22y? = 0, one can show that dim Hl (X) > dim H5(X)
[AK11, Example 4.4]. However, the theorem remains true for singular X
with the “correct” definition of de Rham cohomology [HMS17].
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There is also a relative version of the comparison isomorphism:

THEOREM 2.66. Let k be a subfield of C, X a smooth variety and Z C
X either a smooth closed subvariety or a mormal crossings divisor, with
everything defined over k. Then there is a canonical isomorphism

Hip(X,Z)®, C— Hp(X, Z) ®q C. (2.67)

REMARK 2.68. Recall that if X is affine and ¢: Z — X is a smooth closed
subvariety, relative cohomology classes are represented by pairs (wx,wyz) and
(0x,0z) satisfying

0ox = —10z7, ‘wx =dwz, dwx =0.
Then the period pairing is given by:

Hix(X,Z)o HF(X,Z) — C
(wx,wz) @ (0x,02)  — [, wx+ [, wz.

2.3.3. Cohomological periods. The comparison isomorphism does not re-
spect the rational structures, as it is already clear from the following basic
example. In particular, in the case where k = Q, the vector spaces H’p(X)
and H5(X) are isomorphic (they have the same dimension), but there is no
canonical isomorphism between them!

EXAMPLE 2.69. Let X = G,, = SpecQ[t,t!], so the complex points
are X(C) = C\ {0}. We know from examples 2.3 and 2.32 that

Hix(X)=Q%,  H(X(C),Q)=Qo,

where ¢ is the counterclockwise oriented unit circle. Then the comparison
isomorphism is given by multiplication by:
dt

— = 2ms.
t

(e

The fact that the comparison isomorphism does not respect the rational
structures gives rise to the periods.

DEFINITION 2.70. Let £ C C be a number field. Let X be a smooth
variety and Z C X a normal crossings divisor, both defined over k. We call
a period of the pair (X, Z) any coefficient of a matrix of the isomorphism
(2.67) with respect to rational bases of both sides.

It is shown in [HMS17, 11.2] that the naive and the cohomological
definitions of periods yield the same subring of C. However, starting from
an integral representation as in (2.59) it is in general not easy to find the
pair (X, Z), as we will see when discussing the case of {(2).
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2.3.4. Examples.

ExaMpLE 2.71. All algebraic numbers are periods. Indeed, let k£ be a
number field and consider the zero-dimensional variety X = Spec(k), which
we regard as defined over Q. Then HJy(X) is canonically identified with
the Q-vector space k. By its very definition, X (C) is the set of complex
embeddings of k, hence H]03 (X) = QHom(~C) 1 we choose a basis a1, .. ., a,
of k over Q and o1, ..., 0, denote the complex embeddings of k, the period
matrix is (o;(a;))s,;-

EXAMPLE 2.72. Let X = G, and Z = {1,q} for ¢ € Q\ {0,1}. In
Example 2.10 we obtained generators o1 and o9 of H{ (X, Z) and in Example
2.42 generators wy and wy of HéR(X, 7). With respect to these bases the

period matrix is
o2 w1 o2 w2 —_ 1 log(Q)
fm w1 fm ) 0 2w )’

which shows that logarithms of rational numbers are periods.

2.3.5. Compatibility with complex conjugation. We finish this section by
stating a result which will be used in Chapter 4. Let ¢: C — C denote
complex conjugation and assume that k¥ C R. Then c induces a continuous
map X (C) — X(C), hence an involution at the level of Betti cohomology
p: H5(X) — H5(X). The functoriality of (2.61) implies:

PROPOSITION 2.73. Assume that k C R. Then the comparison isomor-
phism (2.61) is equivariant for the action of Z/2 by id @ ¢ on the left-hand
side and by p ® c on the right.

We illustrate the proposition in the case of G, (see Exercise 2.75 below
for another instance). We know from Example 2.69 that the comparison
isomorphism compp 4 sends dt/t to 0V ® (27i). The differential form being
rational, it is invariant under complex conjugation, so ¢¥ ® (274) should also
be invariant. For this, observe that the image of o by complex conjugation
is the clockwise oriented unit circle, whose cohomology class is —o. Thus,

(p@c)(o® (2mi)) = —0 @ (—27i) = 0 @ (27i).

* k x

EXERCISE 2.74. In this exercise, we show that all algebraic numbers
are naive periods in the sense of Definition 2.58. For example, the integral
representation

V2 = dx
x2<2

x>0

shows that v/2 is a naive period.
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(a) Let P € Q[z] be an irreducible polynomial and let a, ..., a, be its
real roots. Generalize the above example to show that all «; are
naive periods.

(b) Using that the real and the imaginary part of a complex algebraic
number are real algebraic numbers, deduce that all algebraic num-
bers are naive periods.

EXERCISE 2.75. Let C' C A?Q be the affine conic given by 22 4+ y? = 1.

(a) Show that the de Rham cohomology group HJ, (C) is generated by
the class of the differential form xzdy — ydx and that the singular
homology H;(C(C),Q) is generated by the chain

o:[0,1] — C(R), t+ (cos(2nt),sin(27t)).
(b) Prove that the associated period is equal to

/xdy —ydr =27

and check Proposition 2.73 in this case.

(c) Find generators of the singular homology of the conics C' defined
by the equations z2 + y2 = —1 and 22 — y? = 1 and check Propo-
sition 2.73 in these cases as well.

2.4. Multiple zeta values as periods. The previous examples show
that algebraic numbers, logarithms of rational numbers, and the ubiquitous
271 are all periods. From the integral representation (1.109), it follows im-
mediately that multiple zeta values are periods in the sense of Kontsevich
and Zagier (Definition 2.58). However, it is not so easy to exhibit the corre-
sponding algebraic varieties. The main goal of this section is to work out in
detail the example of ((2) in order to give an idea of the difficulties involved.

2.4.1. The example of ((2). Recall from Example 1.103 that ¢(2) admits
the integral representation

4(2):/1 diy \ _dt2 (2.76)

>t >t>0 1 1 —1t2

The integrand is the differential form on the affine plane
dty dta
w=— ,
t1 1 -1
which is singular along the union of the lines
fo = {tl == 0} and 51 = {tg = 1}
Thus, w is a global differential 2-form on Y = A2\ (fo U {1).

The domain of integration is the simplex

o ={(t1,t2) | 1 >1t1 >t > 0} C A%
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However, if we want to consider the integral (2.76) as a period of Y, relative
to some divisor containing the boundary of o, we immediately face the
technical problem that o is not contained in Y, as the points p = (0,0) and
g = (1,1) belong to o N (¢p U £1) (see Figure 5).

éOI

FI1GURE 5. The simplex o and the singular locus £o U ¢1

A way to remedy this is to perform a geometric construction called blow-
up, which replaces a point on a variety by a divisor called the ezceptional
divisor. It is a very useful technique in the study of singularities. In our
case, we have to blow up the two problematic points p and q. More precisely,
the blow-up of A? along p and ¢ is the closed subvariety X C A% x P! x P!
defined by the equations

tion = taf,
(t1 — Dag = (ta — 1) 52,

where [a; : B;] are homogeneous coordinates on the two copies of P!. The
projection onto the first factor induces a proper surjective map

T X — A%
It is easy to verify that m—!(p) is the projective line
E,=(0,0) x P! x [1:1] ¢ A? x P! x P!,
while 771(g) is the projective line
E,=(1,1) x [1: 1] x P ¢ A% x P! x P',
Moreover, the restriction
T [x\(E,uE,) * X \ (Ep U Eq) — A%\ {p,q}

is an isomorphism. For any closed subset C' C A2, the strict transform C of
C is the closed subset of X given by

C=n1C\{p a}).
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In words: we first remove the points p and q if they are in C, then we pull-
back by 7, and finally we take the Zariski closure. The strict transform is
contained in the total transform 7~1(C) but it may be smaller. For instance,
the strict transform of ¢; is the affine line

Lo =0y ={((0,t),[1:0],[1 —ta:1]) | t2 € A'},
while the total transform is Lo U E,. Note that Ly and E), have only one
common point:
Lo N Ep = {((0,0), [1: 0], [1: 1])}. (2.77)

Similarly, the strict transform of ¢; is the affine line
Ly =0 ={((ts,1),[1: t4],[0: 1]) | t, € A},

which is disjoint from the exceptional divisor E,, intersects Ly at the point
((0,1),[1:0],[0:1]), and E; at ((1,1),[1:1],]0:1]).

In principle, the pull-back 7*(w) of w might have singularities along the
total transform of ¢y U ¢;, which would only worsen the initial situation.
Fortunately, it is only singular on the strict transform LgU L. This can be
seen using local coordinates in X. For instance, a local patch of X around
the intersection of Ly and E, is given by the coordinates
B _h

t =2, s=1y,
(05] t2 N 2
in which E), and Lo have local equations s = 0 and ¢ = 0, respectively. Then

. d(st) ds ds ds dt ds dt ds
™(w) = A S == A

= — A

st 1—-s s 1—s+t 1-s t 1-5s’
where we have used the Leibniz rule and the fact that ds Ads = 0. It follows
that 7*(w) is smooth along E,. An analogous computation shows that 7*(w)
has singularities along L; but not along Fj.

The closed points of the exceptional divisor E, can be interpreted as
lines passing through the point p. This allows us to find the points of £,
that are contained in o:

cNE,={(0,0),[m:1],[1:1]) |0 <m < 1}.

Combined with (2.77), this implies that N Ly = (. A similar argument
shows that N Ly = (), so, after passing to the blow-up X, the singular locus
of 7*(w) and the domain of integration & are disjoint (Figure 6).

Write L = Lo U L;. The complement X \ L is still an affine variety; in
fact, it is the closed subvariety of A2 x A! x A! defined by

tit = to,
(1= 1) = (t2 = Ds,

where t, s are the coordinates of the first and the second affine lines. By the
previous discussion, 7*(w) is an element of Q?(X \ L).
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Ly

Ly

E, o

FIGURE 6. The strict transform of ¢ and the singular locus
LoU Ly

The next issue one needs to deal with is that o is not a closed chain. Its
boundary is contained in the union of the affine lines

me = {t1 = ta}, mg = {ta =0}, mq = {t; = 1},
so we are naturally led to consider the normal crossings divisor
M =71 maUmsUmy) = E,UE,UMyUM;3UM; C X,

where M; denotes the strict transform of m;. One easily checks that the
intersection L N M is reduced to the points Ly N E, and L1 N E, which we
have already computed.

Since 7 is contained in X\ L and its boundary lies in M, using Remark 2.9
we see that o determines a relative homology class

G € Hy(X \ L, M\ (LN M)).

Besides, the restriction of 7*(w) to every irreducible component of M is zero
for dimension reasons, so it defines a relative cohomology class

™ (w) € H3g(X \ L, M\ (LN M)).

Pairing these classes through the comparison isomorphism (2.67) yields,
as we wanted, the period
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2.4.2. Multiple zeta values as periods of the moduli spaces My,,. For
each integer n > 3, let My ,, be the moduli space of n ordered distinct points
in P! up to projective equivalence. In other words, two tuples (1,...,x,)
and (y1,...,ys) are identified if there exists an element g € PGLg such that
g(z;) = y; for all 4. Since there exists a unique automorphism of P! sending
any given three points to 0,1 and oo, we can fix an identification

(a;l, .o ,$n) = (0, 1,OO,t1, .o ,tn_g)
to get rid of the quotient. This induces an isomorphism
Mo, =~ (PP\{0,1,001)" 3\ {(t1,. .., tn—3) | t; = t; for some i # 5},

which shows that My, is a smooth variety of dimension n —3. In particular,
My 3 is reduced to a point and M4 = P!\ {0, 1, 00}.

Deligne, Mumford and Knudsen [Knu83] constructed a smooth com-
pactification Mo,n of My, by a normal crossings divisor. The irreducible
components of the boundary are in one-to-one correspondence with the par-
titions of the marked points into subsets of cardinality at least 2. We refer
the reader to [KV07] for a nice introduction to these spaces and their com-
pactifications.

T3 Ty Ty
) T T3
Ty I3 T
T T I
0 1 00

FIGURE 7. Boundary of the moduli space My 4

REMARK 2.78. The blow-up of P! x P! at (0,0), (1,1) and (oo, 00) is
isomorphic to the Deligne-Mumford compactification Mg of the moduli
space of genus zero curves with 5 marked points. The boundary Moﬁ \ Mo s
consists of 10 smooth divisors intersecting transversally. The previous con-
structions shows that ((2) is a period of

H2(M075\A7B\(AHB))7

where A is the union of 5 irreducible components of the boundary and B
consists of the remaining ones.
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Although the technical difficulties to transform the integral representa-
tion of any multiple zeta value into a period are the same we have encoun-
tered for ((2), one needs a more systematic method to deal with all of them.
This was accomplished by Goncharov and Manin:

THEOREM 2.79 (Goncharov-Manin [GIM04]). Given an admissible multi-
index s of weight n, there exists two normal crossings divisors As and B,
supported on the boundary of My ,y3 and with no common irreducible com-
ponents, such that ((s) is a period of

H"(Mony3\ As, B\ (As N B)). (2.80)

REMARK 2.81. A converse to this theorem, due to Brown [Bro09], af-
firms that, for any choice of boundary divisors A and B, all periods of the
cohomology groups H"(Mg 43\ A, B\ (AN B)) are Q[2mi]-linear combi-
nations of multiple zeta values. This can now be seen as a consequence of
Brown’s theorem characterizing the periods of mixed Tate motives over Z.

In these notes, we will rather follow Deligne and Goncharov [DG05] to
show that multiple zeta values are periods associated to the pro-unipotent
completion of the fundamental group of P!\ {0,1,00}. A reason to prefer
this approach is that it becomes easier to study the question whether rela-
tions between multiple zeta values come from geometry. A third way to see
multiple zeta values as periods was proposed by Terasoma in [Ter02].

* k Kk

EXERCISE 2.82. Show that the boundary of the Deligne-Mumford com-
pactification of My, has 2"~ —n — 1 irreducible components.

2.5. Mixed Hodge structures. Thanks to the comparison isomor-
phism (2.61), the Betti cohomology of algebraic varieties has richer proper-
ties than the singular cohomology of a random topological space. As we will
explain in this section, it is endowed with a mixed Hodge structure, which
can be thought of as a first approximation to the notion of motive. Usually,
the study of a period in the sense of Definition 2.70 begins by understanding
the mixed Hodge structure on the cohomology of the pair of varieties from
which it comes. This theory was developed by Deligne in the 70s, taking as
source of inspiration on the one hand Hodge’s theorem for compact Kéhler
manifolds and, on the other hand, ¢-adic cohomology of varieties over finite
fields. For a more systematic treatment, we refer the reader to Deligne’s
original papers [Del71, Del74] or the monographs [Voi02] and [PS08].
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2.5.1. Pure Hodge structures. Let M be a compact Kahler manifold of
dimension d (for instance a projective complex manifold). For each pair of
integers (p, q), let HP4(M) C HPT9(M,C) be the subspace of cohomology
classes that can be represented by a C*-closed differential (p + ¢)-form of
type (p,q), i.e. that can be locally written as

Zf[,J(Zl,...,Zd)dzil /\“-/\dzip ANdzj N - /\dijq,
1,J

where the sum runs over subsets I = {i1,...,ip} and J = {j1,...,Jq} of
{1,...,d}, and fr s are C*°-functions.

The starting point of Hodge theory is the fundamental theorem by
Hodge.

THEOREM 2.83 (Hodge). There is a direct sum decomposition

H"(M,Q)©qC= @ HP(M). (2.84)
pt+g=n

Complex conjugation acts on the right-hand side of (2.84) through the
action on the coefficients of the left-hand side, that is,

cRQw=c@w oecH"(M,Q), weC.

This action sends HP4(M) to H%P(M), a property commonly referred to as
Hodge symmetry.

REMARK 2.85. Abstractly, what appears in Hodge’s theorem is a finite-
dimensional Q-vector space H, together with a bigrading

Hc=HgoC=  H
ptg=n
satisfying HP4 = H%P, This is called a pure Hodge structure of weight n,
and the set of pairs (p,q) for which HP? £ 0 is called the Hodge type. As

you will prove in Exercise 2.113, these data are equivalent to a decreasing
filtration F'* on Hc (the Hodge filtration) such that, for all integers p,

He = FPHe @ FrPH1He. (2.86)

This is the definition that one usually finds in textbooks about Hodge
structures. However, for the purpose of studying periods it is important to
remember that the filtration F'® in Hodge’s theorem comes from de Rham
cohomology. If M arises as the complex points of a variety X defined over
a subfield k C C, then

H"(M,C) = Higp(X)®, C
and the Hodge filtration is already defined on the k-vector space Hjy (X, k).

The following definition keeps track of all these elements:
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DEFINITION 2.87. Let k be a subfield of C and n an integer. A pure
Hodge structure over k is the datum

H = (Hp, (Hgr, F*), compg 4)

of a finite-dimensional Q-vector space Hpg, a finite-dimensional k-vector
space Hgg, together with a decreasing filtration F®*, and an isomorphism
of complex vector spaces

ComvadR: HdR Rk C— HB ®Q (C,

such that the induced filtration on Hc = Hp ®q C, still denoted by F'®,
satisfies that there exists an integer n such that, for all p,

He = FPHe @ FrPH1He. (2.88)

We call n the weight of H. For simplicity, we will often say that Hp carries
a pure Hodge structure.

DEFINITION 2.89. A morphism of pure Hodge structures over k
f:H—H

is a pair f = (fB, far) consisting of a Q-linear map fp: Hp — Hp and a
k-linear map fqr: Har — H)g such that for(F*Hgqr) € F*H) and the
following diagram commutes:

COmMpg 4R

Hagr @5 C Hp ®qC
de®kidcl \LfB@Qid(C
comp%ydR

It follows from this definition that if H and H’ have different weights,
then every morphism of Hodge structures between them is zero (Exercise
2.114).

EXAMPLE 2.90 (Hodge-Tate structures). Let k be a subfield of C. For
each integer n € Z, we define

Q(n) = (@7 (k7 F.)7 CompB,dR)a

where the filtration reads k = F~"k D F~""1k = {0}, and the isomorphism
compp gg: C — C is given by multiplication by (27i)™". Then Q(n) is a
one-dimensional pure Hodge structure of weight —2n over k. The Hodge
structure Q(1) is known as the Tate Hodge structure. We will call all the
Q(n) Hodge-Tate structures. Observe that we have already encountered the
Hodge-Tate structure Q(—1). By Example 2.69, it is isomorphic to the triple

Hl(Gm) = (Hé(Gm)’ (Hollﬁ(@m)a F*), CompB,dR)7

where F'* is the trivial filtration concentrated in degree 1, and compg 4 is
Grothendieck’s comparison isomorphism from Theorem 2.60.
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Once we have introduced these notions, we can state the following vari-
ant of Hodge’s theorem:

THEOREM 2.91. Let k be a subfield of C and X a smooth projective
variety over k. Then the Betti cohomology H{(X) carries a pure Hodge
structure of weight n over k, functorial for morphisms of algebraic varieties.

More precisely, we consider the triple
H"(X) = (Hg(X), (Hir(X), F*), compg g )-

As in the previous example, compg 4y is the comparison isomorphism of
Theorem 2.60. The Hodge filtration F'® is given by

FPHjR(X) = Im(H"(X, QF7) — H"(X, Q%))
where Q)Zf stands for the béte truncation of the de Rham complex, namely
2p. +1
QF: 0= 005 - Q8 — ...

That the Hodge structure on H"(X) is functorial means that, for any mor-
phism f: X — Y of smooth projective varieties, the induced map on coho-
mology f*: H*(Y) — H™(X) is a morphism of Hodge structures.

As we have already mentioned, by Exercise 2.114, there are no non-zero
morphisms between pure Hodge structures of different weight. However,
such maps naturally occur in geometry. For example, if Z < X is a smooth
closed subvariety of codimension ¢, then there is a Gysin morphism

H™(Z) — H""(X).

In order to turn the Gysin morphism into a morphism of Hodge structures,
we introduce Tate twists: given a pure Hodge structure H of weight n
and another integer m, we denote by H(m) the pure Hodge structure of
weight n — 2m with the same underlying Z-module and k-vector space,
filtration shifted by m and comparison isomorphism multiplied by (27i)~".
In fact (see Exercise 2.115) there is a tensor product of Hodge structures
and H(m) = H ® Q(m). With this notation, the Gysin map becomes a
morphism of Hodge structures H"(Z)(—c) — H""%¢(X).

ExAaMPLE 2.92. As Hodge structure, the cohomology of the projective
space P" is given by
(P, Q) — {@(—m) 0 < j < 2n even,

0 else.

2.5.2. Mizxed Hodge structures. Before discussing mixed Hodge struc-
tures, we recall some terminology concerning filtrations and morphisms.

DEFINITION 2.93. Let k be a field and let (V, F) and (V', F) be filtered
k-vector spaces. A morphism f: V — V' is called filtered if f(FPV) C FPV'
and strict (with respect to F') if, in addition,

F(FPV) = FPV/ A Im(f).
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Hodge’s Theorem says that the cohomology in degree n of a smooth
projective complex variety carries a pure Hodge structure of weight n. This
theorem is no longer true when X fails to be smooth or projective. For
instance, we saw in Example 2.3 that H!(G,,) is one-dimensional, so it
cannot carry a pure Hodge structure of weight one. Nevertheless, Deligne
proved that the cohomology of any quasi-projective complex variety is an
“iterated extension” of pure Hodge structures.

THEOREM 2.94 (Deligne). Let X be a quasi-projective variety over the
field of complex numbers.

(a) There exists an increasing filtration
W_i=0C Wy CW; C--- C Wy, =H"(X),
and a decreasing filtration
FO=H"(X,C)DF'>...DF"D>F" =0

such that F'*® induces a pure Hodge structure of weight m on each
graded piece

GrW H(X) = Wy /W_1.
(b) Moreover, if f: X — Y is a morphism of quasi-projective varieties,

the induced map on cohomology f*: H"(Y) — H™(X) is a filtered
morphism with respect to both filtrations, i.e.

frWnH"(Y)) € Wi H™ (X)),
fE(FPH™Y)) C FPH™(X).

(c) If X is smooth, then GrYY H™(X) = 0 for allm < n and, if X is
projective, Gr?¥ H™(X) = 0 for all m > n.

This motivates the following definition:

DEFINITION 2.95. Let k be a subfield of C. A mized Hodge structure
over k is a triple

H = ((Hp,W.), (Har, F*, W), compp 4p)
consisting of:

e a finite-dimensional Q-vector space Hg, together with an increasing
filtration W2,

e a finite-dimensional k-vector space Hggr, together with an increas-
ing filtration WIR and a decreasing filtration F'®,

e an isomorphism of complex vector spaces
compg 4g : Har ®x C — Hp ®g C
that is filtered with respect to the weight filtration. That is,
compp g (W @4 C) = W, g C.
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We require that these data verify the following: for each integer m,
CrYV H = (Gr)Y Hp, (CrYY Hyg, F*), compg 4R (2.96)
is a pure Hodge structure over k of weight m.

DEFINITION 2.97. A morphism f: H — H’ of mixed Hodge structures
over k is a pair f = (fp, fqr) consisting of

e a morphism of Q-vector spaces fg: Hg — Hp,
e a morphism of k-vector spaces fqr: Har — H)p

such that fg is filtered with respect to the weight filtration, while fyg is
filtered with respect to the weight and the Hodge filtrations, and both maps
are compatible with the comparison isomorphisms. In other words
fe(WJPHg) € W, H,
far(F*Hqr) C F*Hgp,
far(WHar) € WM Hyg,
far o compy g = compg g o(f5 @ idc).

We shall denote by MHS(k) the category of mixed Hodge structures
over k. When k = C, we shall simply write MHS.

DEFINITION 2.98. A mixed Hodge structure over k is called split if there
is an isomorphism of mixed Hodge structures

H - @5 Gy H,
meZ
therefore it is a direct sum of pure Hodge structures.

THEOREM 2.99 (Deligne). The category MHS(k) is abelian.

The proof of this theorem is sometimes called “a masterpiece of linear
algebra”. The main difficulty comes from the fact that the category of bifil-
tered vector spaces is not abelian. The key property that makes everything
work is that any morphism of mixed Hodge structures is strict with respect
to the weight and Hodge filtrations. More precisely we have the following
lemma.

LEMMA 2.100. Let f: H — H' be a morphism of mized Hodge structures,
then fg is strict with respect to the weight filtration and fqr is strict with
respect to the weight and Hodge filtrations.

DEFINITION 2.101. The category MHS(k) comes naturally with two
forgetful functors

wp: MHS(k) — Vecg,
WJR - MHS(k‘) — Veck

sending H to Hp and Hgg respectively. These functors are called the Betti
fibre functor and the de Rham fibre functor.
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2.5.3. Mized Hodge-Tate structures.

DEFINITION 2.102. A mixed Hodge structure H over k is said to be of
Tate type if Gr% 1 H =0and Gr% H is a sum of copies of the pure Hodge-
Tate structure Q(—m) for all m. Mixed Hodge structures of Tate type are
also called mixed Hodge-Tate structures.

We shall denote by MHTS(k) the full subcategory of MHS(k) consist-
ing of mixed Hodge structures of Tate type over k.

REMARK 2.103. One can think of mixed Hodge structures as “iterated
extensions” of the pure ones. Indeed, given two successive steps of the weight
filtration, there is an exact sequence of vector spaces

0— Wy 1 H — WyH — GrlV H — 0.

When m is the highest weight of H (i.e. W,,H = H), this exhibits H as an
extension of the pure Hodge structure Gr,V,[l/ H by W,,_1H, which in turn is
an extension of Gr,v,g/_l H by W,,_oH, and so on. Then mixed Hodge-Tate
structures are those obtained as iterated extensions of the simplest ones,
that is, sums of Q(n).

2.5.4. Ind and pro-mizxed Hodge structures. Inductive and projective lim-
its are important operations in category theory. In many categories such
limits may not exist. This is the case of the category of mixed Hodge struc-
tures. To remedy this situation, given a category C, one can define categories
Ind(C) and Pro(C) of inductive and projective systems in C, where inductive
or projective limits in C can be constructed.

Since we do not want to enter in deep set theoretical questions, we will
assume that all categories we consider ar essentially small.

DEFINITION 2.104. A directed set is a partially ordered set (I, <) such
that, given elements i, j € I, there exists n € I such that ¢ < n and j7 < n.
A subset I’ C I is called cofinal if, for every i € I, there exists an element
n € I’ such that i < n.

DEFINITION 2.105. Let C be a category and I a directed set.

(1) An inductive system X in C indexed by I is a collection of objects
(Xi)ier and morphisms ¢;;: X; — X; for all 4,j € I with i < j
such that ¢; = Idx, and @, = ;i 0 @4 for i < j < k.

(2) Let X = (Xs)ier, (ij)iy) and Y = ((Yi)ies, (¢45)i,;) be inductive
systems indexed by I and J respectively. A morphism f from X to
Y is the data of an order preserving map f;: I — J and a collection
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of morphisms f;: X; — Yy;) such that, for all ¢ < j, the diagram

Xi —== Yy,

Pij l‘ﬁfﬁ(i)fu(j)
i

Xj —=Yp()-

is commutative. Two morphisms of inductive systems f,g: X - Y

are equivalent, if for every ¢ € I there exists an n; € J, with

n; > fy(i) and n; > g4(i) such that
Pty (iymi © fi = Dgy(i).ns © Yi-

(3) A projective system X in C indexed by [ is a collection of objects
(Xi)ier and morphisms ¢;;: X; — X; for all 4,j € I with i < j
such that ¢; = Idx, and @ = @i; 0 )i for i < j < k.

(4) If X = ((X4)ier, (pij)i;j) is a projective system indexed by I and
Y = ((Ya)ies, (¢ij)i;) is a projective system indexed by J, then a
morphism f between X and Y is an order preserving map fy: I — J
and a collection of morphisms f;: X; — Yy;) such that, for alli < j,
the diagram

i
X;—=Y.

Pij l l%(i)fﬁ &)
fi

Xi—= Y 0)-

is commutative. Two morphisms of projective systems f,g: X — Y
are equivalent, if for every ¢ € J there exists an n; € I, with
fs(n;) >4 and gy(n;) > 4 such that

¢]’fﬁ(nz) o fnz = ¢j,gu(ni) © gnl

DEFINITION 2.106. Let C be a category, I a directed set and (X;);er an
inductive system. An inductive limit of this system in a universal solution
to the problem: find an object X in C together with morphisms ¢;: X; — X
satisfying the commutativity relations ¢; = pjop;; foralli <je I. If X
is such universal solution it is written as

X =lim X;.
1

Let now (X;);cs be a projective system. A projective limit of this system
in a universal solution to the problem: find an object X in C together with
morphisms ¢;: X — X satisfying the commutativity relations ¢; = ¢; jo;
for all i < j € I. If X is such universal solution it is written as

X = @Xz
1
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REMARK 2.107. Inductive limits are also called direct limits or colimits,
while projective limits are also called inverse limits or just limits.

REMARK 2.108. As you will prove in exercise 2.120, a morphism of in-
ductive systems induce a morphism of the corresponding inductive limits (if
they exist) and two equivalent morphisms of inductive systems induce the
same morphism in the limit. Similar result is true for projective systems.

DEFINITION 2.109. Let C be any category. The Ind-category of C is the
smallest category that “contains” C and is closed under inductive limits.
More precisely, is a category Ind(C) together with a functor C — Ind(C)
such that, for any category A, closed under inductive limits, with a functor
C — A, there exists a unique functor Ind(C) — A making the triangle

C A

N

Ind(C)

commutative.

The pro-category of C is a category Pro(C) together with a functor C —
Pro(C) such that, for any category A, closed under projective limits, with
a functor C — A, there exists a unique functor A — Pro(C) making the
triangle

C A

N

Pro(C)

commutative.

We refer the reader to [IKKS06] for a general construction of Ind(C) and
of Pro(C). We give here an elementary ad-hoc construction that works in
many cases like for the category of mixed Hodge structures, the category of
finite-dimensional vector spaces or the category of finitely generated abelian
groups. More generally, these constructions work for categories that are
Noetherian and Artinian.

DEFINITION 2.110. A category C is called Noetherian if every object
satisfies the ascending chain condition. In other words, for every object C
in C, every ascending chain of subobjects of C'

ChcCic---cCycCipqyCc---CC
becomes stationary. That is, there is a ¢y such that
Ci =Cyy, forall i > .

A category C is called Artinian if every object satisfies the descending
chain condition. In other words, for every object C' in C, every descending
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chain of subobjects
CO>CyDC1D---DC; DC41D ...
becomes stationary. That is, there is a 7y such that
Ci =04y, forall i> 1.

ExaMPLE 2.111. The category of finite dimensional vector spaces and
the category of mixed Hodge structures are both Noetherian and Artinian.

We state without proof the next result.
PROPOSITION 2.112. Let C be a category.

(1) If C is Noetherian, then the category Ind(C) is the category of whose
objects are inductive systems in C and whose morphisms are equiv-
alence classes of morphisms of inductive systems.

(2) If C is Artinian, then the category Pro(C) is the category of whose
objects are projective systems in C and whose morphisms are equiv-
alence classes of morphisms of projective systems.

* Kk

EXERCISE 2.113. Prove the claim of Remark 2.85.

[Hint: to get the direct sum decomposition starting from the filtration, define

HP4 = FPHqr N F1Hqr. Conversely, consider FPHqr = P,~, H""7"].

EXERCISE 2.114. Let H and H’ be pure Hodge structures over k of
weights n and m respectively.

(1) Show that the vector space Homg(Hp, Hj;) admits a pure Hodge
structure over k of weight m — n, denoted Hom(H, H').

(2) Show that the group of morphisms of Hodge structures between H
and H' agrees with the subspace Hom(H, H')(0:0),

(3) Conclude that, if n # m, then any morphism of Hodge structures
between H and H' is zero.

EXERCISE 2.115. Let H and H' be mixed Hodge structures over k. De-
fine a natural mixed Hodge structure on H ® H’. Show that for any pure
Hodge structure H, we have

H(m)=H ®Q(m).

EXERCISE 2.116. There are two possible ways of inducing F'® on Gry,‘{ H.
Show that they are equivalent.

EXERCISE 2.117. Given a morphism f : H — H’ of mixed Hodge struc-
tures, prove that the induced maps f, : Grnwl/ H — Gry, H' are morphism of
pure Hodge structures.

EXERCISE 2.118. Let H = (Hgg, Hp, ) be a triple consisting of
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e a finite-dimensional Q-vector space Hg, equipped with an increas-
ing filtration Woe Hg indexed by even integers,

e a finite-dimensional Q-vector space Hggr, together with a grading
indexed by even integers Hqr = @,,(Hdr)2n,

e a comparison isomorphism a: Hyg ®g C — Hp ®q C,

subject to the condition that o maps (Hqr)2, ®g C to Wap, Hg ®g C, and
induces an isomorphism

an: (Hgr)2n ®g C — (WQnHB/WQ(n—l)HB) ®q C
which sends (HdR)Qn to (WQnHB/WQ(nfl)HB) (20) (27Ti)n(@.

Prove that the category MHTS(Q) is equivalent to the category whose
objects are such triples and whose morphisms are the obvious ones.

EXERCISE 2.119. In this exercise, we see that the condition of being
Noetherian is needed for the description of the morphisms of Ind(C) given
by Proposition 2.112. Let C be a category and (C;);cn an inductive system.
Assume that the limit

C = hﬂcl
N
exists in C. Consider the constant inductive system (C). Prove that, if C is

Noetherian, then there exists a morphism of inductive systems (C) — (C});en
that is the inverse in Ind(C) to the natural morphism (C;)ieny — (C).

Give an example of a non-Noetherian category where the morphism
(C) = (Cy)ien does not exist.

EXERCISE 2.120. Let C be a category.

(1) Let (X;)ier and (Y;);jes be inductive systems and f a morphism of
inductive systems. Assume that the inductive limits X and Y of the
inductive systems exist. Then f induces a morphism, also detoted
f between X and Y. Prove that, if g is an equivalent morphism,
the the morphisms induced by f and g agree.

(2) Let (X;)ier and (Y})jes be projective systems and f a morphism
of projective systems. Assume that the projective limits, X and
Y, of the projective systems exists. Then f induces a morphism,
also detoted f between X and Y. Prove that, if g is an equivalent
morphism, the the morphisms induced by f and g agree.

EXERCISE 2.121. Let Vec; be the category of finite-dimensional vector
spaces over k.

(1) Prove that, if V is an ind-vector space, then its dual V'V is a pro-
vector space.

(2) If f:' V — W is a morphism of ind-vector spaces, show that it
induces a morphism f of pro-vector spaces.

(3) Show that, if f and g are equivalent morphisms of ind-vector spaces,
then fV and g are equivalent.
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2.6. Examples of mixed Hodge structures. We now explain the
ideas behind the construction of the weight and the Hodge filtration in
two important cases: smooth but not necessarily projective varieties and
normal crossings varieties. We refer the reader to [Dur83] for a user-friendly
introduction to the subject.

2.6.1. The smooth case. Let X be a smooth quasi-projective variety over
a subfield k of C. By Theorem 2.60, there is a canonical isomorphism

compp g : Hir(X) @ C ~ Hp(X) ®¢ C. (2.122)

We want to endow HE(X) with a filtration WP and H7s (X) with two
filtrations WJR and F'® making the triple

(H(X), W), (Hip(X), F*, W), compg ag)

into a mixed Hodge structure over k. However, if de Rham cohomology is
computed using the complex Q% as in Definition 2.37, we face two problems:

(a) One may define a Hodge filtration using the béte truncation Q;?p ,
but it will not give much information. For example, if X is affine,
we saw in Remark 2.38 that HJ(X) is the cohomology of the
global de Rham complex, so in this case the definition would yield
the trivial filtration F"H}, (X) = Hl(X).

(b) There is no obvious way to get the weight filtration from Q%.

To solve these difficulties, we shall use the complex of logarithmic dif-
ferentials instead. Recall that, by resolution of singularities, there exists a
smooth projective variety X over k and an open immersion j : X < X such
that D = X \ X is a simple normal crossings divisor (see Definition 2.46).

DEFINITION 2.123 (Deligne). The complex of sheaves of logarithmic dif-
ferentials along D is the smallest subcomplex Q’Y(log D) of j,Q% stable
under wedge product and containing Q.Y and the logarithmic derivatives

df / f of all local sections f of j,O% with poles along D.

It follows from the definition that Qly(log D) is alocally free Ox-module
of rank d = dim X. Indeed, if (21,..., 24) are local coordinates such that D
is given by 21 - -z, = 0, then Qly(log D) is locally generated by

dz
Tr dzrs1, ... ,dzg.

Moreover, one has 2 (log D) = APQx(log D) for all p > 0.

PROPOSITION 2.124. The inclusion of complexes Q'Y(log D) — j.Q% is
a quasi-isomorphism, hence

H(X, Q%(log D)) =~ H'(X, j.Q%) = H"(X, Q%) =~ Hig(X).  (2.125)
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In view of the proposition, the strategy is to define the Hodge and the
weight filtrations on the complex Q% (log D) and look at their images in
H}: (X). Then one can transport the weight filtration to Betti cohomology
using the comparison isomorphism. The resulting filtration is a priori only
defined on H}(X) ®g C, but one can prove that it comes from HJp(X).

More precisely, the Hodge filtration is given by the béte filtration of the
complex of logarithmic differentials, that is

FPHY(X) = Im(H" (X, Q327 (log D)) — Hig(X)). (2.126)

Note that F'® is defined over k. The advantage of working with logarithmic
differentials is that now we can also filter by the order of poles:

0 m < 0,
ng%(log D) = Q”Y_m AN (log D) 0<m < p,
Q%(log D) m 2 p.

Consider the filtration on cohomology
WERE L (X) = Tm(H (X, Wy Q% (log D)) = Hip(X)).  (2.127)

Through the comparison isomorphism (2.122), Wa® induces a filtration on
HE(X) ®g C. It is a non-trivial fact, which can be proved using the Leray
spectral sequence for the inclusion X < X, that this filtration is defined
over Q, in the sense that there exists a filtration WP H%(X) inducing WIR
on HE(X)®gC. We refer the reader e.g. to [PS08, §4] for a proof that the
filtrations we have introduced define a mixed Hodge structure on H}(X).

DEFINITION 2.128. We say that a mixed Hodge structure H has weights
in a subset I C Z if Gr!¥ H = 0 whenever m ¢ I.

It follows from (2.127) that the cohomology group H%(X) of a smooth
variety X has weights in [n, 2n]. Moreover, noting that WoQ5-(log D) = Q5%
and the shift of indices in (2.127), one finds that the first step in the weight
filtration is the piece of the cohomology coming from the compactification:

WnHp(X) = Im(Hp(X) — Hp(X)).
In contrast, when X is projective, the mixed Hodge structure H"(X) defined
in [Del74] has weights in [0,n]. The combination of these two statements
implies that the cohomology of a smooth projective variety carries a pure
Hodge structure.

The definition of de Rham cohomology involves hypercohomology of
sheaves, therefore, to compute it concretely, in general we can not use di-
rectly the algebraic de Rham complex but we need a resolution of it. As
we have seen in Remark 2.38 for an affine variety X, every coherent sheaf is
acyclic and we can represent de Rham cohomology with algebraic differen-
tials directly. Nevertheless, the Hodge struture involves a hypercohomology
computed on a projective compactification of X therefore, even in the case
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of affine varieties, in order to compute the Hodge structure we will need
an acyclic resolution of the complex of logarithmic differentials, compatible
with the weight and the Hodge filtrations.

For an arbitrary subfield &k C C one has to remain in the algebraic situ-
ation, and we refer the reader to [[NA&7] for a general method to construct
the needed resolutions. We will discuss here briefly the case of a smooth
variety X over C, were we can use smooth differential forms. We denote
X2 = X(C) and X = X(C) the associated complex varieties. Similarly
we will denote Q‘Yan (log D) for the sheaf of holomorphic logarithmic differ-
ential. It has the same definition as Q5-(log D) but with holomorphic forms
instead of algebraic forms. It is a complex of sheaves with respect to the
analytic topology of X, while Q’Y(log D) is a complex of sheaves for the

Zariski topology of X. By the GAGA principle
H"(X, Q% (log D)) = H" (X, Q%an (log D))
and the same is true for the different pieces of the weight and Hodge filtra-
tions. Thus we can use holomorphic forms and the usual topology.
We now denote by éa%aqn for the sheaf of smooth complex valued differ-

ential forms on X of type (p,q), and we write
D5q _ 004 P
Ean (log D) = EGan DO gan (zan (log D).

The anti-holomorphic derivative 9: &%9 — £%9+1 induce anti-holomorphic
derivatives B
0: é"%gn(log D) — g’%’gjl(log D).

The sequence of sheaves
0— Q%&n (log D) — éo%gn (log D) N éo%}n (log D) — -
is exact. Thus, writing
Exan(log D) = €P &84 (log D),
2

the map

Q.Yan (log D) — (g)%an (log D) (2129)
is a quasi-isomorphism. Moreover the Hodge and weight filtrations of the
complex %an (log D) induce Hodge and weight filtrations on é‘%an (log D) in
such a way that the quasi-isomorphism (2.129) induce quasi-isomorphism
of the graded pieces. In other words the quasi-isomorphism (2.129) is a
bi-filtered quasi-isomorphism.

We will denote the space of global sections as
B2 (log D) = I(X, &2, (log D))

and
B (log D) = @) ER4. (log D).

pq
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By the aciclicity of the sheaf of smooth differential forms, we deduce

Hir(X) = H" (Exan (log D)),
FPHR(X) = Im(H" (F? Een (log D)) — Hg (X)),

Wi Hig (X) = T (H™ (Wi Ean (log D)) = Hig (X)).

EXAMPLE 2.130. Let us compute everything for X = P!\ {0,1, 00},
viewed as a variety over Q. As for any smooth curve, there is a canonical
smooth compactification, in this case X = P!. Write D = {0,1,00} for
the divisor at infinity. Recall that Op1 (D) stands for the sheaf of rational
functions having at most simple poles at D and nowhere else. We have:

Wi(log D) = Op1, Qg (log D) = Op1 (D) @0, Qps.
Since Q, ~ Op1(—2), one sees that O, (log D) ~ Op1(1). By the standard
computation of the cohomology of line bundles on P! [Har77, III, §5], none

of the terms in the complex of logarithmic differentials has higher cohomol-

ogy. Besides, setting wy = % and w; = <&, one has:

11—t
HY(P', Op1) = Q, HO(P', Qg (log D)) = Qo ® Qui

(note that these differentials wy and w; have a simple pole at co as well).
From the spectral sequence (2.16), it follows that

Hip(X) = H'(Op1 < 051 (D) @0, )
= H*"(Q — Quwo ® Quy),
where the differential in the second complex is the zero map. Thus,
Hig(X) = Quo ® Qui.
We now turn to the filtrations. For the Hodge filtration, (2.126) gives
Hiz(X)=F'=F'D>F?={0}.
Moreover, the weight filtration on the complex of logarithmic differentials is
given by Q8 = Wy € Wy = Q3,(log D). Since Hjp (P') vanishes, we find:
{0} =Wy C Wy = Hig(X).

On the other hand, the first homology group H; (X (C), Q) has as a basis
the classes of two loops ¢ and o7 winding once counterclockwise around the
punctures 0 and 1. By Cauchy’s residue theorem, the period matrix reads:

oo WO fglwo (27 0
fgowl falwl SN0 2w/

In other words, if 0§ and oy are the dual elements in cohomology, the
isomorphism compg 4 sends wy to o ®2mi and wy to 0y ®2mi. Comparing
with Example 2.90, one concludes that

Hl(Pl \ {07 17 OO}) = Q(_1)€B2
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as mixed Hodge structures over Q.

Observe that all the information in the mixed Hodge structure over Q
of the variety X = IF’}@ \ {0,1,00} can be read from the complex

A*=A"q A", A"=Q, A'=Quwy®Qu,
together with the trivial differential and the filtrations
FO=A* > Fl = Al 5 F? = {0},
W_1=0CWy=A"CcWw; = A" (2.131)
Note that A* has an algebra structure given by w; Aw; =0, for 4,5 € {0, 1}.

For later reference, we summarize the results of this example in a propo-
sition. We say that a morphism f: (A*, W, F) — (A’*, W', F’) between two
complexes provided with two filtrations is a bifiltered quasi-isomorphism if
f is compatible with the filtrations and the induced maps

Gr, A — Gr, GrTVLV/ A
are quasi-isomorphisms for all p and n.

PROPOSITION 2.132. Let X = P(l@ \ {0,1,00}. The algebraic de Rham
cohomology of X 1is given by

Hig(X) = H*(A").
The Hodge and the weight filtration are induced by the filtrations (2.130):
FPHiR(X) = H*(FPAY),
WiHiR(X) = H"(Wy_, A").
Moreover, the inclusion of algebras
A" — Epi¢)(log D)
induces a bifiltered quasi-isomorphism

2.6.2. Normal crossings varieties. Let X = X1 U X5 be the union of two
smooth projective varieties such that X; N X5 is smooth as well. We shall
put a mixed Hodge structure on H"(X) by means of the Mayer-Vietoris
long exact sequence

o= H"Y(X N Xy) — H™Y(X)
— H"(X1)® H"(X2) — H"(X1 N Xa2) — - -+ (2.133)
Indeed, defining
A= Coker [H" 1(X1) ® H" H(X2) — H" 1(X1 N Xo)],
B = Ker [H™(X1) ® H"(X2) — H"(X1 N X3)],
the long exact sequence (2.133) yields a short exact sequence
00— A— H"(X) — B—0.
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Note that A and B carry pure Hodge structures of weights n — 1 and n
respectively, since X1, Xo and X7 N Xy are smooth projective varieties. In
this case, the weight filtration is given by

Wy =0C Wy_y =ACW, =H'X).

2.6.3. Mized Hodge structures on relative cohomology. Similarly, one can
endow the cohomology with compact support and the relative cohomology
with mixed Hodge structures, in such a way that the maps in the usual long
exact sequences are compatible with the weight and the Hodge filtrations.
The following result is very useful:

PROPOSITION 2.134 (Gysin long exact sequence). Let X be a smooth
variety over k and Z C X a smooth closed subvariety of codimension c. Set
U= X\Z. There is a long eract sequence of mixed Hodge structures

s HITNX) S BN U) D HIT(Z) (—¢) B HI(X) = -+ (2.135)

where « is the usual restriction map and v s the Gysin map.

2.6.4. More examples.

EXAMPLE 2.136 (Smooth open curves). Let C' be a smooth projective
complex curve and S C C a (non-empty) finite subset of s points. We
describe the mixed Hodge structure on the first cohomology of the open
curve C' = C'\ S. The Gysin exact sequence (2.135) reads

0— HY(C)— H'(C) = H°(S)(-1) 4 H?(C) =0,
where 7 is the “sum” map Q(—1)®% — Q(—1). From this we get
0— HY(C) —» H'(C) - Q(—=1)®6~D - 0.
The weight filtration is given by
0=WoH(C) c WiHY(C) = HYC) c WoH'(C) = HY(0),
so the graded pieces are
Gri" Hy(C) =~ H'(C), Gry H'(C)~Q(-1)%Y,

which are indeed pure Hodge structures of weights 1 and 2 respectively. In
particular, the mixed Hodge structure H L(C) is of Tate type if and only if
H'(C) = 0, which is equivalent to C' = P!\ S.

EXAMPLE 2.137 (Moduli spaces My ;). Let us compute the Hodge struc-
ture on the cohomology of the moduli spaces My, from paragraph 2.4.2.

ProrosiTioN 2.138. The cohomology group Hi(Moyn) carries a pure
Hodge-Tate structure of weight 2i. More precisely,

H'(Mo) = Q=)™
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where the Betti numbers b; 5, are given by

D byt = (L+26)(1+3t) - (1+ (n— 2)t).
>0

Proor. We proceed by induction on n. When n = 3, the moduli
space is reduced to a point, hence the only non-zero cohomology group
is H%(Mp3) = Q(0). The case n = 4 was settled in the previous example,
where we saw that the non-trivial cohomology groups are H%(My 4) = Q(0)
and H'(My4) = Q(—1)®2. Let (0,1,00,t1,...,t,—3) denote the coordinates
on My . For each n > 5, the map

Mo — (Moa x Mopn-1)
(07 17 00,11, - - >tn—3) — ((07 17 o0, t1)> (07 17 00, tg, . .. 7tn—3))
induces an isomorphism between M, and the complement of the smooth
closed subvariety Z C Mo 4 x Mg ,—1 given by

n—3 n—3
Z = |_|{tz = tl} >~ I_l MO,n—l'
=2 1=2

We shall compute the cohomology of My, ~ (My4 x Mon—1) \ Z by
combining the Gysin exact sequence, the Kiinneth formula and the induction
hypothesis. First, the Gysin sequence (2.135) gives

e — H'2(Z)(—1) % H(Moa x Mo 1) — H'(My.,,)
— HY(Z) (1) -2 HH Moy x Mop_1) — -+ (2.139)
By the Kiinneth formula and the induction hypothesis, we have

H'(Mo 4 x Mo y—1) = @ H(Mp.4) @ H*(Mo 1)
a+b=1

S H (M) @ B (M) (<1
o Q(—i)@(bi,n—1+2bi—1,n—l).

It follows that the maps a and b in (2.139) are morphisms between pure
Hodge structures of different weights, hence the zero maps. From this we
derive the short exact sequence

0— H' (Mo X Mopn_1) = H' (Mo,) = H ™ (Mo,_1)(—1)2™ = 0.

Therefore, Hi(My,) = Q(—i)%n with bim = bin—1+ (n—2)bj—1,—1. One
immediately checks that this recurrence relation amounts to the expression
for the Betti numbers given in the statement. ([
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2.6.5. Graph hypersurfaces. Let G = (V, E) be a finite graph with vertex
and edge sets V and E, respectively. Assume that GG is connected. A
subgraph T' C G is called a spanning tree if T is a tree (i.e. connected with
no loops) and contains all vertices of G. Consider a collection of variables
(ze)ecp indexed by the edges of G. The first Symanzik polynomial of the
graph is defined as

\I’G = Z H Te € Z[(we)eeEL (2'140)

TCG e¢T
where the sum runs over all spanning trees in G. Let ng be the number

of edges of G and hg the number of loops. It is easy to see that Ug is a
homogenous polynomial of degree hg (Exercise 2.150).

DEFINITION 2.141. The graph hypersurface Xg C P"¢~! is the vanishing
locus of the polynomial Wg.

Graph hypersurfaces appear in perturbative quantum field theory, a ma-
jor goal of which is to compute Feynman amplitudes. These are the proba-
bilities that a particle interaction is described by a given graph. The easiest
case is when ng = 2hg and n, > 2h, for all non-empty strict subgraphs
v € G. Then the corresponding Feynmann integral is given, up to a nor-
malization factor, by the convergent integral [BEK 06, Prop. 5.2,

Ig = / 1;22, (2.142)
oG

where we have chosen a numbering of the vertices, so that ¥ becomes a
polynomial in the variables zo, ..., x,,—1, the differential form Q is given
by

ng—1 .

Q= Z (—1)jxjd$o N Ndxj A ANdxyg—1,

§=0

and one integrates over the real coordinate simplex
o={[ro: - : Tpg—1] € P"¢HR) | z; > 0}.

Note that the condition ng = 2hg implies that the integrand of (2.142),
that is written in homogeneous coordinates, is well defined. So Ig can be
written as the affine integral

I /Oo dt /Oo dt /Oo ding—1
G: 1 2--. s
0 0 o VALt ta, . tg—1)

where t; = x;/xg.

Graphs satisfying the above conditions are called primitive log divergent.
Figure 8 gives examples of primitive log divergent graphs and the associated
Feynman amplitudes.

It was conjectured for some time that the amplitudes I of primitive log

divergent graphs were always linear combinations of multiple zeta values.
This happens to be the case for graphs with hg < 6. [BS12]
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6¢(3) 20¢(5) 20(3,5) + 55¢(5,3) — 3¢(8)

F1GURE 8. Three examples of primitive log divergent graphs
and the corresponding Feynman amplitudes

The integrand of (2.142) is a global top-degree differential form wg on
P"¢=1\ Xg, and the boundary of the simplex o is contained in the union
D of the coordinate hyperplanes {z; = 0}. In general, o intersects the
graph hypersurface X, so, as in Section 2.4, one is faced with the problem
that the integration cycle does not define an element in the naive relative
cohomology group

H"e~Y(Pre=1\ X¢, D\ DN Xg).

However, the fact that the coefficients of 1 are positive makes this
intersection easy to describe. In fact,

XG((C) No = U LV(RZO))
h~y>0

where, if v is a subgraph of G, then L, is the linear subvariety of Pra—l of
equations x, = 0, for e vertex of v and

Ly(R>0) = {[ze]ecE € Ly | ®e € R0}

This allowed Bloch, Esnault and Kreimer to prove the following in
[BEKO06, Prop. 7.3]

THEOREM 2.143 (Bloch-Esnault-Kreimer). There exists a tower
7:P=P — ... — Py=Prc!

of blow-ups such that each P; is obtained by blowing up P,y along the strict
transform of a coordinate linear space L; and the following conditions hold:

(1) The differential ™ wg has no poles along the exceptional divisors
associated to the blow-ups.
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(2) The total transform B of D is a normal crossings divisor such that
none of the non-empty intersections of its irreducible components
is contained in the strict transform Y of Xgq.

(8) The strict transform of o does not meet Y.

COROLLARY 2.144. Keeping the notation from the previous theorem, the
Feynman amplitude I is a period of the mixed Hodge structure

H"¢"YP\Y,B\ (BNY)).

* k x

EXERCISE 2.145. Let X be a smooth complex variety, Z C X a smooth
subvariety of codimension ¢ and write U = X \ Z. Use the Gysin long exact
sequence (2.135) to prove that the restriction map H*(X) — H'(U) is an
isomorphism for ¢ < 2¢ — 1, and is injective for ¢ = 2¢ — 1.

EXERCISE 2.146 (Varieties which admit a compactification by a smooth
divisor). Let U be a smooth complex variety. In this exercise, we show that
the existence of a smooth compactification by a smooth divisor imposes
strong restrictions on the mixed Hodge structure of U.

(1) Use the Gysin exact sequence (2.135) to show that if U = X \ D,
with X smooth and projective and D smooth, then H™(U) has only
weights in [n,n + 1].

(2) Give an example of a smooth surface which does not admit a
smooth projective compactification by a smooth divisor.

EXERCISE 2.147. Let X be a smooth projective complex variety and
Yy, Y1 € X two smooth divisors such that Yy UY; has normal crossings. Set
X=X\Ypand Y =Y;\ (YyNY1). Show that the weight filtration on the
relative cohomology group M = H™(X,Y') is given by

WypoM = 0,

WpoaM = Im(H" (Y1) — M),
W,M = Ker(M — H" 1(Yy)(-1)),
WpiiM = M.

[Hint: Consider a diagram of mixed Hodge structures whose rows are Gysin long
exact sequences and whose columns are long exact sequences of relative cohomology.
Use the fact that W, is an exact functor and Lemma 2.100.]

EXERCISE 2.148. The graded pieces of the mixed Hodge structure of a
smooth variety
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Let X be a smooth projective variety, D a simple normal crossings di-
visor an U = X \ D. Following Construction 2.47, we form

p’=x, pr= J[ Diyn---ND,.
i1,i2,0mrip
Prove that the weight filtration of H"(U) is given by
CrY H"(U) = H"™(--- - H™ (DY) (-1) = H™(X) = 0), (2.149)
where the term H"2P(DP)(—p) sits in degree —p.

EXERCISE 2.150. Prove that the first Symanzik polynomial of a graph,
as defined in (2.140), is homogeneous of degree the number of loops in G.

EXERCISE 2.151 (Deletion-contraction relations). Let G be a connected
graph and e an edge of G. We denote by G\ e the graph obtained by deleting
the edge e and by G/e the graph obtained by contracting the edge e. Assume
that G \ e is still connected and that the two end points of e are different.
Show that the following relation holds:

\IJG = xG\PG\e + \IIG/e'

EXERCISE 2.152 (The trivial Feynman amplitude). Consider the graph G
with two vertices and two edges connecting them, as in Figure 9. Compute
the Feynman amplitude I and write down a Hodge structure for which it
is a period (no blow-up is needed in this case).

X

Y

FI1GURE 9. A simple graph

2.7. Extensions. We now turn to the question of describing the exten-
sion groups in the category of mixed Hodge structures over C of structures
of Tate type. Recall that, by a mixed Hodge structure without explicitly
mentioning the field of definition, we mean a mixed Hodge structure over C.

DEFINITION 2.153. Let A and B be two mixed Hodge structures.

(1) An extension of A by B is a short exact sequence

0By H 2 A0,

where « and 8 are morphisms of mixed Hodge structures. Such
an extension is said to be split if there exists a morphism of mixed
Hodge structures s: A — H such that cos =1idy4.
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(2) Two extensions are equivalent if there exists a morphism of mixed
Hodge structures f: H — H' such that the diagram

0 B H A 0
&
0 B H' A 0

commutes. This defines indeed an equivalence relation whose set
of equivalence classes will be denoted by

Ethl\/IHS<A7 B)
THEOREM 2.154. Let m and n be two integers. Then

C/2mi)"™Q m < n,
0 otherwise.

Extyrgs (Q(m), Q(n)) = {

PRrOOF. Tensoring the extension by Q(—n), we can assume without loss
of generality that n = 0. So let us consider an extension

0 Q0) 25 H - Q(m) — 0.
Let us first assume that m > 0. Then W_,,, H C H is a rank one sub-Hodge
structure and the composition
W_omH — H - Q(m)

is an isomorphism. Thus the extension is necessarily split.

For m = 0, the weight and the Hodge filtration of H are trivial (the
corresponding subobjects are either zero or everything), hence any section
sp of the map ap: Hg — Q(0)p induces a morphism of Hodge structures
s: Q(0) — H, so the extension is again split.

Now assume that m < 0. The complex vector space Hqg has a canonical
splitting
Hgr = WoHar ® F~ " Hyg.

Choose a basis eg, e; of Hp satisfying ey = (1), where 1 is the generator
of Q(0)p and a(e;) = e, where e is the generator of Q(m)g. This basis
determines uniquely a basis fy, fi of Hqr by the conditions

fo € WoHgr,  compg gg(fo) = eo,

fi € F"™Hagr, compggg(f1) € (2mi)""e1 + Wap.

In these bases the morphism compg 4i can be written as

(0 @en)

for a complex number « that determines the class of the extension.

We have the right to change the basis (eg, e1) by an upper triangular basis
with ones in the diagonal and a rational coefficient in the upper right corner.
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The basis (fo, f1) remains unchanged. In this new basis, the comparison
isomorphism will be given by

((1) (27:;;—”1> - <(1) 11)> <(1) (%?)-m)

B <1 a+(27ri)mb>.

~\0 (2ma)~™
Thus, two complex numbers a,a’ € C determine the same extension if and
only if a — @’ € (2mi)"™Q, from which the result follows. O

REMARK 2.155. A similar argument yields Carlson’s formula for the
extensions between any two mixed Hodge structures [Car80]:

WoHom(A, B)c
Extliygs(4, B) = ’ :
xtyns (4, B) Wo N FOHom(A, B)c + Wy Hom(A, B)

Moreover, Beilinson showed that the category of mixed Hodge structures
has cohomological dimension one, meaning that all higher extension groups
vanish. This follows from:

THEOREM 2.156. For any mized Hodge structures A, B, we have
Extis(4, B) = 0.

PROOF. See [Bei&6, Corollary 1.10]. O

2.7.1. Examples. By Theorem 2.154, the extensions of Q(0) by Q(n) are
parametrized by elements in C/(274)"Q. It follows that, for each n > 2,
there is a mixed Hodge structure (M#9(n) sitting in an exact sequence

0 — Q(n) — ¢MHS(n) - Q(0) — 0, (2.157)

whose extension class corresponds to the zeta value ((n). Hence, this exten-
sion is split if and only if {(n) € (27i)"Q. By Theorem 1.3 and the fact that
elements of (277)"Q are purely imaginary for odd n, the extension (2.157) is
split if and only if n is even. It is a hard problem to construct geometrically
these extensions, e.g. as a relative cohomology group.

We now show that, when n = 1, all the extensions of Q(0) by Q(n) have
geometric origin.

EXAMPLE 2.158 (Kummer mixed Hodge structure). Given a complex
number ¢ € C* \ {1}, consider the relative cohomology

H = H'(P'\ {0,000}, {1,t}).
The long exact sequence (2.45) gives
0— H(P'\ {0,00}) = H({1,t}) = H — H'(P'\ {0,00}) — 0.
By Example 2.136, one has H'(P!\ {0,00}) = Q(—1), hence
0—- Q) —H—Q(-1) —0.
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The Kummer mived Hodge structure K}! is defined to be the dual of H, so
H 1
K" € Extypg ) (Q(0), Q(1)).

For ¢t = 1, the Kummer extension is defined as the trivial extension of Q(0)
by Q(1). This yields a map C* — Ethl\/IHS(C) (Q(0),Q(1)).

EXAMPLE 2.159. As another example of how arithmetic information can
be encoded through extensions of mixed Hodge structures, let us consider
extensions of the first cohomology of a smooth projective curve C' by Q(—1).
Then Carlson’s theorem implies that

Extyus (Q(—1), H'(C)) = Jac(C)(C) ®2 Q

By Example 2.136, the cohomology of C'\ {p, ¢} for any pair of points gives
such an extension. Through the above isomorphism, the class of the exten-
sion is given by the class of the divisor [p] — [¢] in Jac(C)(C). In particular,
the extension splits if and only if this divisor is torsion.

2.8. Back to ((2) and irrationality proofs. We end the chapter’ by
showing that the relative cohomology group attached to ((2) in 2.4.1 is an
extension of Q(—2) by Q(0). We then discuss the problem of constructing
other extensions and a potential application to irrationality proofs.

2.8.1. The extension associated to ((2). We prove that the relative co-
homology group constructed in paragraph 2.4.1 from the integral represen-
tation of ((2) is indeed an extension of Q(—2) by Q(0). Recall that we
considered the blow-up X of A? at the points p = (0,0) and ¢ = (1,1),
together with the normal crossings divisors

L=LoULy, M=MyUDM;UDMsyUDMsU My,

where Lo and L; are the strict transforms of {¢; = 0} and {t2 = 1} (affine
lines), Mo = E, and M; = E, are the exceptional divisors (projective lines),
and My, M3 and M, are the strict transforms of {t; = to}, {t2 = 0} and
{t1 = 1} (again affine lines).

PROPOSITION 2.160. There exists a short exact sequence of mized Hodge
structures

0— Q(0) = H*(X\ L,M\ (LN M)) = Q(-2) — 0. (2.161)

PRrOOF. Let X be any smooth complex variety, and L and M two normal
crossings divisors on X with no common irreducible components and such

6Many thanks to Clément Dupont and Peter Jossen for their help with this section.
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that L U M has normal crossings as well. By [Dupl7, App. A.1], there is
a spectral sequence of mixed Hodge structures
EYT = 5 H (L N M) (—i)
Jj—i=p
|I|=i
|J]=3
— grl HPTM(X \ L, M\ (M N L)), (2.162)
where the differential dy: E]"? — Ef“’q is the sum of
libelindent=0pt the restriction maps
HT (L0 My)(—i) — H7* (L 0 M) (—i)
induced from the inclusions L; N M Ju{s} < LMy,
multiplied by the signs &(J, J U {s});
liibeliindent=0pt the Gysin morphisms
HT2(Ly 0 My)(=i) = HT "2 (Lp oy 0 My) (=i + 1)
associated to the inclusions Ly N My — L]\{T} N Mj,
multiplied by the signs (I \ {r}, I).
(Recall from 2.2.6 that e(I,.J) = (—1)* whenever J = {jo,...,5 -} with
Jjo < -+ < jr and I is obtained from I by removing the index jy).
Assume that all E¥'? carry a pure Hodge structure of weight gq. The
second page of the spectral sequence is given by
_ Ker(dy: BP — EJ™9)
Tm(dy: BV~ — EPY)
together with a differential do: EY? — E§+1’q_1. Thus, E5? has a pure
Hodge structure of weight ¢ as well, which implies do = 0 since there are

no non-trivial morphisms between Hodge structures of different weight. It
follows that the spectral sequence degenerates at Fy and

P = ngVHp+Q(X \L,M\ (MNL)). (2.163)

P,q
E2

Let us now turn to our particular situation. Setting
r=LoN Ly, SZLgﬂEp, t:LlﬂEq, Ml'j:MiﬂMj,

the spectral sequence takes the form of Figure 10. By way of illustration, the
piece E’ll’2 is the sum of all possible H2~2(L;NM)(—i) with j = i+1. Then
necessarily ¢ = 0 or 4 = 1, and the second case does not appear since there
are no non-empty intersections of one component of L and two components
of M. Fori =0, we get @ H*(M;) = H*(E,)® H?(E,), taking into account
that the remaining components are affine lines. Observe that odd values of
g do not need to be considered, since all intersections Ly N M have only
cohomology in even degrees. For the same reason, the assumption that E}*?
has pure weight ¢ is satisfied in our case.
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HO(r)(-2) 0 0 0 0
0 0 0 0 0
H*(X)
HO(Lo)(-1) o H*(Ey)
0 @ HO(s)(—1) ® 0
HO(L1)(-1) e H*(E,)
HO(t)(-1)
0 0 0 0 0
0 0 H(X)  @H(M,) | H (M)

FiGURE 10. The first page of the spectral sequence comput-
ing gr” H*(X \ L, M \ (L N M))

We need to prove that
grd H*(X\ L, M\ (LN M)) = Q(0) ® Q(-2). (2.164)

The piece Q(—2) comes from the top-left corner, while Q(0) arises as the
cokernel of the map @ H°(M;) — @ H°(M;;), which has rank 4. Indeed,
it is given by

(a,b,c,d,e) — (c—a,d—a,c—be —be —d).

Since the map H°(X) — @ H°(M;) sends a to (a, a, a, a, a), the cohomology
of the bottom line is concentrated in E22 Y = Q(0).

We are thus reduced to show that the complex E7 2 is exact at the middle
term. For this, we first observe that the Gysin maps induce an isomorphism
of Hodge structures

H°(E,) (1) ® H'(E,)(-1) = H*(X). (2.165)

This is an instance of the general computation of the Hodge structure of
a blow-up, see e.g. [Voi02, 7.3.3]. In the case at hand, it can be seen as
follows: the Gysin long exact sequence (2.135) for U = X \ (E, U E,) reads

o= HY (U) = HY(E,) (1) ® HY(E))(—1) — H*(X) — H*(U) — - --
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But U is isomorphic, via the blow-up map, to A?\ {p, ¢}, and hence (us-
ing Exercise 2.145) HY(U) = H*(U) = 0. It follows that the differential
di: E?’Q — Ei 2 in the spectral sequence is given, in suitable bases compat-
ible with the isomorphism (2.165), by
H*(X) ® H(s)(—1) @ H(t)(=1) — H*(E,) & H*(E,)
(a,b,c,d) — (a+c,b+d). (2.166)
To compute the remaining map, one needs to know the cohomology
classes [L;] € H?(X). We claim that [Lo] = —[E,]. Indeed, since the total
transform of ¢y is the union Lo U E,, we get
[Lo] + [Ep] = [t~ (fo)] = 7*[£o] = 0,
where the last equality follows from the fact that [¢o] lives in H?(A?) = 0.

Similarly, [L1] = —[Ey], so that the differential d; : Efl’z — E9? is given by
H(Lo)(=1) ® H(L1)(=1) — H*(X) ® H'(s)(-1) & H"(t)(-1)
(a,b) — (—a,—b,a,b). (2.167)

It is now obvious that the middle row of the spectral sequence is exact.
Indeed, its whole second page reads

Q-2 0 0 0 0
0O 0 0 0 0
0O 0 0 0 0
O 0 0 0 0
0 0 0 0 QO).

This concludes the proof of the equality (2.164) and shows, moreover, that
the group H*(X \ L, M \ (L N M)) vanishes in all degrees i # 2. O

REMARK 2.168. A byproduct of the proof is that we have canonical
identifications (see Exercise 2.172).

gri’ HA(X\ L, M\ (LN M)) = H*(X \ L) = Q(-2),
grtV HX(X \ L,M \ (LN M)) = H*(X, M) = Q(0). (2.169)

Recall from paragraph 2.4.1 that the differential form 7*(w) is an element
of H3x (X \L), while the simplex & belongs to H*(X, M). By Theorem 2.154,
the class of the extension

[H*(X\ L, M\ (LN M))] € Extyras(Q(-2), Q(0)) = C/(2mi)*Q

is thus given by [ 7*(w) = ¢(2). One would like to use this information as
follows: imagine that we knew by “pure thought” that all such extensions
given by relative cohomology of varieties defined over Q are split. Then ((2)
would have to vanish in the quotient C/(27i)?Q, which would yield a more
conceptual explanation of why ((2) is a rational multiple of 72. To carry
out this program, one needs however to leave the category of mixed Hodge
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structures and work with the more abstract notion of mixed Tate motives
which will be introduced in Chapter 4.

2.8.2. 0dd extensions. In general, it is a difficult question to geometri-
cally construct extensions of Q(—n) by Q(0)...[Dup18] [Brol6]

More precisely, Dupont starts with affine space A" and the hypersurfaces
by ={zy- 2y =1}, mp= |J {m=0yu J {zi=1}.
1<i<n 1<i<n

The divisor ¢, is smooth and m,, has normal crossings. However, their union
£y, U m,, fails to have normal crossings because of the point p, = (1,...,1),
where n + 1 components intersect. Let m,: X,, — A" be the blow-up of A"
at p, and let E,, denote the exceptional divisor. We write L,, for the strict
transform of ¢,, and M, for the union of the strict transform of m,, and E,,.
We form the relative cohomology:

Z,=H"(X, \ Ln, M, \ (L, N M,)).

Dupont proves that Z,, fits into an exact sequence of mixed Hodge structures

0—-Q0) —Z2,—-Q(-2)®---®Q(—n)
and that there is a natural isomorphism

Z,/Q(0) =5 H™ (b, |J {mi=1})(-1).

1<i<n
To separate the even and the odd weights, one uses the involution
(@1, xn) = (27t x ).

Indeed, if p: H, — H,/Q(0) denotes the quotient map, one defines H2 as
p 1 ((H,/Q(0))™=1). It then fits into an exact sequence

0-Q(0) = Hy' P Q(—(2k+1)) =0
3<2k+1<n

2.8.3. Irrationality proofs. Here is how a typical irrationality proof works.

To show that a real number « is irrational, we proceed in three steps:
(1) we construct linear forms
I, =a, + by, ay,b, €Q, (2.170)

such that 0 < |I,,| < ™ for some 0 < € < 1 and n sufficiently big;

(2) if d,, is the common denominator of a,, and b,,, then we require that
dy, < D™ for some real number D, again when n is big enough;

(3) € and D should be related by the inequality eD < 1.

If one succeds in carrying out these three steps, then « is irrational.
Indeed, assume that o = g. Multiplying by d,q, we get

0 < |dnang + bpdnp| < qdne™ < q(eD)",

[complete
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so the sequence inside the absolute value converges to zero by the assumption
that eD < 1. But then, for n sufficiently big, we would find integers strictly
bigger than 0 and smaller than 1, which is of course a contradiction!

Algebraic geometry could be useful in producing the linear forms (2.170).
Indeed, assume that we can construct a mixed Hodge structure over QQ which
is an extension of Q(0) by Q(n) with period matrix

(5 )

with respect to some bases {wg, w1} of Hgr and {o¢, 01} of Hg. Then, given
any w € Hygr, there exist rational numbers a and b such that awg + bwy, and
the integral on w is equal to a + ba. Typically, H is given by a relative
cohomology group and one considers a sequence w, = f"w where w is a
fixed differential and f is a function vanishing on the boundary.

EXAMPLE 2.171. Consider the differential form

x— 1%t —z)b
Wa,b,c = ( .’L'>CJ'(_1 ) d.’B,

where a,b,c > 1 and t > 2 are integers. Since wgp . is only singular along
z = 0 and has top degree, it defines a class in Hlg (P! \ {0,00}, {1,¢}).
By Example 2.42, a basis of this relative cohomology group is given by
the differentials wy; = (0,1,0) and we = (%,0,0), so there exists rational
numbers A and B such that

Wape = Awr + Bws.
Indeed, elementary manipulations of the complex (2.43) yield the values

iy DO
0<i<a itj-c 7
0<5<b
i+j#c

- E ()

0<5<b
i+j=c

Note that B is an integer. In view of Example 2.72, it follows that

t
/ Wape = A+ Blog(t),
1

and choosing the parameters a, b, c as functions of n gives a sequence of
linear forms in 1 and log(¢) as in Step (1).

Let us specialize to the case a = b =c=mn and t = 2. Then

2
I, = / Wnonn = Qp + bn, IOg(Q)y
1
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where b, is an integer and a,, is given by the formula

() =)
=Y |

i1+j—n

0<i<n

0<5<n

i+j#n

Since the denominators of the summands in a,, run through [—n,n], one
can take d, = lem(1,2,...,n). We have:

dn = T ol565) < T o585 = v,

p<n p<n
prime prime

where 7(n) is the number of primes smaller than n. Here is where some
deep arithmetic input enters: the prime number theorem asserts that

m(n) as n — +oo,

~ logn
see e.g [IKK04, Chap. 2]. It follows that n™™ ~ (%)™ for all £ > 0 and,
being generous, D = 3 works in Step (2).
Next observe that, by the choice of the parameters, I, can be written as
2
dx r—12—=z
e [ - tembesn
1 x T

The function f is strictly positive on the open interval (1,2) and bounded
above by its maximal value 3 — 21/2. Therefore,

0< I, < (3—2V2)"log(2) < (3 —2V2)",

50 € = 3 — 2v/2 satisfies the assumptions. Luckily, eD = 0,5147186... < 1
and, all in all, we have proved that log(2) is irrational!

* k x

EXERCISE 2.172. Specialize the spectral sequence (2.162) to the cases
I =0 and J = . Deduce the identifications (2.169).

EXERCISE 2.173. Let L = LyU L1 U Ly and M = My U M7 U My be two
triangles in P? such that no three lines intersect at a common point. Use
the spectral sequence (2.162) to show that

gr, H*(P*\ L, M \ (LN M)) = Q(0) & Q(-1)*" & Q(-2).
The question of what happens when the lines are not in general position is
studied in great detail in [BGSV90].

EXERCISE 2.174 (Irrationality of ((3)). The goal of this exercise is to
prove that ((3) is irrational following the approach by Beukers [Beu79].

In:/ a"(1—z)"y" (1 —y)"2"(1 - 2) drdyds.
[0,1]3 (

1—(1—ay)z) "+t
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3. Multiple zeta values and the geometry of P!\ {0, 1,00}

In this chapter, we start moving towards the goal of upgrading mul-
tiple zeta values to their motivic counterparts, which are functions on an
algebro-geometric construction associated with the fundamental group of
P\ {0,1,00}. To this end, we first look for homotopy functionals on the
space of paths of a differentiable manifold M. By Stokes’ theorem, exam-
ples are given by line integrals of closed 1-forms. However, the corresponding
functions on the fundamental group always factor through its abelianization
and thus cannot detect loops whose homology classes are trivial. Trying
to go further, K-T. Chen had the fundamental insight that iterated inte-
grals yield finer invariants, which are in fact sufficient to recover all finite-
dimensional unipotent representations of 71 (M) and not only the abelian
ones. More precisely, his celebrated m;-de Rham theorem asserts that the
ring of regular functions on the pro-unipotent completion of the fundamen-
tal group is isomorphic, as a Hopf algebra, to the zeroth cohomology of the
bar complex of any connected model of the algebra of differential forms.
This has a number of important consequences, notably the fact—due to
Hain—that the pro-unipotent completion carries a mixed Hodge structure.

In Section 3.1, we review the definition and algebraic properties of iter-
ated integrals. A basic question is when an iterated integral only depends
on the homotopy class of a path relative to its endpoints. By relating the
parallel transport of connections on the trivial bundle to iterated integrals,
we answer the question in length two.

3.1. Iterated integrals and parallel transport. Our presentation
follows closely Hain’s survey [Hai87a]. Other nice references are Cartier’s
Bourbaki seminar [Car88] and Brown’s notes [Brol3b].

3.1.1. The fundamental groupoid. Let M be a connected differentiable
manifold. We say that a continuous function 7: [0,1] — M is piecewise
smooth if there is a partition 0 = ag < a1 < ... < aps+1 = 1 of the unit
interval such that the restriction of y to each [a;, a;+1] is smooth, meaning
that it can be extended to a smooth function on an open neighborhood of
[ai,a;v1]. Similarly, a continuous map F': [0,1]? — M is said to be piecewise
smooth if there exists a finite polyhedral decomposition [0,1]? = J; C; such
that all the restrictions F|¢; are smooth, in the sense that they extend to a
smooth function on an open neighbourhood of C;.

We call a continuous piecewise smooth map from [0, 1] to M simply a
path (see Remark 3.8 below), and denote the space of paths by

P(M) = {~:[0,1] = M | v continuous and piecewise smooth}.

Given two points z and y in M, the subspace of P(M) consisting of
paths from x to y will be denoted by

yP(M), ={y€PM) | v(0) =z, v(1) =y}
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DEFINITION 3.1. Two paths v1,72 € ,P(M), are said to be homotopic
if there exists a continuous piecewise smooth function

F: [0,1? — M
(t,s) +—— F(t,s)

such that:

F(0,s) ==z, F(1,s) =y, s €10,1]. (3.2)

In other words, F' is a continuous family of paths
fst [0,1] — M,
t — fs(t)=F(t,s),
parameterized by s € [0, 1], that interpolates between 7, and ~, while keep-
ing the end points fixed (see Figure 11).

T

§a!

V2

FIGURE 11. A homotopy between two paths

It is straightforward to check that “being homotopic” defines an equiv-
alence relation ~ on ,P(M),. We write

m(M;y,z) ={y € P(M),}/~
for the set of equivalence classes. When the two endpoints agree, we will
abbreviate this notation to m (M, z).

Note that there are is a reversal of paths operation

e

Y Y

defined as y~1(¢) = v(1 —t). Moreover, given a third point z in M, we have
a composition of paths
zP(M)y X yP(M)x — zP(M):m
(71,72) — Y172
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given by first going along 72, then along ~;:
72(2t) 0<t <y,
t) = 3.3
() {7 AL} (33

Both the reversal and the composition of paths are compatible with the
homotopy equivalence relation, hence induce operations

m(M;y,x) — m(M;z,y), (3.4)

m(M;z,y) x m(M;y,2) — m(M; 2, ), (3.5)

which are called “inverse” and “composition” respectively. It is a simple

matter of verification to see that (3.5) is associative and that the class of

the constant path () = z in 7 (M, z) is a neutral element. As such, it will
be usually denoted by 1.

The above operations endow 71 (M, z) with the structure of a group:
the fundamental group of M. In general, when we allow the endpoints to be
distinct, we only obtain a groupoid. We recall below the definition, which
is in fact tailored to study this example.

DEFINITION 3.6. A groupoid G is the data of a set Gg of “objects” and
a set (1 of “arrows”, together with the following five operations:
e a source map s: G1 — Gy;
e a target map t: G1 — Go;
e a unit map u: Gy — Gj such that s(u(z)) = t(u(x)) = =z for all
objects x € Gy;
a composition map m: Gy ;X; Gi — G defined on

G1 %, G1={(f,9) € Gi1 xG1 | s(f) =t(9)}

such that s(m(f,g)) = s(g) and t(m(f,g)) = t(f) for all arrows
f,g € G1, and that u is a two-sided unit for m. Moreover, the
composition is required to be associative.

e an inverse map i: G — G1 such that, for all arrows f € Gi,
s(i(f)) = t(f) and t(i(f)) = s(f) and which is a two-sided inverse

for the composition.

Equivalently, a groupoid can be viewed as a small category where all
morphisms are isomorphisms (see Exercise 3.30).

EXAMPLE 3.7 (The fundamental groupoid). The fundamental groupoid
of M is the groupoid where Gy is the set of points of M and G is the set
of homotopy classes of paths in M, that is:

Gi= [] m@;y,2).
z,yeM

The source, the target and the unit are defined in the obvious way, and the

inverse and the composition maps are given by (3.4) and (3.5) respectively.
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REMARK 3.8. When doing homotopy theory on a differentiable manifold,
one can choose to work with continuous or piecewise smooth path. The
resulting group or groupoid is the same in both cases. The most convenient
thing for our purposes will be to work with piecewise smooth paths because
it allows us to make the link with differential forms.

3.1.2. Homotopy functionals. We would like to construct functions on
the fundamental groupoid of a manifold.

DEFINITION 3.9. A function on P(M) is called a homotopy functional
if the image of every element in P(M) depends only on its homotopy class,
hence induces a function on m (M;y, z) for all z,y € M.

The simplest method to construct homotopy functionals is by means of
differential forms, as we now recall. Let k be either the real or the complex
numbers. We consider the k-algebra

dim M
E*(M.k) = €P EP(M,k)
p=0

of smooth k-valued differential forms in M. Given w € E*(M, k) and a path
v € P(M), the pullback of w to the interval [0, 1] takes the form v*w = f(t)dt
for some function f. The line integral of w along ~ is defined as

Lw:AHmZAU@ﬁ. (3.10)

fw: PM) — k
v = fw

This yields a function

LEMMA 3.11. The function [w is a homotopy functional if and only if
the 1-form w is closed.

PRroOF. The result follows easily from Stokes’ theorem. First assume
that w is closed, and that we are given two paths ; and 5 and a homotopy
F between them. Using the conditions (3.2) in the definition of F', we find

/w—/w:/ yfw—/ vi‘wz/ F*w,
71 Y2 [011} [071] 8[071]2

where 9[0,1]% stands for the boundary of the square [0,1]2. Since F is
piecewise smooth, there exists a polyhedral decomposition [0,1]* = |J; C;
such that F|¢, is smooth. By Stokes’ theorem and the commutativity of F™*
with the differential,

F*w = / F*w = /F* dw) =0,
/8[071]2 z; ac; EZ: Ci ()
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thus proving that the line integral is a homotopy functional.

Conversely, assume that the 1-form w is not closed. Then we can find a
smooth map f: D — M from the unit disc D = {(z,y) € R? | 22 + ¢y < 1}

to M such that
/ frdw # 0.
D

Consider the paths from z = f(1,0) to y = f(—1,0) given by
71 (t) = f(cos(nt),sin(nt)), ~2(t) = f(cos(nt), —sin(nt)).
They are homotopic through the homotopy
F(x,y) = f(cos(mzx), (1 — 2y) sin(7x)).

On the contrary, another application of Stokes’s theorem gives

/71“_/72“): an*wz/Df*dw#O,

which proves that w being closed is a necessary condition as well. ([

Line integrals of closed 1-forms produce, however, only a very special
kind of homotopy functionals. Indeed, from (3.10) we get the relations

Y172 Y2 Y1 1 Y

which together imply that, for any pair of loops 71,72 € 71 (M, x), one has:

/ w=0. (3.12)
s e

Recall that, given a group G, the commutators [g,h] = g~ 'h~!gh gen-
erate a normal subgroup [G, G].

DEFINITION 3.13. The abelianization of G is the quotient
G = G/[G,q).
It is an abelian group satisfying the universal property that any homo-

morphism from G to an abelian group factors through G2P. In particular,
for every closed 1-form w the homomorphism

/w: m(M,z) — k

factors through (M, x)2P. Now, viewing a loop 7: [0,1] — M as a closed
singular 1-chain yields a canonical group homomorphism

h:m(M,z) — H{(M,Z),

which is often called the Hurewicz map. The following is a basic result from
algebraic topology, see e.g. [Hat02, Thm. 2A.1]:
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THEOREM 3.14. The kernel of h consists exactly of the commutator sub-
group [m (M, x),m (M, z)]. Moreover, if M is connected, then h is surjective
and thus induces an isomorphism

(M, z)* ~ H|(M,Z).

Summarizing, line integrals of closed 1-forms always factors through ho-
mology. Since the fundamental group is a finer invariant than the first ho-
mology group, we would like to construct other homotopy functionals which
are able to detect the extra information carried by 71 (M, x).

3.1.3. Iterated integrals. The theory of iterated integrals started with
the fundamental observation, due to K.T. Chen [Che77], that homotopy
functionals given by successive integration of 1-forms can detect elements of
71 (M, z) which are trivial in Hy(M,Z).

DEFINITION 3.15. Let wy, ... ,w, be smooth k-valued 1-forms on M. The
iterated integral of wy,...,w, is the function
Wt M k
Jor-wrs POM) — (3.16)

f)/ |_> f’ywl...w'r

defined as follows:

Wy = t1) - fr(ty)dty -+ diy,
/le w / fi(ta) -+ fr(ty)dt

1>2t12-->tr 20

where v*w; = f;(t)dt is the pullback of w; to [0, 1].

More generally, we will call iterated integral any function on P(M) ob-
tained as a k-linear combination of (3.16) and the constant function 1, which
we viewed as an iterated integral of length 0. We say that an iterated integral
has length < s if each summand is of the form [wy -+ w, with r <.

REMARK 3.17. Here is an explanation of the term“iterated integral”
after [Dell3, p.3]. Let S be the operator that transforms a 1-form 1 on
the interval [0, 1] into the function S[n|(t) = fot 1. To obtain the iterated
integral we apply S to v*w,, then multiply the resulting function by v*w,_1,
apply S again, multiply by v*w,_2, etc., and finally evaluate at t = 1:

Joree o =Sl Slywn S+ )(0).

Observe that we have already encountered iterated integrals in Chap-
ter 1: the integral representations of multiple zeta values (Theorem 1.108)
and polylogarithms (Theorem 1.117) are both examples of iterated integrals.
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3.1.4. Basic properties of iterated integrals. The first important property
is that iterated integrals are functorial and independent of the parametriza-
tion of the path. The proof is left to the reader (see Exercise 3.41).

PROPOSITION 3.18 (Functoriality). Let f: N — M be a smooth map of
differentiable manifolds. If v € P(N) and wy,...,w, € EY(M,k), then

/f*wl"'f*wrz/ Wi Wre
v foy

In particular, the iterated integral fy w1 -+ wy does not depend on the choice
of parametrization of the path .

We now prove the basic algebraic properties of iterated integrals, which
are formulas for the reversal and composition of paths, as well as for the
product of two iterated integrals.

THEOREM 3.19. Let wi,...,wrts be smooth k-valued 1-forms on M and
let ~v,v1,72 be piecewise smooth paths in M such that ~2(1) = 71(0). Then
the following three equalities hold:

/7w1"'wr=(—1)TL1wr"'w1, (3.20)

/ Wi Wy = /wl'--wi/ Wi] "+ W, (3.21)
Y172 i—0/m 72

/wl...wr/wr+1...wr+sz Z /wal(l)"'wol(T+s)' (322)
2 Y

oew(r,s) Y

3

In the last identity, the sum runs over the subset W(r,s) of the symmetric
group &, consisting of shuffles of type (r,s), as in Definition 1.120.

PROOF. The first identity (3.20) is a simple computation using that
Y¥w; = fi(t)dt implies (v~ 1)*w; = — f;(1 — t)dt, hence

/ W wp = (—1)" / Fol—t) - fi(1—t,)dty - dt,
y-1

1>4>5>1,>0

—C0 [ ) fn)du - du,

12uy 2 2ur20

:(—1)7"/7001-..%.

To pass from the first line to the second we made the change of variables
u; = 1 —ty_;41, whose Jacobian has absolute value 1.

We next prove (3.21). If one writes

(y172) wi = fi(t)dt, ~iwi = gi(t)dt, ~zw; = hi(t)dt,
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then the three above functions are related by
2h; (2t 0<t<i
fiy = 202D 0st=s (3.23)
2g;(2t —1) 5<t<1.

We decompose the domain of integration as a union A" = |J;_, C;, where
Ci=A{(t1,...,ty) ER"[1>t1 > >t; > § >tip1--- > t, 20}
Observe that C; ~ A x A" as Figure 12 shows in the case r = 2.

Cy

ta

C
C !

ty
FIGURE 12. The decomposition A? = CyU C; U Cs

Now equation (3.21) follows from the computation

/ fi(t) - fr(te)dty - - - dty = / Ji(ty) - fr(te)dty - - - dt,
C;

1>t1>...2t;>1/2
1/2>t41>-->t->0

9r
= ? / gl(ul) - gi(ui)hiﬂ(Ui+1)hr(u1~)du1 e duy

1>u1 >+ 2>u; >0
2/ Wl"‘wi/ Wi+l Wr,
7 2

1>Ui4 12>, >0
together with the fact that the overlaps of the C; do not contribute to the

integral because they all have codimension at least 2. The second equality
is obtained by the change of variables

2t; -1 5 <41,
u; = L
2tj ] >
The 2" in the numerator comes from equation (3.23), whereas the 2" in the
denominator is the Jacobian of the change of variables.

Finally, the formula (3.22) is a consequence of the decomposition

A" x A = U {(tlﬂ s 7t7“+8) ‘ 1> tafl(l) > 2 tafl(r-i-s) 2 O},

c€ew(r,s)
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that was already used in Proposition 1.123. O

3.1.5. When are iterated integrals homotopy functionals? We have seen
that iterated integrals do not depend on the parametrization of the path
(Proposition 3.18). However, even when all the w; are closed, they do not
always give rise to homotopy functionals, as the example below shows:

EXAMPLE 3.24. Take M = R? with the standard coordinates z and y.
Let a,b > 0 be real numbers and consider the path v,4: [0,1] — R? from
(0,0) to (1,1) given by v,5(t) = (t%, ). Let w; = dz and wy = dy. Then

VapW1 = at*dt, VapW2 = bt~ lat,

so one has the iterated integral

! A a
wiwy = aty™ / bty “dty | dty = ——,
/%,s e /0 ( e P 2) YT a+b

which obviously depends on the choice of a and b. However, all the paths
Ya,p are homotopic to each other!

A natural question is thus when an iterated integral is invariant under
homotopy. Theorem 3.135 will give a complete solution to this problem in
terms of a construction called the bar complex. For the moment, we content
ourselves with a partial answer by linking iterated integrals to connections
on trivial bundles through the notion of parallel transport.

3.1.6. Iterated integrals and connections on trivial bundles. We continue
writing k for either the real or the complex numbers. Let

V=kFE"xM

be the trivial rank n vector bundle over M. Recall that sections of V are
functions z: M — k™. We denote by C°°(V) the space of all smooth sections.

DEFINITION 3.25. A connection on V is a k-linear map
V:C®(V) = C®(V) ®cooary BN (M, k)
which satisfies the Leibniz rule
V(fr)=xz®df + fVzx
for each smooth function f € C°°(M) and each smooth section x € C*(V).
A connection V canonically extends to a k-linear map on p-forms, still
denoted by V, as follows:
C®(V) @ (ar) EP(M, k) — C°(V) ®coo(ary EPTH(M, k)
r@nr—x@dn+V(z)An

The operator V2 = V o V is called the curvature and one says that the
connection V is flat (or integrable) if V2 vanishes.
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We call global canonical frame of V' the tuple e = (e, ..., e,) consisting
of the constant functions e;: M — k™ with value the i-th standard basis
vector (0,...,1,...,0). By virtue of the Leibniz rule, the connection V is
determined by the image of the global canonical frame. Write

n
Vej:Zei@)mj, j=1....n
i=1

with n;; € EY(M, k). The matrix
w = (i) € B (M, k) @ e ary End(V) = (M, ) ¢ End(k"),

whose entries are smooth k-valued 1-forms on M, is called the matrix of the
connection in the global canonical frame e.

Seeing a section x: M — k™ as a column vector of smooth functions and
invoking the Leibniz rule again, the connection is given by

Vo =dx + wzx.

From this one easily computes the curvature:
Vir = V(dx + wz)
= (d*z + d(wz) + wdz + w A wz)
= (dw +w A w)z,
where w A w stands for the product of matrices of 1-forms induced by the

usual wedge product. In explicit terms, if w = > M;n; with n; € EY(M, k)
and M; € GL,,(k), then

wAw= 3> [M;, Mjln; A,
7:7j
where we have used that wedge products anti-commute. The matrix R =
dw + w A w is called the curvature matrix of V.

Any rank n vector bundle has an associated principal bundle GL(V')
with group GL, (k). Since V is trivial the same is true for GL(V'), hence
GL(V) = GLy, (k) x M. A connection V on V lifts to a connection on GL(V)
that, in this trivialization, is given by the formula

VX =dX +wX.

3.1.7. Parallel transport. Given a path 7: [0,1] — M and a section
X:[0,1] —» GL, (k)
t— X(t)
of GL(V) along v, we say that X is horizontal if
VX(t) = 0. (3.26)
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Equation (3.26) is equivalent to the condition dX (t) = —v*(w)X (t). If we
write v*(w) = A(t)dt, then (3.26) becomes the linear differential equation

X'(t) + A(t)X (t) = 0.
The parallel transport function
T:P(M)— GL, (k)

associated with the connection V is defined as follows: if v: [0,1] — M is
a smooth path, then T'(y) = X (1), where X : [0, 1] = GLy (k) is the unique
section along the path ~: [0,1] — M that is horizontal with respect to V
and has initial value X (0) = Id,,, the identity n x n matrix.

PROPOSITION 3.27. Let v,~" be smooth paths in M with ~'(1) = ~(0).
Then the following holds:

(1) T(7) is independent of the parametrization of ~y.
(2) T(y) =TMNT().

Using Proposition 3.27 we can extend the definition of parallel transport
to piecewise smooth paths by reparametrizing them as a finite composition
of smooth paths.

We now state the main result which relates connections and homotopy
functionals. Recall that the connection V is flat if the associated curvature
matrix R = dw + w Aw = 0 is zero.

THEOREM 3.28. The connection V is flat if and only if the parallel trans-
port function is a homotopy functional, in the sense that each component is
a homotopy functional.

PROOF. See for instance [DK 90, Theorem 2.2.1]. O

3.1.8. Parallel transport and iterated integrals. Using iterated integrals,
one can give the following explicit formula for the parallel transport function:

PROPOSITION 3.29. Let V = d+w be a connection on the trivial bundle
k™ x M — M. Then the parallel transport function is given by

T(fy):Idn—/w—l—/ww—/www—i—...,
g gl g

where the products in the integrands are formal products of matrices of 1-
forms and the iterated integrals are computed componentwise.

PROOF. Let v*w = A(t)dt. Then the iterated integrals of formal prod-
ucts of matrices of 1-forms are given by

wa e = A(E)A(t) -~ A(ty)dty -+ - dt,.
1>2t1 221,20
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Moreover, the parallel transport function is T'(y) = X (1), where X () is the
unique solution of the differential equation
X'(t)+At)X(t) =0 (3.30)

with initial condition X (0) = Id,. Observe that the function X (¢) satisfies
(3.30) and X (0) = Id,, if and only if the following integral equation holds

X(t) = 1d, /0 " A(5) X (s)ds. (3.31)

We will solve (3.31) by applying the method of Picard-Lindel6f. For this,
we define recursively a sequence of approximations to the solution:

Xo(t) = Id,,
t

X, (t) = 1d, — / A(S) X1 (s)ds, 3> 1.
0

We need to show that the sequence {X,(t)} converges. First we prove by
induction that, for all » > 1, one has:

X, (8) = X1 () = (—1)" / A(s1)- - A(s))dsy -+~ dsr. (3.32)

t>s812>2>8,2>0
Indeed, by definition

Xi(6) = Xo(t) =~ [ G5t

which settles the case r = 1. Assume that (3.32) holds for all indices smaller
than r. By the induction hypothesis

X,(t) — Xp 1(t) = — /0 A($)(Xr1(s) — Xp_a(s))ds

_ _/OtA(s)(—l)T_l /A(SQ)---A(sr)dSQ--- dsyds

52822285020

=(-1)" / A(s1) - A(sy)dsy - -+ dsy.

t281225-20

Using that the volume of the simplex A" is 1/r!, we deduce that there
exists a constant K > 0 such that
K’l"
/ A(s1) - A(sy)dsy -+ ds, = O <'> .
r!
25127 25,20

This estimate proves that {X,(¢)} is a Cauchy sequence and that its limit
is given by the convergent series

Xoo(t) = Z(—l)r / A(sy) -+ A(sy)dsy -+ dsy.

r=0 281> 25,20
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Clearly, X+ (0) = Id,,, and a telescopic argument shows that X (t) satisfies
the differential equation (3.30). Therefore,

T(fy)—xoou)—Idn—Aw+wa—... 0

The entries of the parallel transport matrix involve a priori infinite series
and, therefore, are not iterated integrals according to Definition 3.15. On
the contrary, when w is a nilpotent matrix, all the entries are finite sums.
One can then combine Theorem 3.28 and Proposition 3.29 to give examples
of iterated integrals which are homotopy functionals.

EXAMPLE 3.33. A strictly upper triangular matrix A(t) is nilpotent, so
there exists g > 1 such that A(s;1)...A(sr,) = 0. In this case, the parallel
transport function reduces to an iterated integral:

Tzl—/w—{—‘--—i—(—l)rol WW - W,
1
TO—

For instance, when

0 w1 W12
w=10 0 w9 s
0 0 O

the parallel transport function is given by

1 —fwr [wws— [wi2
T=1{0 1 — Jwo
0 0 1

and the curvature of the connection is equal to

0 dwi w1 Awsg+ dwio
do+wAw=10 0 dws
0 O 0

Thus, V = d + w is flat if and only if the following two equalities hold
dwy = dwy = 0, dwio + w1 A wy = 0. (3.34)

It follows that the iterated integral f wiwg — f w12 is a homotopy functional
if and only if the conditions (3.34) are satisfied.
More generally, one has the following result [Hai&7a, Prop. 3.1]:

PRrOPOSITION 3.35. Let w,wi,...,w, be smooth k-valued 1-forms on M.
Assume that all the w; are closed. An iterated integral of length two

E aij/wiwj —/w
1<i,j<r

is a homotopy functional if and only if dw + ZKMQ, ajjwi Awj = 0.
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We can generalize the previous example to nilpotent flat connections to
obtain plenty of iterated integrals that are homotopy functionals. Note that
nilpotent flat connections define unipotent local systems, which are noth-
ing else but finite-dimensional unipotent representations of the fundamental
group. The next two sections are devoted to detailing this relation.

* k x

EXERCISE 3.36 (Groupoids as categories). Let C be a small category in
which all morphisms are isomorphisms. Show that C yields a groupoid in
the sense of Definition 3.6. Conversely, given a groupoid, construct such a
category. Note that groups correspond to the case where the set of objects
consists of a single element.

EXERCISE 3.37 (Integration by parts). Let wi,...,w, be smooth k-
valued 1-forms on a differentiable manifold M and f a smooth function.
Prove that the following three equalities hold for any path v € P(M):

[/dfwl---wr - <fov>(1>[/w1--- wr—/v(fm)wr'- o (3.38)

/wl-.. wl*ldfwi... w,r _— /wl..- (fwzfl)wz"‘ w,r._
v v

/JM s wis1 (fwi)wigr - wp, (3.39)
e = [ oo~ (o0 [@r o a0

EXERCISE 3.41. Prove Proposition 3.18.

EXERCISE 3.42. As we have seen in Example 3.24, the iterated integral
of the 1-forms w; = dr and wy = dy on R? is not a homotopy functional.
According to Proposition 3.35, this is explained by the fact that wi Aws does
not vanish. Find a 1-form wio such that dwio + w1 A ws = 0 and check that
the value of the iterated integral

/wlbUQ — /w12: P(R2) — R

on the paths 7, from Example 3.24 is now independent of a and b.

EXERCISE 3.43 (Another proof of (3.20) and (3.21)). Let wy,...,w, be
1-forms on a differentiable manifold M. Consider the connection on the
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rank (r + 1) trivial bundle V = d 4 dw given by the matrix

0O wg 0 --- 0
0 0 wp --- O
w=:o :
0 0 0 - w
o 0 o0 --- 0

Show that the parallel transport associated with V is the r+1 by r+1
matrix 7' = (T;;) with entries

Jwiwjr i<y,
1 i =3,
0 i>j.

T;; =

Using that T'(y1v2) = T(71)T(y2) by Proposition 3.27, deduce from this
computation another proof of formulas (3.20) and (3.21).

3.2. Affine group schemes, Lie algebras and Hopf algebras. In
this section, we recall the definition of affine group schemes and of two
intimately related algebraic structures: Lie and Hopf algebras. The book
[Wat79] is an excellent reference for readers unfamiliar with these notions.
We also recommend [Car07] as an introduction to Hopf algebras.

Throughout, we fix a field k of characteristic zero (the field of coeffi-
cients), that in the applications will always be equal to Q. All undecorated
cartesian and tensor products are assumed to be over k.

3.2.1. Affine group schemes.

DEFINITION 3.44. Let A be a commutative k-algebra. The correspond-
ing affine k-scheme G = Spec(A) is said to be a group scheme if it is endowed
with algebraic operations

w: G x G — G (product),
e: Spec(k) — G (unit),
t: G — G (inverse),

satisfying the usual axioms of a group, which are expressed by the commu-
tativity of the following three diagrams:

(1) Associativity:

GxGxGﬂtiG

| |+

GxG G.

n
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(2) Unit:
G x Spec(k) e gy g&ld Spec(k) x G
|+
pry pry
G
(3) Inverse:
GxG
Id x¢ w

G —">Speck —= @G,

A

Gx@G

where 7 denotes the structural map of G as a k-scheme.

If the algebra A is finitely generated, we say that G is algebraic. We will
see below (Lemma 3.48) that every affine group scheme is in fact a projective
limit of algebraic affine group schemes.

A group scheme over k defines a functor between the categories of com-
mutative k-algebras and abstract groups. Namely, given G = Spec(A), one
considers the functor:

R G(R) = HOHIk_a]g(A, R)

Conversely, we will say that a functor F' from commutative k-algebras to
groups is representable if there exist an affine group scheme G and a natural
isomorphism of functors between F' and G.

3.2.2. Hopf algebras. Recall that the category of affine schemes over k
is equivalent to the category of commutative k-algebras through the con-
travariant functors

A — Spec(A4), G — O(G),

where O(G) is the ring of regular functions on G. Thus the defining prop-
erties of a group scheme can be transferred to the corresponding algebra,
yielding the concept of a Hopf algebra.

DEFINITION 3.45. Let H be an associative (not necessarily commutative)
k-algebra. Let V: H® H — H be the product of H and n: kK — H the unit.

(1) We say that H is a bialgebra if it is provided with two morphisms
of algebras

A: H— H® H (coproduct),
e: H — k (counit),

such that the following diagrams commute:
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(a) Coassociativity.

A

H H®H
Al lld RA
HoH 8 HeHeH
(b) Counit.
Id ®e e®Id

Heok< HeoHd SkeoH,

~el 7

H
where the maps from H to H ® k and k ® H are the natural

inclusions (which are isomorphisms).
(2) A bialgebra H is said to be a Hopf algebra if it is further equipped
with a morphism of algebras
S: H — H (antipode)

such that the following diagram commutes:
(c) Antipode.

HoH—> _ peoH

>
N

HoH —pe—>H®H

H

Y\
€ k il H.
<

(3) A bialgebra H is called commutative if the product is commutative,
and cocommutative if the coproduct satisfies A = 7 o A, where
7: H® H— H ® H is the flip of the factors.

REMARKS 3.46.

(1) This definition is not symmetric in the algebra and coalgebra struc-
tures of H. Note also that many compatibilities between the prod-
uct, the coproduct, the unit, the counit and the antipode are hidden
in the statement that A, € and S are morphisms of algebras.

(2) A bialgebra does not always admit an antipode, see Exercise 3.76
for an example.

Clearly, the notions of coproduct, counit and antipode at the level of
algebras give rise to the dual notions of product, unit and inverse at the
level of spectra. We immediately obtain the following result:
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PROPOSITION 3.47. The assignment A — Spec(A) is a contravariant
equivalence between the category of commutative Hopf k-algebras and the
category of affine group schemes over k. The quasi-inverse equivalence is
given by G — O(G). Moreover, the group scheme G is commutative if and
only if the Hopf algebra O(QG) is cocommutative.

By way of illustration, we show how to use this correspondence to prove
the promised result that affine group schemes are pro-algebraic:

LEMMA 3.48. Every Hopf algebra is a directed union of Hopf subalgebras
which are finitely generated k-algebras. Therefore, every affine group scheme
is a projective limit of algebraic affine group schemes.

PROOF. Let H be a Hopf algebra and x € H. It suffices to show that
x is contained in a finitely generated Hopf subalgebra of H. Choose a basis
{h;} of H and write A(x) = ), x; ® h;, where only finitely many z; are non-
zero. Let V' C H be the vector subspace spanned by = and the x;. We claim
that A(V) C V ® H, which amounts of course to saying that A(x;) € V@ H
for all i. Indeed, if one writes A(h;) = ZM aijeh; ® hy with a;je € k, then

D Azi) ®@ hi = (A®Id)A()

= (Id ®A)A(x)

= Z T ® aijghj ® hy
05,0
by the associativity of the coproduct. Comparing the coefficients of hy yields
Azg) = 2, wi ®aehj € V © H, as we wanted. Now let {v;} be a basis of
V' and write A(v;) = >, v; ® h;j with h;; € H. By Exercise 3.75, it follows
that A(hi;) = >y hie ® hy;, hence the vector space U generated by {v;} and
{hi;} satisfies A(U) C U ®@ U. If W is the vector space spanned by U and
S(U), then A(W) C W @ W and S(W) C W using Exercise 3.75 again.
Finally, let A be the subalgebra of H generated by W. Since A and S are
morphisms of algebras, we also have A(4) C A® A and S(A) C A. It is
thus a finitely generated Hopf subalgebra of H containing x. O

3.2.3. Comodules and Hopf modules.

DEFINITION 3.49. Let H be a coalgebra over k. A right comodule over
H is a k-vector space V, together with a coproduct

AV —VRH
satisfying the following conditions:
(1) (associativity) (Id®@A)o A = (A®]Id) o A;

(2) (compatibility with the counit) (Id ®e) o A = Id once we identify
V with V ® k.
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Left comodules are defined in a similar way.

DEFINITION 3.50. Let H be a commutative Hopf algebra. A left Hopf
module is a vector space V that is a module over the algebra structure of H
and a left comodule over its coalgebra structure. Moreover, both structures
are compatible in the sense that the equality

A(hv) = A(h)A(v)
holds for all h € H and for all v € V.

3.2.4. Graded Hopf algebras.

DEFINITION 3.51.
(1) A bialgebra H is said to be graded if the underlying k-algebra has

a direct sum decomposition
H=H,
n>0
compatible with the operations in the sense that, for all p,q,n > 0,
V(H,® Hy) C Hyrg, AH,C P Hi H
i+j=n
If, moreover, Hy = k we say that H is connected.

(2) A graded Hopf algebra is a Hopf algebra such that the underlying
bialgebra is graded and the antipode satisfies SH, C H,.

One advantage of working with graded connected bialgebras is that they
automatically admit a unique antipode turning them into (graded) Hopf
algebras (see Exercise 3.77).

3.2.5. Ezamples. In this paragraph, we give a few examples of affine
group schemes and their corresponding Hopf algebras. Of particular interest
for the sequel is the Hoffman algebra from Example 3.56.

ExXAMPLES 3.52.

(1) The trivial group scheme is Spec(k) with all operations equal to the
identity. The corresponding commutative Hopf algebra is k& with
all operations equal to the identity once we identify k ® k with k.

(2) The multiplicative group Gy,. The functor from commutative k-
algebras to groups given by R — R* is represented by an affine
group scheme G,,. The corresponding Hopf algebra is k[z,z7!],
together with the coproduct given by

Alz)=zz, Al H=z'®zl

the counit e(x) = e(x™!) = 1, and the antipode determined by
S(z) =z"!and S(z71) = =.
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(3) The additive group G4. The functor from commutative k-algebras
to groups given by R +— (R,+) is represented by an affine group
scheme G,. The corresponding Hopf algebra is k[z] with

Alz)=1®z+2z®1, €x)=0 Sz =—=.

(4) The linear group GL,. The functor that, to each commutative k-
algebra R, assigns the group GL,(R) of invertible n by n matrices
with entries in R is representable by an affine group scheme GL,,.
The corresponding Hopf algebra is

kIt (wig)ig=1,...nl/ (t det(zi) — 1).
Recall that this means that the determinant det(x;;), which is a

homogeneous polynomial of degree n in the entries z;;, is invertible.
Its inverse is the variable ¢. The coproduct is given by

n
At =1t®t, AJ}Z‘J‘ = Zazil & xy5- (353)
=1
The counit is the map
1 i=yj,
€(xzij) =
(=ij) {0 i # j.
Finally, the antipode can be expressed using Cramer’s rule for the
inverse of a matrix in terms of cofactors, that is,

S(t) = t_l, S(ZL'U) = thi7

where C;; is (—1)"*7 times the determinant of the matrix obtained
by deleting the i-th row and the j-th column of (¢, )¢m. Observe
that Cj; is a homogeneous polynomial of degree n — 1.

(5) Similarly, for every finite-dimensional k-vector space V, the functor
R— GL(R®V)

is representable by an algebraic affine k-group scheme GL(V). If V
has dimension n, the choice of a basis of V' induces an isomorphism
between GL(V') and GL,,.

(6) One needs to be cautious when working with infinite-dimensional
vector spaces. In fact, given a k-vector space V', the functor

R— RV

is representable if and only if V' is finite-dimensional [GD71, 9.4.10].
Therefore, the group-valued functor Aut(V') defined by

R Autp(R® V)

does not define an affine group scheme when V' has infinite dimen-
sion. In fact, the rule (3.53) from Example (4) above does not
define a coproduct in the infinite-dimensional case.
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EXAMPLE 3.54. Any Zariski closed subset of GL, which is stable un-
der the group operations is also an affine group scheme. This includes the
classical algebraic groups such as

SLy, = Spec(k[(xij)i j=1....n]/(det(zi;) — 1)).
EXAMPLE 3.55. Let G be a finite group. The group algebra
KIG) ={) _agg | ag €k}
geG

carries a structure of Hopf algebra. The product is determined by the group
structure of G, that is:

o Y= Y agpiah= Y (St ) £
geG heG g,heG feG \geG
The coproduct is given by Ag = g ® g, and the antipode by S(g) = g~'.
This Hopf algebra is cocommutative but not commutative, unless the group

G is abelian.

ExaMPLE 3.56. For the purpose of these notes, the main example will
be the Hoffman algebra ) of Section 1.6. Recall that the underlying vector
space of §) is the vector space Q(X) generated by (non-commutative) words
in two letters xg,x1. The Hopf algebra structure is given by

(1) Shuffle product.
Tey ** Te, W Tepgr 0" Tepps = Z xsafl(l) o :L‘Ecrfl(erq)'

oew(r,s)

(2) Unit. The map n: Q — $ that sends 1 to the empty word.

(3) Deconcatenation coproduct.
n
Axe, -+ e, = E Ty Te; @ T,y T,
7=0

(4) Counit. The map e: $ — Q that sends every non-empty word to 0
and the empty word to 1.
(5) Antipode.

S(ey + @e,,) = (=1)"2e,, -+ 2y

For convenience, if w is a word on the letters xy and z1, we will
also use the notation

w* = S(w). (3.57)

Consider the grading of ) that gives weight n to z., --- x.,. Since all the
above operations respect the weight, $) is a graded Hopf algebra.
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3.2.6. The dual of a Hopf algebra. Let H be a Hopf algebra over k. If
H is a finite-dimensional k-vector space, then its dual
HY = Hom(H, k)

is again equipped with a Hopf algebra structure, whose product is the dual
of the coproduct of H, whose coproduct is the dual of the product, and the
antipodes of H and H" are dual of each other. In other words, the axioms
in Definition 3.45 are self-dual. This uses the canonical isomorphism

HY @ H' ~ (H® H)".

If H has infinite dimension, these two vector spaces fail to be isomorphic,
hence the dual of the product does not give rise to a coproduct but only
to what is called a completed coproduct. Let us explain why. Let V be an
infinite-dimensional k-vector space and write

V =1lim V7,
T
where I runs over the directed set of finite-dimensional subspaces of V. Since
Hom(+, k) exchanges inductive and projective limits, the dual of V' is
VY = Hom(V, k) = Hom(li_;)n Vi k) = n%nHom(VI, k) = {i%nvlv.
Thus, V'V has a natural structure of pro-finite-dimensional k-vector space.
DEFINITION 3.58. Given a pro-finite-dimensional k-vector space
W = lim Wy,
I
the completed tensor product with itself is defined as
WeW = l(%n(W[ Q@ Wr).
Note that the definition requires a structure of pro-finite-dimensional

space. When dealing with the dual of an infinite-dimensional vector space
we will tacitly assume the previously described structure.

For infinite-dimensional vector spaces, the notion of tensor product is
not self-dual, but the dual notion to the tensor product is the completed
tensor product:

VeV =vVeVV.
There is a natural morphism
VVeVY — (Ve V) =VVeVY,
that, in general, is not an isomorphism.

Thus, when we dualize the product A ® A — A of an algebra, we only

obtain a morphism
AY — (A A)Y = AVeAY (3.59)
and not necessarily a coproduct AV — AV ® AY. A map as in (3.59) is called
a completed coproduct.
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DEFINITION 3.60. A completed Hopf algebra A is a pro-finite-dimensional
vector space satisfying the analogous properties of a Hopf algebra (Definition
3.45) where all tensor products are replaced by completed tensor products
and all the maps are compatible with the pro-finite-dimensional structure.
In particular it has a completed coproduct

A A — ARA,
the algebra product V: A® A — A factorizes through a completed product

AR A — AGDA s A

and the antipode S is compatible with the pro-finite-dimensional structure.

The dual of an infinite-dimensional Hopf algebra is a completed Hopf
algebra. Typically, we will apply this construction to a connected graded
Hopf algebra with finite-dimensional graded pieces. In this case, the no-
tion of completed Hopf algebra can be conveniently written in terms of the
topology induced by the augmentation ideal.

EXAMPLE 3.61. Let A = k[z] be the Hopf algebra of polynomials of
Example 3.52 (3). Let y,, € AY be the element determined by (y,,,z") =
On,m- Then

. (m+n)!
:<ym®yn7(1®l‘+x®1)3>: nlm! >

if j =n+m,

0, otherwise.
From this equation we deduce that y, = y7*/m! and AV is the algebra
of formal series on divided powers. Since we are working over a field of

characteristic zero, it is isomorphic to the algebra of formal power series.
Thus, writing y = y1, as algebra we have

AY = k[[y]).

One can easily check that the completed coproduct is determined by Ay =
1®y+y®1 and the antipode by S(y) = —y. In particular

m
Aym = Zyj & Ym—j, S(ym) = —Ym-
=0

The completed coproduct can not be factored through a true coproduct.
Consider the element 7 =" - ny,. Then

n
A=Y "ny; @yn.

n>0 j=0

This element does not belong to AV ® AY. This can be seen as follows. Any
element

Z Qi ;Yi &® Yj S AV (= AV

4,70
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satisfies that the rank of the matrix (a; ;) is finite. By contrast, the rank of
the matrix (b; ;) with b; ; =i+ j is not bounded.

ExaMPLE 3.62. The dual of the Hopf algebra $) of Example 3.56 is the
space £ = Q(eq, e1)) of series on the non-commutative words in two letters
eo, e1. Given a binary sequence o and an element v € Q(eg, e1)), the duality
is given by the pairing

(Ta,7y) = coefficient of e, in 7.

This duality and the Hopf algebra structure of $) endows Q(eg, e1)) with the
structures

(1)

(2)

Concatenation product. The product AV: §V @ HY — HV is given
by

€yt oy Copyytt Copry = €oytt Cepy s
Unit. It is the morphism

n": Q — Qfeo, e1)
that sends 1 to the empty word.

Completed coproduct. It is the unique morphism of algebras
VV:iHY — 9YeeY
such that
VVe.=1®e.+e.®1, e=0,1.
This implies that, for any word w on the alphabet {eg, e},
VVw = Z W(wy, we; w)wy @ wa,
w1, w2

where the shuffle index LW(wq, we; w) was introduced in 1.153.

Counit. The map
e’: Qfeo,e1) — Q
sending all non-empty words to 0 and the empty word to 1.
Dual antipode. 1t is given by
S¥(eer €)= (=1)"ec, - €cy

By analogy with (3.57), for a word w in the letters ey and e;, we
use the notation

w* = SY(w). (3.63)
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3.2.7. Lie algebras. Another important construction attached to a group
scheme is its Lie algebra. The Lie algebra of a differentiable algebraic group
is the tangent space at the origin together with an antisymmetric product
(the Lie bracket) that reflects the non-commutativity of the group operation.

DEFINITION 3.64. A Lie algebra over a field k is a k-vector space L
together with a bilinear product
[, ]: L& L— L
satisfying the following two conditions:
(i) Anti-symmetry: [a,b] + [b,a] = 0 for all a,b € L.
(ii) Jacobi identity: [[a,b],c] + [[b,c],a] + [[c,a],b] = 0 for a,b,c € L.
If, moreover, the underlying vector space has a grading
L=@PLn
nez
such that [L,,, Ly,] C Ly+m, we say that L is a graded Lie algebra.

The dual notion of a Lie algebra is a Lie coalgebra. We let the reader
explore its properties in Exercise 3.80.

In the case of affine group schemes, the Lie algebra can be directly
constructed from its Hopf algebra, as we now explain. Let G be an affine
group scheme over k, and A = O(G) the corresponding commutative Hopf
algebra. We keep the notation (V,n, A€, S) from Definition 3.45.

DEFINITION 3.65. The augmentation ideal of A is the kernel of the counit
map. It will be denoted by I = Ker(e).

The augmentation ideal is the maximal ideal of regular functions van-
ishing at the unit e = 7(1). Since € o = Idy, there is a canonical direct sum
decomposition A = k & I and a canonical projection A — 1.

DEFINITION 3.66. The tangent space of the affine group scheme G at
the origin is L = (I/I?)V.
To make L into a Lie algebra, we need a bracket
[,]]: LAL— L.

We will first define the dual map. For this we observe that the compatibilities
of the coproduct with the unit and the counit imply that, if f € I, then

Af—fel-lefclol. (3.67)
We now consider the map
I 25 A A — (I/1?) @ (I/1%) — (I/I%) A (I/12),

where the second map is induced by the projection A — I — I/I? and the
third map is the projection from the tensor product to the exterior product.
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Using property (3.67), we can see that this map vanishes on I2. Therefore,
we obtain a map

2
d: 1/1° - \(I/1?). (3.68)
By duality, we obtain a map

LAL=I/I)Y A2 — (/12 A1) 25 (1/12)Y = L,

that we denote [-,-]. Following Exercise 3.81, we have that (I/I2,d) is a Lie
coalgebra.

DEFINITION 3.69. The Lie coalgebra associated with the commutative
Hopf algebra A is the pair (I/I1?,d). The dual (L,[-,"]) is called the Lie
algebra of G and denoted Lie(G).

In practice, to compute the Lie algebra of an affine group scheme G, one
looks for the elements of G(k[e]) mapping to the identity in G(k), which
is an algebraic characterization of the tangent space at the unit. Here k[e]
denotes the ring of dual numbers, in which €2 = 0.

ExaMPLES 3.70.

(1) The group G = GL,, is an open subscheme of the affine space A”Q,
the complement of the determinant hypersurface {det = 0}. Thus,
the tangent space at the origin can be identified with the space
Mat,, (k) of all n x n matrices over k and the Lie bracket is just the
usual commutator of matrices.

(2) Let G = SL,. It is the closed subscheme of GL,, defined by the
equation det = 1. The Lie algebra of G is a subalgebra of Lie(GL,,),
hence of Mat, (k). To determine it, it suffices to check which ma-
trices of the form 1 + M, with €2 = 0 have determinant 1. Since

det(l14+eM)=1+eTr(M),

we deduce that Lie(SLy,) can be identified with the space of traceless
n by n matrices.

3.2.8. The universal enveloping algebra. It is sometimes convenient to
associate to a Lie algebra an associative algebra containing the same infor-
mation. This is the universal enveloping algebra.

DEFINITION 3.71. Let (L, [-,]) be a Lie algebra. Its universal enveloping
algebra is an associative algebra U(L), together with a universal morphism
tr,: L — U(L) such that

v (la,b]) = ep(a)er(b) — ep(b)er(a).

By “universal” we mean that, if A is another associative algebra with a map
t: L — A satisfying ¢([a,b]) = t(a)e(b) — ¢(b)i(a), then there exists a unique
map ¢: U(L) — A such that . = poyp.
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We next recall the construction of the universal enveloping algebra. Let
T (L) be the tensor algebra over L. That is

T(L) =P L
n>0
with the associative product determined by
CL1®"' ®ar'a7’+1®"'®ar+s:a1®"’®ar+5‘

If dimy, L > 1 this algebra is non-commutative.
Let J C T(L) be the two-sided ideal generated by the elements

a®b—b®a-—la,b], abelL

Then
U(L) =T(L)/J,
and the map ¢y, is the composition L — T'(L) — U(L).

By Exercise 3.79 below, the algebra U(L) has a coproduct A determined
by the condition

Avp(a) =p(a) ®1+1® ep(a).
In fact, U(L) is a Hopf algebra, whose counit n: U(L) — Q is induced
by the zero map L — Q, and whose antipode is induced characterized by
S(z) = —x for all x € L.

The main structure theorem for universal enveloping algebras is

THEOREM 3.72 (Poincaré-Birkhoff-Witt). The map v1, is injective. In
particular, one can recover L from the universal envelopping algebra U(L),
together with the coproduct A, as the subspace of primitive elements

€Ll < ANAa=a®1+1R®a.

If G is an affine algebraic group and L = Lie(G), there is a canonical
map U(L) — O(G)Y, that, in general, is not an isomorphism.

For the sequel, we also need to introduce the completion of the universal
enveloping algebra.

DEFINITIAON 3.73. The completed universal enveloping algebra is the
completion U(L) of U(L) with respect to the ideal Ker(n), where 7 is the
counit of U(L).

EXAMPLES 3.74.

(1) Let G = G, be the additive group over Q. Then its algebra of
functions is the polynomial ring O(G) = Q|z] and its Lie algebra is
the abelian one-dimensional algebra L = Q. Its universal envelop-
ing algebra is the algebra of polynomials Q[y], while its completed
universal enveloping algebra is the algebra of formal power series
Q[y]- In this particular case, this last algebra agrees with the dual
of O(G), where the dual of =™ is the divided power y"/n!.
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(2) Let G = Gy, be the multiplicative group over Q. Then its algebra
of functions is the ring of Laurent polynomials O(G) = Q[z, ™ }]
and its Lie algebra is the abelian one-dimensional algebra L = Q.
Its universal enveloping algebra is the algebra of polynomials Q[y],
while its completed universal enveloping algebra is the algebra of
formal power series Q[y]. In this particular case, this last algebra
agrees with the dual of O(G), where the dual of z" is the divided
power y" /nl.

* k x

EXERCISE 3.75. Let H be a Hopf algebra.

(a) Consider a finite-dimensional subvector space V of H satisfying
A(V) C V®H. Pick a basis {v;} of V and write A(v;) = >, v;®h;j.
Prove that A(hij) = >, hie @ hy;.

(b) Show that AoS =70 (S®S)oA, where 7 is the flip of the factors
of H® H. Concretely, if A(h) =3, a; ® b;, then

ZS’ ) ® S(a;).

EXERCISE 3.76 (A bialgebra without antipode). Let H = k[z] be the
polynomial algebra in one variable. The coproduct A(z) = = ® x and the
counit €(x) = 1 endow H with a cocommutative bialgebra structure. Show
that H does not have an antipode.

EXERCISE 3.77 (A connected graded bialgebra has an antipode). Let H
be a connected graded bialgebra.

(a) Use the commutativity of diagram (2) in Definition 3.45 to prove
that the counit e: H — k vanishes on H,, for all n > 1, hence
induces an isomorphism Hy ~ k.

(b) Show that the antipode S: H — H is the unique algebra morphism
such that Sy, =Id and, it z € H,, for n > 1,

(2) = —z =) V(S@) @a”),

where the sum runs over all elements z”” appearing in the coproduct
Alz)=1@z+z1+> 2 @a".
EXERCISE 3.78. Let $ be the Hoffman algebra.
(a) Verify that the operations described in Example 3.56 endow $) with
a Hopf algebra structure.

(b) Recall that $ is graded by assigning weight n to x., - -+ z.,. Prove
by induction on n that the recipe to compute the antipode pre-
sented in Exercise 3.77 yields S(xe, -+ zc,) = (—=1)"z, -+ Tey .
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EXERCISE 3.79. Consider the coproduct A: T(L) — T(L)®T(L), which
is the unique algebra homomorphism determined by the condition Aa =
1®a+a®1 for a € L. Show that

AJCJIJRT(L)+T(L)® J.
EXERCISE 3.80 (Lie coalgebras). We introduce Lie coalgebras.

a) Let L be a finite-dimensional Lie algebra over k. The dual of the
Lie bracket [-,-]: L&QL — Lisamapd: LY — LY®L". Write down
the properties dual to the anti-symmetry and the Jacobi identity
from Definition 3.64.

b) Define a Lie coalgebra over k as a k-vector space C' with a map
d: C — CAC such that dod = 0 (when d is appropriately extended
to C' A C). Prove that the dual of a Lie coalgebra, not necessarily
of finite dimension, is a Lie algebra.

EXERCISE 3.81. In this exercise, we show that I/I? is a Lie coalgebra,
hence L is a Lie algebra.

(a) Check the property (3.67).
(b) Extend d to an operator
n n+1
d: \I/I*)— N\(I/1%)
by using the Leibniz rule with appropriate signs. Then show that

d?> = 0. This implies that I/I? is a Lie coalgebra. Deduce from
Exercise 3.80 that L is a Lie algebra.

EXERCISE 3.82. Show that, in the Hopf algebra k[X], one has

n
A(X™) = (") X" @ X",
an =3

EXERCISE 3.83 (The Hopf algebra of rooted trees). In this exercise, we
describe the Hopf algebra of rooted trees introduced by Connes and Kreimer,
in connection with the renormalization of quantum field theories [CK98].
Another nice reference is [Foi].

We begin with a couple of definitions. A rooted tree is an oriented
finite graph which is connected and simply connected (in other words, a
tree), and has a distinguished vertex with no incoming edges called the
root. Continuing the metaphor, the vertices with no outcoming edges are
called the leaves. A rooted forest is a disjoint union of rooted trees.

Let Hy be the Q-algebra of polynomials in rooted trees, i.e. Hp is the
free commutative Q-algebra with unit generated by (isomorphism classes of)
rooted trees. The product of two rooted trees is their disjoint union and the
unit is the empty tree 1. As a vector space,

Hpr = Q[rooted forests].
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Let t be a rooted tree. An admissible cut c of t is the choice of a subset
of the edges such that any path from the root to the leaves meets at most
one cut. Deleting the edges in ¢, one gets a rooted forest W€(¢). Among
the connected components of W€(¢), there is a unique tree R°(t) containing
the root. The rooted forest consisting of the remaining components will be
denoted by P¢(t). Two extremes cases of admissible cuts are the empty cut,
for which R°(t) =t and P“(t) = 1, and the total cut, for which R°(t) =1
and P¢(t) = t. We shall write Adm,(¢) for the set of non-total, non-empty
admissible cuts of t. We define:

At=1l@t+tal+ »  P(t)@R(1). (3.84)
ceAdm, ()

Since Hp is the free algebra in rooted trees, (3.84) extends uniquely to
a coproduct A: Hrp — Hr ® Hgr. Figure 13 contains an example of an
admissible cut and the contribution to the coproduct.

BERY

N—————

' Pe(t) Re(t)

FiGure 13. Coproduct of rooted trees

The counit is the map e: Hr — Q which sends the empty tree to 1 and
everything else to zero.

(1) Prove that A and e satisfy the associativity and counit axioms from
Definition 3.45. In other words, Hp is a bialgebra.

(2) For each integer n > 0, let Hr(n) C Hpr be the vector subspace
generated by rooted forests with n vertices, so that

Hr = EPHr(n).

n>0

Observe that AHp(n) C D, -, Hr(i)) ®HR(j). Since H is obvi-
ously a graded connected algebra, by Exercise 3.77 there is a unique
antipode S turning Hpg into a Hopf algebra.
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(3) Given a rooted tree ¢t and a cut ¢, write n. for the numbers of cut
edges in c. Prove that the antipode is given by

S)y=—t— > (-D"W(t).

c€Adm, (t)

3.3. The pro-unipotent completion of a group. In this section,
we develop some abstract machinery which will be used in the sequel to
rephrase the constructions of Section 3.1 in a more conceptual way. We
have seen that iterated integrals carry information about the fundamental
group of a differentiable manifold. The question we would like to answer is
how much of it can be recovered using differential forms. Stated in a vaguer
form: what information about the fundamental group is “cohomological”,
or even “motivic”, if we are dealing with algebraic varieties?

Throughout, k will still denote a field of characteristic zero.

3.3.1. Representations. We first introduce the notion of representation
of an abstract group and an affine group scheme. In the latter case, one needs
to be careful because, as explained in Example 3.52 (6), the group-valued
functor Aut(V') is not representable by a scheme when V' is an infinite-
dimensional vector space.

DEFINITION 3.85. Let I' be a group. A k-linear representation of I is a
k-vector space V together with a group homomorphism

' — Autg (V).

Let G be an affine group scheme over k. A linear representation of G is
a k-vector space V together with a natural transformation of group valued
functors G — Aut(V). This means that for every k-algebra R we have a
group homomorphism G(R) — Autr(R ® V) and for each morphism of
K-algebras R — R’ a commutative diagram

G(R) — Autp(R® V)

| l

G(R/) — Auth(R’ ® V).

Every linear representation of an affine group scheme determines a repre-
sentation of the group G(k), but the converse is not true. Since we will only
work with linear representation, for shorthand we will omit the adjective
linear.

In some cases it is more convenient to use the point of view of comodules.
For a proof of the next result see, for instance [Mil12, Proposition VIIL.6.1].

LEMMA 3.86. Let G be an affine group scheme over k, and let V be a
k-vector space. There is a natural one-to-one correspondence between the



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 151

linear representations of G on V and the right O(G)-comodule structures
onV.

The first part of the proof of Lemma 3.48 shows the following:

LEMMA 3.87. Ewery linear representation of an affine group scheme is
a directed union of finite-dimensional subrepresentations.

REMARK 3.88. Recall from Example 3.52 that, if V' is a finite dimen-
sional vector space, then the automorphisms of a vector space V form an
affine group scheme GL(V'). It turns out that, to give a finite dimensional
representation of G, is equivalent to give a pair consisting of a k-vector
space V' and a morphism of group schemes p: G — GL(V). Since we will
be mainly interested in finite dimensional representations, this is the point
of view that we will use the most.

3.3.2. The abelianization of the fundamental group. The obvious piece of
information that can be recovered via differential forms is the abelianization
of the fundamental group. Indeed, recall from Theorem 3.14 that

7 (M, z)* ~ H|(M,7Z),
so that, passing to the dual, de Rham’s Theorem 2.24 yields an isomorphism
Hgg(M,R) = Hom(m (M, z)*,R).

Moreover, in the case where k is a subfield of C and M = X(C) is the
set of complex points of a smooth variety X over k, we get

Hlz (X) ® C = Hom(m (M, ), C)

where the left-hand side stands for algebraic de Rham cohomology (see Def-
inition 2.37) and has thus a purely algebraic definition.

However, the abelianization of the fundamental group is a very crude
invariant. In fact, the abelianization of a group I' knows only about the
abelian representations of I'. We should be able to see much more than
just the abelianization of the fundamental group using differential forms. A
glimpse of this appeared in Section 3.1 where we saw that iterated integrals
are related to nilpotent flat connections, that in turn are related to unipo-
tent representations of the fundamental group. In the next paragraphs we
elaborate on this idea.

3.3.3. Unipotent and pro-unipotent groups. Recall from Lemma 3.48 that
every affine group scheme is pro-algebraic.

DEFINITION 3.89. An affine algebraic group (respectively affine group
scheme) G over k is called unipotent (respectively pro-unipotent) if every
non-zero representation V' of G has a non-zero fixed vector.

REMARK 3.90. In view of Lemma 3.87, it is enough to check that every
non-zero finite-dimensional representation has a non-zero fixed vector.
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ExaMPLES 3.91.

(1) Let Up,, be the functor that associates to each k-algebra R the
group of n by n upper triangular matrices with 1 in the diagonal.
This functor is represented by an affine group scheme, still denoted
by Up,,. The group Up,, is unipotent. Indeed, let p: Up,, — GL(V)
be a finite-dimensional representation. It follows from the definition
of Up,, that (p—1)" = 0. Let m be an integer such that (p—1)™ = 0,
but there is an element g € Up,, (k) and a vector v; € V with

vi=(p(g) = 1) o1 #0.

By construction, Up,, -v = v, showing that Up,, is unipotent. If V
is a k-vector space of dimension n, then a choice of a basis of V
induces a closed immersion Up,, — GL(V).

(2) Passing to the limit yields the pro-unipotent group

Up,, =1im Up,, .
n
DEFINITION 3.92. Let G be either an abstract group or an affine group
scheme. A finite-dimensional representation p: G — GL(V) is called unipo-
tent if there exists a basis of V' such that p(G) C Up,,. Equivalently, p is
unipotent if there exists an integer N > 0 such that (p(y) — Id)Y = 0 for
all v € G.

It follows easily from definitions 3.89 and 3.92 that an affine algebraic
group (resp. affine group scheme) G is unipotent (resp. pro-unipotent) if
every non-zero finite-dimensional representation V' of G is unipotent.

3.3.4. The conilpotency filtration. We give an alternative characteriza-
tion of pro-unipotent groups. Let G = Spec(A) be an affine group scheme
over k. Since A is a coalgebra, the dual AV is an algebra, but this time not
necessarily commutative. The unit of A defines an augmentation e: AV — k.
Let J = Ker(e) be the augmentation ideal. Then the conilpotency filtration
is the filtration of A given by

0CCyp:=Ann,J C Cy =AmnyuJ? C---CC;:=C Anny J" ...
It is easy to see that Cy = k - 1, where 1 is the unit of A, and that

AC;C Y Ca® (3.93)
a+b=1

PROPOSITION 3.94. An affine group scheme is pro-unipotent if and only
if the conilpotency filtration is exhaustive, that is:

A= [j C;.
1=0
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PROOF. Assume that the conilpotency filtration is exhaustive and let V'
be a non-zero representation of G = Spec(A), and denote by A: V - V® A
the corresponding comodule structure. Consider the exhaustive filtration
{Vi}ti>o given by
Vi={veV]|AveV®dq}.

In particular, by the axioms of a comodule, if v € Vj, then Av = v ® 1.
Thus we have to show that Vj is non-zero. To this end we show that V; =0
implies that V;11; = 0. So, assume that V; = 0 and let v € Vj11. By (3.93)

(1leA)dve Y Vol
a+b=i+1
Since a and b can not be both bigger that ¢, the vector v is sent to zero by
the map

VS VoA VRARA—VeA/C;® A/C
But, by the associative property of comodules, this map agrees with the
map
A A®]
V—=DSVRA—=VRARA—VRA/C;® A/C.
that is an injection, since V; = 0. Thus v = 0, hence V;5; = 0.

Conversely, assume that every non-zero representation of G has a non-
zero fixed point. Then every representation V' has a filtration {V;}i>¢ de-
termined by the fact that V;;1/V; is the trivial subrepresentation of V/V;.
This filtration is exhaustive by Lemma 3.87. The conilpotency filtration

agrees with this filtration in the representation given by A itself, thus it is
exhaustive. O

3.3.5. The pro-unipotent completion. The central concept of the whole
section is the following:

DEFINITION 3.95. Let I' be an abstract group. The pro-unipotent com-
pletion T of I' over k is the universal pro-unipotent affine group scheme
G over k endowed with a morphism of abstract groups I' — G(k). More
precisely,

e """ ig a pro-unipotent affine group scheme over k with a morphism
I'— I'"(k),

e for each pro-unipotent affine group scheme G over k with a mor-
phism I' — G(k), there is a unique morphism of affine group
schemes I''™ — G such that the following diagram commutes

pp— IO

Y

G (k)



154 J. I. BURGOS GIL AND J. FRESAN

The pro-unipotent completion of I over Q will be called the pro-unipotent
completion of I'.

The pro-unipotent completion is also called the Malcev completion in
the literature. As it is always the case with universal objects, when they
exist they are unique up to unique isomorphism.

REMARK 3.96. If the pro-unipotent completion exists, then the groups I
and '™ have the same finite-dimensional unipotent representations. There-
fore, one cannot recover I' by just looking at this kind of representations.

We now present the construction, due to Quillen, of the pro-unipotent
completion of a group satisfying a finiteness condition. For the moment, let
I" be any abstract group and consider the non-commutative k-algebra

kL] = {Z agg | ag € k, ag =0 except for a finite subset},
gel
with the product structure induced by the group operation of I'.

DEFINITION 3.97. The augmentation of k[I'] is the algebra morphism
€: k(L] — k
D oger @9 Dger dg-
Its kernel J = Ker(e) is called the augmentation ideal:

J = {Zagg ] Zag:()}.

gel gel
The completion of k[I'] with respect to J is the inverse limit
kDN = lim k[T)/JNHE
+~—N
This is a topological algebra. It has a completed coproduct
VYV kD) — k[ &k

induced by the rule VVg = g ® g for all elements g € I'. Moreover, there is
an antipode

SV kD) — k0N
determined by g — ¢g~!. With these operations k[[']" is a completed Hopf
algebra in the sense of Definition 3.60. Its dual

A= (KT = g (R{r] )
N

with the induced structures is a Hopf algebra. The augmentation € extends
to an augmentation e: AV = k[[']" — k, that agrees with the augmentation
introduced in Paragraph 3.3.4. We will also denote by

J = Ker(e) = JE[I"

the augmentation ideal of k[[']".



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 155

Let us now assume that T satisfies the finiteness condition that TP @y k
is a finite-dimensional k-vector space. By Theorem 3.14, this is for instance
satisfied when I' is the fundamental group of a topological space with the
homotopy type of a finite CW-complex.

LEMMA 3.98. If the vector space I'®P @z k is finite-dimensional, then all
the quotients k[[']/JNHL are finite-dimensional as well.

PROOF. Since k[['] = k @ J, it suffices to prove that J/JV*! is finite-
dimensional for all N > 0. Looking at the filtration

JNﬁ‘ngNggJ?ng

this amounts to proving that the successive quotients J*/J'™! are finite-
dimensional for all 7 > 1. To treat the case i = 1, we note that the map
r — J/J?
g — (g—1)+J 2
factors through the abelianization of I', as can be seen by writing gh — 1 as
(g— 1)+ (h—1)+ (g —1)(h—1). In fact, it induces an isomorphism
e @, k=5 J/J?

(the inverse is the map that sends the class of a generator g—1 to the class of
g in T?). This proves that J/J? is finite-dimensional. Taking into account
that the multiplication map

(J/JQ)@Z SN Ji/J’H-l
is surjective for all ¢ > 1, the general result follows. ([

The following result can be deduced from [Qui69, Appendix A], al-
though the language there is different. A translation into the language of
algebraic groups is given in [Hai93, Theorem 3.3]. We sketch the proof.

THEOREM 3.99 (Quillen [Qui69]). Let ' be an abstract group such that
the wector space T'®® ®7 k has finite dimension. Then the pro-unipotent
completion of T over k is the pro-algebraic group Spec((k[[|")V).

PROOF. The conilpotency filtration of A is given by Anny JY1. Since

ﬂ JN+1 — 07
n>0

the conilpotency filtration of A is exhaustive. Therefore, by Proposition
3.94 we deduce that G is pro-unipotent.

Let now H = Spec(S) be a pro-unipotent group with a group morphism
I' » H(k). Let SV be the non-commutative algebra dual to the co-algebra
S. There is an inclusion H (k) — SV given by evaluating functions at points.
The map f: I' — H(k) extends to a map k[I'] — SV also denoted f. The
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augmentations of k['] and of SV are compatible with f. Thus we obtain
maps

k,[r]/JN-i-l N SV/JN+1’

where J denotes the augmentation ideal in both algebras. Dualizing we

obtain maps

JN+1 JN+1

Anng — Anny — A.

Since H is pro-unipotent, by Proposition 3.94 the conilpotency filtration of S
is exhaustive and we obtain a map S — A, therefore a map of pro-unipotent
groups G — H. By construction, this is the only map of pro-unipotent
groups that preserves the image of I'. Thus G satisfies the universal property
defining ™", O

3.3.6. Group-like and Lie-like elements. Let I be an abstract group such
that T'®° ®y k is finite dimensional. In this paragraph, we describe the set of
rational points I'""(k), the map I' — I'""(k) and the Lie algebra Lie(T™").
In the applications we will always be interested in the case k = Q.

DEFINITION 3.100. An element g € k[[']" is said to be group-like if it
satisfies the conditions (g) =1 and VVg =g ® g.

The set of group-like elements of k[I'], denoted by G(k[[']"), is a group.
Clearly, the image of an element g € T' in k[[']" is group-like.

DEFINITION 3.101. An element of x € k[[')" is called Lie-like if it satisfies
the condition VVz =1®z + 2 ® 1.

The set of Lie-like elements of k[[']", denoted by L(k[T']"), is a Lie alge-
bra. The power series exp and log are bijections, inverses to each other

log
N

G (k[T L(k[T]") -

exp

PROPOSITION 3.102. Let T' be an abstract group such that T®® ®z k has
finite dimension. Then G(k[[]") = T"(k), and the natural map T' — Q[I']"
agrees with the structural map T' — T'"™(Q). Moreover, the Lie algebra of
™ agrees with L(Q[T']").

PRrROOF. We just sketch the proof that G(k[T']") = '™ (k). We continue
using the notation A = (k[[]")Y so that "™ = Spec(A). By definition
the set I'""(k) is in bijection with the set of morphisms Spec(k) — Spec(A),
which, in turn is in bijection with the set of algebra homomorphisms A — k.
That is, the set of elements g € AY = k[I']" that preserve the unit and the
product. For an element g € AV, to preserve the unit is equivalent to
£(g) = 1 and to preserve the product is equivalent to VV(g) = g ® g. Thus
we get bijection G(k[[']") = T (k). O
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ExaMpPLE 3.103. Let us illustrate the above proposition for I' = Z.
As we will see in Exercise 3.111, the pro-unipotent completion of I' is the
additive group G, over Q, so we need to show that group-like elements in
Q[[=]] are in one-to-one correspondence with Q. Let ) -, anz™ be a group-
like element. Then ag = 1 and a

\Ad Zanm” = Zanx” ® Zanazn . (3.104)

n>0 n>0 n>0

Since VVz = 1® 2z + 2 ® 1, we have

vVat = kzo <Z> z* @ 2"k,

Equation (3.104) is thus equivalent to the relation

k+m
ApQm = k Ak+m

for all k,m > 0. In particular, all coefficients are determined by a; and
indeed a,, = %1, Hence our element is of the form exp(a;z) and this gives
the correspondence.

From the compatibility between the antipode, the product and the com-
pleted coproduct we easily deduce the following (Exercice 3.113):

LEMMA 3.105. If x is a Lie-like element, then S(x) = —x, while if g is
a group-like element, then it is invertible in the algebra k[U])" and satisfies

S(g) =g ".

ExXAMPLE 3.106. Let I' be the free group on two generators vy and ;.
In this example we compute the pro-unipotent completion of I' (over Q).
Since v9 — 1 and v; — 1 belong to the augmentation ideal, we can define
(0 — 1)?

log(yo) =log(1+ (10— 1)) =70 —1—-—5—"—+...

2
log(1) = log(1+ (o~ 1)) = —1 - By
as elements in Q[T']". Recall the algebra Q{eo,e1) of Example 3.62. We
define a morphism of algebras Q(eg, e1) = Q[I']" by sending eq to log(vo)
and e; to log(y1). It is easy to verify that this map is an isomorphism
compatible with all extra structures (unit, counit, completed coproduct and
antipode) of both algebras. From this it follows that I'™" = Spec($)), where

$ is the Hoffman algebra of Example 3.56.
In particular, we can identify the group of rational points I''""(Q) with
the set of group-like elements of Q({eq, e1)), the Lie algebra Lie(T"™™) with the

set of Lie-like elements of Q{eg, 1)) and the completed universal enveloping
algebra of Lie(I'™") with Q{eq, e1)).
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3.3.7. The pro-unipotent completion of a torsor.

VARIANT 3.107. We will also use the following variant of the construc-
tions of this section. Let P be a left torsor over I', in other words, a set
P on which I" acts freely and transitively on the left. Write k[P] for the
k-vector space with basis P. It has the structure of a left k[I']-module. The
completion of k[P] is defined as

k[P = liénk[P]/JN“k[P]. (3.108)

This is a k[[']*-module equipped with a completed coproduct
VY: k[P — E[P)"&K[P]",
induced by the rule VVa = a ® a for any a € P. The completed coproducts
of k[N and k[P]" are compatible with the module structure in the sense
that
V¥(ga) = V¥ (9)V"(a).

for all a € k[P]" and g € k[[']". Dualizing we obtain a commutative algebra
R = (k[P]")Y with a compatible coproduct

A:R— A®R, (3.109)
where A denotes again A = (k[P]")V. In other words, R is a Hopf module
over A. The unipotent completion of P is

P" = Spec(R).
The coproduct (3.109) induces an action '™ x P"™ — P"" that turns P""
into a I'""-torsor.

Mutatis mutandi, the same construction can be made for a right torsor
P’. In this case
k[P = lim k[P')/k[P"]JN T,
—

Our basic example will be the case when I' is the fundamental group
m1(M,x) and P and P’ are the torsor of paths 71 (M;x,y) and 71 (M;y, x)
respectively. In this case, there is also an antipode map

S: Q[P — Q[P
induced by the rule S(y) = v~ ! for paths v € P.

* k x

EXERCISE 3.110. Not every representation of the group G(k) thas has
“geometric origin” is a representation of G. For instance, consider the C
vector space V = K(P{) of rational functions on the complex projective
line. The group G(C) = SLy(C) acts on P{(C) by Mébius transformations,
hence linearly on V.

(1) Let W C V be a finite-dimensional vector subspace. Show that the
set of poles of the functions belonging to W is finite.
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(2) Show that the set of poles that appear in the orbit of the function
t is infinite.

(3) Conclude by Lemma 3.87 that the linear representation of G(C)
on V does not come from a representation of the algebraic group
scheme G = SLs.

EXERCISE 3.111. Consider the group I' = m(S',1) ~ Z. Let o be a
generator of I" and consider Xy = log(7o) as a power series in (7 — 1) € J.
Use 79 and X to describe explicitly

Qmi(SY, 1)]/INTY, Qi (S, 1)]Y,  O(m (St 1)™),
w1 (S, 1)™,  Lie(m (ST, 1)™).

In particular, deduce that the pro-unipotent completion of Z is the additive
group G,. Compare this with Exercise 4.23 in the next chapter.

EXERCISE 3.112. Prove that the pro-unipotent completion of the group
Z/2Z is the trivial group Spec(Q).

EXERCISE 3.113. Using the diagram for the antipode in Definition 3.45,
prove Lemma 3.105.

3.4. The bar complex and Chen’s mi-de Rham theorem. In this
section, we make precise the relation between differential forms and the pro-
unipotent completion of the fundamental group of a smooth manifold. If
one views the latter as the Betti side of a picture, then the de Rham side
is given by the cohomology of the bar complex. Both points of view will be
related through Chen’s m;-de Rham theorem.

3.4.1. The reduced bar complex of a connected dg-algebra. We start by
recalling the definition of a differential graded algebra.

DEFINITION 3.114. Let k be a field of characteristic zero. A differential
graded algebra (dg-algebra for short) over k is a graded k-vector space

A=pAar,
nez
together with the following additional structures:
e a multiplication A" ® A™ — A" for all integers n, m € Z which

makes A into an associative k-algebra with unit 1 € A9;
e a differential d: A — A such that d(A") C A"*! and

d(ab) =da-b+ (—1)"a - db, ac A"

We say that A is commutative if, for a € A™ and b € B™, the relation
ab = (—1)""ba holds, and connected if A™ =0 for n < 0 and A° = k.

An augmentation of a dg-algebra is a map of dg-algebras A — k, where
k is concentrated in degree zero and has trivial differential.
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The example to keep in mind, when k£ = R or C, is the algebra E*(M, k)
of smooth k-valued differential forms on a smooth manifold M, together
with the wedge product A and the exterior differential d (see Section 2.2.1).
A typical augmentation is the evaluation map on an point of M. Note that,
a connected dg-algebra has a unique augmentation.

Since we will apply the general constructions to this setting, below we
write A for the product in A. Similarly, for k arbitrary, if X is a smooth
variety, then (X)) is also a dg-algebra.

DEFINITION 3.115. Let (A*, A, d) be a connected dg-algebra over k. Set
AT =pAar
n>0

The reduced bar complex associated with A, denoted by B*(A*), is the total
tensor algebra of A™:

B*(A") =k @ AT @ (AT@AT) ¢ (AtATAT) @ ...
An element 1 ® - - - ® x,, for n > 1 will be denoted by the bar notation
[1] - - [an),

and the element 1 € k by the empty symbol [ ].

The reduced bar complex is provided with the following structure.

Grading: The degree on B*(A*) is given by
deg[z1]|...|xn] = Zdeg(wi) —n.
i=1

Length filtration: It is the increasing filtration where
L,,B*(A*) C B*(A")
is the subspace generated by elements [z1]- - |z,] with n < m.

Differential: The differential takes into account both the differential
and the product structures of A*:

n i—1 )
dlzy]|- - |@n] = — Z(_l)Zj:l degla;] [21] - - |dag] - - - |2n)
=1

n—1 )
+ Y (=)=l g A | Ja]. (3.116)
=1

Note that, by the previous convention, deg[z;| = deg(z;) — 1. It
is easy to check that d is compatible with the grading and that
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dod=0. We will write d = d; — d¢, where

n

difan] -+ o) = =Y (~1)== D || - ) (3.117)
=1
n—1 )

defw|++ ] = = (=)= =D g A o). (3.118)
=1

Product: It is the shuffle product
V(|- 2] @ [rrpa| - |zras)) = > () [wo-101)] - [To-1 ()

o€L(r,s)
(3.119)
where (o) is determined by the equation
ar N Napgps = n(a)aofl(l) N NAg=1(p45) (3.120)

where deg(a;) = deg(x;) — 1 = deg([z;]). Although n(o) is not
determined by o alone, this abusive notation is the standard one.
Coproduct: The coproduct is the deconcatenation coproduct

n

Al ] o] =D | o] @ [wiga] - 2]

i=0
Antipode: It is given by
Szl lza]) = (=1)"n(7)[zn] - - - |21], (3.121)

where the sign 7(7,) is determined by equation (3.120) as before,
for the permutation 7, (i) = n — i.

REMARK 3.122. The formula we have written for the differential differs
for the classical one that can be found, for instance, in [Tan83] by a sign.
The reason is the different definition we have for the iterated integral and the
fact that we want the bar construction to be compatible with the iterated
integrals. To go from one convention of signs to the other we define the
operator T': B*(A*) — B*(A*) by

T([z1]- -+ [an]) = e(ma)[2nl - - [21] = (=1)"S([z1] - - - [2n])
and Ty : B*(A*) @ B*(A*) — B*(A*) ® B*(A*) by
T(a®b) = (—1)de(@)deb)(p) @ T(a).

If we denote by d’, V' and A/, the differential, product and coproduct in
[Tan83], then one checks that

V=ToV'oTlg=V
A=TgoA oT =A.
That is, T' is an anti-homomorphism of Hopf algebras, and that
d=Tod oT.

Thus, our differential is just the classical one twisted by T
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LEMMA 3.123. Let (A*,d,A) be a connected commutative dg-algebra.
Then the above operations endow H°(B*(A*)), the zeroth cohomology group
of the reduced bar complex, with a commutative Hopf algebra structure.

PROOF. As stated e.g. in [Tan83, 0.6], the bar construction B*(A*)
is a commutative differential graded Hopf Algebra. This means that the
product, coproduct and antipode are compatible with the grading and the
differential. The latter compatibility is written as

dOV:Vod®,
Aod:d®OA,
Sod=dolS,

where dg is the differential induced in B*(A*)®B*(A*) that carries the usual
sign. All these statements can be checked directly. Once we know that all
these operations are compatible with the differential, the pass to cohomology.

Since they are compatible with the grading, they induce operations on HP.
O

REMARKS 3.124.

(1) The commutativity in the graded sense is essential in the previous
proof. In fact if the product on A* is not graded commutative, it
is not true that the shuffle product in B*(A*) is compatible with
the differential.

(2) The complex B*(A*) is concentrated in positive degrees, so the
cohomology we are interested in is simply

H°(B*(A*)) = Ker(d: B’(A*) — B(A%)).

Note that elements of B°(A*) are k-linear combinations of | | and
[x1]- - |zp] with n > 1 and deg(z;) = 1 for all i = 1,...,n. Also,
observe that, restricted to BY(A*), the differentials are given by the
formulas

3

drlzi] - Jan] = =) o] - |dai] - ],

~.

defar| - Jaon] = = (21| i Aziga] - 2],
=1

3
—

3.4.2. The (non-reduced) bar construction of a dg-algebra. When consid-
ering non-connected dg-algebras, it is convenient to use the (non-reduced)
bar construction. This variant will not be needed for the main example of
this text P(C)!\ {0, 1, 00}.

DEFINITION 3.125. Let (A*, A, d) be a dg-algebra over k and £; and 9
two augmentation (maybe equal). The bar complex associated with A, e, €2,
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denoted by B*(A*, e9,e1), is the total tensor algebra of A:
B*(Ayes,e1) =k & A ® (ARA) @ (ARARA) & ...

As in the case of the reduced bar complex, an element 1 ®---Qz, forn > 1
will be denoted by the bar notation

[z1] - -+ a),

and the element 1 € k by the empty symbol [ |. The grading of the bar
complex is defined in the same way as in the reduced bar complex. The
differential takes into account also the augmentations and is given by

n i—1 )
dlzy] - |zn) = — Z(_l)zjzldeg[azﬂ[m o dag] - )]
=1

n—1 )
DD G e G EE )
i=1

+ea(@n)[zal -] + (—1) %= 4y ()@ |- fwaa]. (3.126)
As before, deglz;] = deg(x;) — 1, and one checks that d is compatible with
the grading and that dod = 0.
The product is the shuffle product given again by equation (3.119).
If e3 is a third augmentation (that may agree with the previous ones)
there is a coproduct

A B*(A, 63,62) ® B*(A,SQ,El) — B*(A,€3,51)

given by deconcatenation

n

Al |- o] =D |- o] @ [wiga] - 2]
=0

Finally, the antipode is given again by formula (3.121).

REMARKS 3.127.

(1) If A is a connected dg-algebra and e is the unique augmenta-
tion, then the complexes B*(A*) and B*(A*, e, e) are homotopically
equivalent. This is a consequence of Lemma 3.193.

(2) If (A e1,e9) — (A, €],€}) is a quasi-isomorphism commuting with
the augmentations, then it induces a quasi-isomorphism

B(A,ez,e1) — B(A' &), €}).
As a consequence of this remark we have

LEmMMA 3.128. Let k = R,C and M a connected differentiable mani-
fold. Let z,y € M and A C E*(M,k) a connected dg-algebra such that the
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inclusion A* — E*(M, k) is a quasi-isomorphism. Let €,, €, be the augmen-
tations given by evaluation at the points x and y respectively. Then there is
a quasi-isomorphism B*(A*) — B(E*(M,k),ey,€z). In particular

H°(B*(A*)) = HY(B(E*(M, k), ey,cx))-

3.4.3. The reduced bar construction and iterated integrals. Let M be a
connected differentiable manifold with the homotopy type of a finite CW
complex. Let E*(M, C) be the differential graded algebra of complex smooth
differential forms on M. For simplicity of the exposition, we will assume
that there exists a dg- C-algebra A* provided with an injective morphism of
dg-algebras ¢: A* — E*(M) such that

(1) A* is connected, that is A° = C and A" = 0 for n < 0.
(2) The induced map in cohomology
p: H*(A*) - H*(E*(M,C))
is an isomorphism.

And we will use the reduced bar complex of A. A similar discussion can be
made with the bar complex of the whole dg-algebra E*(M,C).

The condition of A* being connected implies that the elements of degree
zero of BY(A*) are linear combinations of the form

> Il )

with 7; € A' ¢ EY(M) one forms. Thus, to any element z € B°(A*)
corresponds an iterated integral

[l |mw] — <7’_>/;771"'777’>~

In fact, for each pair of points x,y € M, we define a pairing
{(,): BY(A) e Q[P(M),] —C

[m|- ] @y — /771--- T, (3.129)
v

where ,P(M), is the set of piecewise smooth paths as in Section 3.1, and
Q[,P(M),] denotes the Q-vector space with basis ,P(M)

We can now translate Theorem 3.19 into the language of the bar con-
struction and the pairing (3.129).

T

THEOREM 3.130. Let v,7v1,7v2 be piecewise smooth paths in M and let
n,n1,n2 € BY(A*) be degree zero elements of the reduced bar complex of A*.
Then the following three equalities are satisfied:

(S(m),v) = (n, S())- (3.131)

(mmy2) = (An, 1 ®72). (3.132)
(m ®@n2,VVv) = (m W, 7). (3.133)
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A consequence of the previous theorem is the following result that says
that the length filtration of the reduced bar complex is dual to the filtration
by the augmentation ideal in the group algebra of paths.

PROPOSITION 3.134. Let x,y be points of M. Let J be the augmentation
ideal of Q[,P(M),], N > 0 an integer and v € JNT'Q[,P(M),] or v €
Q[,P(M),]JN*. Ifn € LyB°(A*) has length less than or equal to N, then

(n,v) =0.

PROOF. We only treat the case v € JYT1Q[,P(M),] (the other one is
completely analogous). The proof proceeds by induction on N.

If N =0, every element of v € JQ[,P(M),] can be written as

]
r r
Y= ZQlPYm qi € Q7 Zqz = 07 Yi € J;,P(M)y
=1 =1

If n € LoBY(A*), then n = o[ ] for a € C. Since
<[ ]77Z> =1, for Vi € :EP(M):I/’

we deduce the result in the case N = 0.

Now fix N > 0 and assume that the result holds for all N < N. To prove
it for N, we may assume that v = 192 with v, € J, v € JYQ[,P(M)
and 1 = [w1] - - - |wn]. Then the relation (3.132) yields

yl:

(10,7) = (An, 71 ® y2)
N

(lwi - o], ) (wita] - - - lwn], 72)
=0

N
= ([ Ly lon] - lon]ir2) + D (] lwl, ) ([wigal - - |wn], 72)-
=1

The first summand in the last equality vanishes since ([ ],71) = 0 and all
the factors ([wit1]---|wn],72) in the second sum vanishes by the induction
hypothesis. Thus, (n,7) = 0, as we wanted to show. O

3.4.4. The reduced bar complex and the pro-unipotent completion of the
fundamental group. One of the main interests of the reduced bar complex
is that it provides us with a criterion to decide whether an iterated integral
is a homotopy functional, thus solving the question raised in Section 3.1.

THEOREM 3.135. Let n € B°(A*). If dnp = 0, then the iterated integral
associated to n is a homotopy functional.

Proor. Let z,y € M. Consider two homotopic paths v; and v, from
x to y and let F' be a homotopy between them. Recall from Definition 3.1
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that F': [0,1] — M satisfies the conditions
F(t,0)=n(t), F(t,1)=(@), FO,s)=z, F(,s)=y. (3.136)

For simplicity, we will assume that F' is smooth; the general case follows by
taking a polyhedral decomposition, as in the proof of Lemma 3.11. Set

F;: [Oa 1]71 x [Oa 1] — M,
((t1,...,tn),s) —> F(t1,s).
Recall that elements of B1(A*) are linear combinations of v = [v1] - - - |vy,]

with exactly one 2-form among the w’s. Given such a v, with the 2-form in
the i-th position, we define the integral along F as

/,,:(_1)i/ Fiv - Ffuy,
F [0,1]x A"

where the second integral is oriented by ds A dty A - -+ A dt,. This definition
extends to B'(A*) by C-linearity. We claim that

[mw—[ﬂw:/Fdw, (3.137)

and the statement of the theorem will of course be an immediate conse-
quence.

The equality (3.137) is proved by a careful application of Stokes’s theo-
rem. First observe that

n
d(Ffwi A+ A Frwg) =Y (1) Flwy A Ff(dw) A+ A Fiw,
i=1
by the properties defining the exterior derivative (see Section 2.2.1) and the
commutativity of d and F;". Combining this with the definitions of d; and
the integral along F', one gets:

/ djw:/ d(Ffwi A+ AN Frwy).
F [0,1]xAn

We now apply Stokes’ theorem. Set 2 = FJwi A -+ A Fwy,.

/dlw:/ Ffuor A~ ANFjwy,
F a([0,1]x A™)

n—1
= Q—/ Q—/ Q+ —1”1/ Q- —1”/ Q
LZ]. s=0 t1=1 Z( ) ti=tig1 ( ) tn=0

i=1
By the relations satisfied by F,
Qs=1 = Vw1 A+ A Yown,
Qs=0 = Vw1 A+ A Y] wn,

Q‘ti:ti+1 = Fl*wl VANERRIAN Fi*(wi A wl-+1) A F;wn
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and Q|4 =1 (resp. €;,—0) vanishes since in that case F (resp. F,) is a
constant function. Besides,

n

/ dow = Z(—l)i“/ Frwi A A EF(wi Awig1) A+ A Efwp.
F i—1 [0,1]xAn—1

Putting everything together yields

/d]w:/ w—/ w—}—/dcw,
F 72 M F

which is exactly the content of the claim noting that d = d; — d¢. (]

Let © € M and write I' = 71(M,z). The condition that M has the
homotopy type of a finite CW complex implies that H; (M) is finite dimen-
sional. Thus I satisfies the hypothesis of Theorem 3.99 and its pro-unipotent
completion is given by Spec((Q[I']")Y).

Since there are no elements of the reduced bar complex of negative de-
gree, that is, B"(A*) = 0 for n < 0, the zero cohomology group of the
reduced bar complex of A* is just the kernel of the differential map,

H°(B*(A*)) = Ker (d: B°(A*) — B'(A")),
which, by Theorem 3.135, consists of homotopy functionals.
Putting together Theorem 3.135 and Proposition 3.134 we obtain a map
H°(LyB*(A%)) — (Qmi(M;y, )] /Qlmi (M;y, )] TV ) @ C)Y.

THEOREM 3.138 (Chen’s m1-de Rham theorem). For each integer N > 0
and points x,y € M, the integration map gives an isomorphism

H(LyB*(A%)) & Homg(Q[m (M; y, )] /Q[m (M3 y, x)lJV T, ©),
and consequently it induces an isomorphism of ind-vector spaces between
HO(B*(A%)) = lim HO(Ly B (A))
and

(Clr1(M;y,2)]")" = lm(Clm (M; y, 2)]/Clmy (Ms y, )] TN )Y

In fact, Theorem 3.130 implies that the last isomorphism of Theorem
3.138 is compatible with the Hopf algebra structures on both sides. We will
give a proof of this result in the next section.

COROLLARY 3.139. For every point x € M, the iterated integral induces
an isomorphism of Hopf algebras

HY(B*(A*)) = O(m (M, z)™) @ C.

REMARK 3.140. The isomorphism of Corollary 3.139 depends on the
choice of a base point x.
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3.4.5. The case of P1\ {0,1,00}. The main example to which we would
like to apply Corollary 3.139 is the manifold M = P!(C) \ {0,1,00}. This
example will be central for the remainder of the book. The fundamental
group of M is the free group in two generators. Thus, its pro-unipotent
completion is isomorphic to the spectrum of the Hoffman algebra $ by Ex-
ample 3.106. We want to recover this fact as a particular case of Chen’s
Theorem. For this, we consider the differential forms

dt dt

== 141
T I (3.141)

wo =

Let Af be the dg-algebra over C given by
AQ=C, AL=Cwy®Cuw, AZ*=0,

together with the trivial differential and the obvious multiplication. Thus
AL = A* ® C, where A is the Q algebra introduced in Example 2.130. In
particular, the inclusion A% C E*(M,C) is a quasi-isomorphism.

Since dw; = 0 for i = 0,1 and wp A wy; = 0, formula (3.116) shows that
the differential in the reduced bar complex B*(A*) is identically zero, hence

HO(B*(A%)) = BY(A").
Moreover, there is an isomorphism of Hopf algebras
HY(B*(A*) — §
wo — X
w1 — 7.
That induces an isomorphism of Hopf algebras
H°(B*(AL)) — $ ®q C.
Following Notation 1.153, for a binary sequence «, we will denote by w, the
element of HY(B*(Af)) corresponding to @q.

* k x

EXERCISE 3.142. Show that the differentials d; and d¢ from equations
(3.117) and (3.118) in the definition of the bar complex satisfy

d3=d% =0 drdc+deds = 0.
Deduce that d = dj — d¢ satisfies d* = 0 as well.

EXERCISE 3.143. Let 11, 12 and 112 be 1-forms on a differentiable man-
ifold. What conditions should they satisfy for [n;|n2] — [m12] to be closed?
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3.5. A geometric description of the pro-unipotent completion
of the fundamental group. We now explain a proof of Chen’s mi-de
Rham Theorem 3.138. This is not the classical proof that one can find in
[Hai87a, §4], but the strategy we follow will later enable us to exhibit the
motivic nature of the pro-unipotent completion of the fundamental group
of an algebraic variety. The first step in the proof consists of expressing
the quotients by powers of the augmentation ideal as relative cohomology
groups. This is possible thanks to a beautiful result by Beilinson.

3.5.1. A Cech complex of sheaves. Before stating Beilinson’s theorem,
we introduce a complex of sheaves that will play an important role in what
follows.

SIGN CONVENTION 3.144. Recall that, given a complex (A*,d) and an
integer m, the shifted complex A[m] has terms A[m]" = A™*™ and differen-
tial (—1)™d. If A is a complex of sheaves on M, there is an isomorphism

H™(M, A[m]) — H"*™(M, A).

Since the differentials of the complexes A and A[m| can have different sign,
in claiming that some diagrams commute one needs to be careful about how
the above isomorphism is made. We can compute the hypercohomology
groups using, for instance, the total complex associated with the Godement
resolution from Remark 2.12:

H" (M, A) = H"(Tot(I'(M,C*(A")))).
If an element of H"(M, A) is represented by a closed element
w= Y wy, w; el (MC(A)),
i+j=n
then w is sent, by the above identification, to the element
1 ‘
Zi—i—j:n H%:;n (_1)[> Wi j, itm < 07
i—1 .
ZiJrj:n H‘é:j_m(—l)z> Wi 5 if m > 0.

See Exercise 3.195 for some properties of the operation w — w[m].

wlm| = (3.145)

As in the previous sections, let M be a connected differentiable manifold
which has the homotopy type of a finite CW complex, and let Yy, ..., Ys be
a finite collection of closed subsets of M. Write

Y=YyU---UY}.
NoOTATION 3.146. The following notations will be used:

e [k] stands for the index set {0, ...,k}. Although it can be confused
with the shift [k], it will be clear from the context when we are
referring to the set or to the complex.

e For each subset J C [k], we write Y for the intersection ;. ; Y;.
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e Given a topological space T, we denote by Q. the constant sheaf
with stalk Q on T. We write Q 7 for the constant sheaf on Y
extended by zero to M, that is,

@J = (LJ)*@YJ7
where ¢j: Y; < M is the inclusion. In particular, @@ =Q v If the
inclusion is clear from the context and no confusion may arise, we
will also denote by @YJ the extension by zero to M. For example,

if Y consists of a single point z, we will rather write @  for the
skyscraper sheaf with stalk Q at .

e Given subsets J C K C [k], there is an inclusion Yx C Y;. We
denote by dk,j: @, — Q,. the corresponding restriction map.

o If K = {ko,...,kp,} with the indices k; ordered as kg < --- < kp,
and J = {ko, ... ki,..., kp}, we set e(J, K) = (—1).

For 1 <p <k + 1, we define a morphism of sheaves

d: P Q — P Q. by d=EPel K)dx,.
|J|=p—1 |K|=p K,J

We define the complex of sheaves K(M;Yy,...,Y) as

O%@@J%@@J—»--%@QJ% EB Q,—0, (3.147)

|J]=0 |J|=1 |J|=k | J|=k+1
and the complex K(M;Yp,...,Yy) as
o-Pe, e~ - e, o (3.148)
17]=0 17]=1 T|=k

Note that the second complex agrees with the first one except for the last
term @[k] that has been deleted.

LEmMMA 3.149. If all possible intersections of the Y; are locally con-
tractible, then

H™ (M, K (M;Y,...,Y:)) = H(M,Y,Q),

where the right hand side is relative singular cohomology.

PROOF. The sequence of sheaves
020, P~ ~PQ >~ P Q0
|J]=1 |J|=p |J|=k+1

is a resolution @ la Cech of the constant sheaf Q,- by the finite closed covering
given by the Y;, extended by zero to the whole M. Therefore it is exact.
Hence the complex K (M;Yy,...,Y:) is quasi-isomorphic to the complex

0—Q,, — t.Qy =0,

where t: Y — M is the inclusion. The result follows from Example 2.17. [
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3.5.2. Beilinson’s theorem. As in the previous sections, let M be a con-
nected differentiable manifold which has the homotopy type of a finite CW
complex, let z,y € M be base points, and N > 0 an integer. Let MY be
the N-fold cartesian product of M. Given a point of M"Y, we denote by

T1,...,TN its components. Consider the union ¥ = Yy U --- U Yy of the
closed subspaces Y; € MY given by:

Yb = {xl = y}7

Y%:{l‘i:l‘prl}, iZl,...,N—l,

YN = {l‘N = l’}

Sometimes it will useful to introduce extra components zg = y and zy4+1 = x
on MV and write Y; = {z; = x;,41} foralli =0,..., N.
We define the complexes
K, (N) = K(MN;Yy,...,Yy),
KL (N) = R(MY; Yo, ..., Ya).

Yy rx

Y

If the base points z and y are distinct, then YoN---NYy = () and hence
the two complexes are equal: K (N) = K, (N). By Lemma 3.149, their
hypercohomology computes the relative cohomology group

H* (MY, K, (N)) = H*(MN,Y).

In the case where x = y, the intersection Yo N ---NYx = {(z,...,2)}
consists of a single point and there is a short exact sequence of complexes

0= Q. o[=N =1 = Ko(N) = K (N) = 0. (3.150)

Note that the leftmost complex has only non-trivial cohomology in degree
N + 1, where it is isomorphic to HO(M"N,Q ) = Q. Thus, taking

=~(z,...,x)
hypercohomology from (3.150) yields an exact sequence

goeey

0 — HYN(MN,Y,Q) — HYN (MY, K, (N)) 120 — - (3.151)
The map f is surjective because it fits into a commutative diagram

@mzN HO(YI, Q) - HN(MN K <N>)

'y
(MY, Q )

=(z,...,x)

where the diagonal arrow is surjective. The kernel of f is thus HV (MY ,Y, Q).
We now introduce a relative version of the complex K, (N), where we

fix 2 but let y vary. For this, we consider the (N + 1)-fold product MN+1,
with components xg, ..., zy, and the closed subsets

Zi = {x; = xip} © MV i=0,...N,
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where we are still writing xn4+1 = . We then define
S AN) = KM Zo, .., Zy)
JCL N = K(MNYY: Zo, ... Zy).
Let w: MN*1 — M be the projection onto the first factor. We identify

the fibre 71(y) over a point y € M with MY (with 2o = y). Via this
identification, we have Z; N7~ 1(y) = Y7 for all subsets I C [N + 1], hence

S (N -1y = (V). (3.152)

It is in this sense that J/C,(N) is a relative version of K, (V).

The complexes K, (N) and K, (N) satisfy a recurrence relation that

will be useful later. The identity morphism between MWV-D+1 and MmN
changes the numbering of the components because in the convention we
are using, the components of M (N=D+1 gtart with x¢ while those of M~
start with x1. This identification sends Z;, ¢ = 0,..., N — 1 to Y;41. Let
Ly: MN=1 — MY be the map

t(x1,...,en—1) = (Y, 21,...,TN-1).
For each IV > 0 there is an exact sequence of sheaves of complexes

0= (1y)ay Ko (N = D)[1] = K (N) = K (N —1) —0. (3.153)

xylg
To describe this sequence we use the notation that, if I = (i1,...,i) is a
multiindex, then the multi-index I 4 1 is
I+1=(i1+1,... 0+ 1).
Then in degree 0 < k < N is
0— @ Quoyui @ Q- @ Q=0

1c{0,....,N—1} 1c{0,...,N} 1c{1,..,N}
|T|=k—1 =k \I|=k

The exact sequence (3.150) induces an exact sequence

0—=Q, [N - SN —1) = JC (N —1) = 0. (3.154)

yeeyT)

In the relative situation, the analogue of the hypercohomology groups
of the complex K, (N) are the higher direct image sheaves R"m. (K (V).
Recall that they are defined as the sheaves of vector spaces associated with
the presheaves that, to an open subset U C M, assign the vector space

H" (771 (U), JK(N)).

To understand them, we shall use the following concrete description. Let
S*(T, Q) denote the complex of smooth singular cochains on a differentiable
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manifold 7. Starting from the construction (3.147) applied to MY+ and

the subsets Y7,..., Yy we obtain a double complex
0— P s vina'(1),Q - P sVina ' (U),Q — ...
11]=0 17]=1
= @ STV (U),Q) -0 (3.155)
|I|l=N

which will be denoted by S*(Y, N7~ !(U),Q). The associated total complex
computes the hypercohomology

H' (77 (U), JKp(N)) = H™(Tot(S* (Yo N7~ (U), Q)))-

LEMMA 3.156. For every contractible open subset U of M and every point
y € U, the inclusion 71 (y) — 7~ Y(U) and the identification 7' (y) ~ M~
mduce an isomorphism
H' (771 (U), o (N)) = H (MY, K (N)).
In particular, the sheaf R"m.(JC,(N)) is a local system on M whose fibre
over a point y is given by
Rnﬂ-*(olcx<N>)y = HH(MNa y’Cm <N>)

PrOOF. For every I C 1,...,N + 1 the morphism =ly,: Y7 — M is
a fibration. Therefore, given any contractible open subset U C M and
any point y € U, the inclusion Y; N7~ 1(y) — Yy N7~ Y(U) is a homotopy
equivalence. The induced morphism of complexes

S*(Yrnm YU),Q) = S*(Yrn7m (y),Q)

is thus a homotopy equivalence as well. The lemma follows from this. O

Thanks to the lemma, the sheaf R"m.(,JC,(N)) “glues together” the
hypercohomology groups H™(M™YN, K2 (IN)) for all possible base points y.
The map f in the exact sequence (3.151) yields a morphism of sheaves

R'm(JC,(N)) = Q,. (3.157)

We also consider the sheaves of vector spaces over M, Q[m(M;e,z)] and

Q[r1(M;e,2)]/Q[m1(M;e,x)]JN¥FL. These sheaves are local systems and the
fibre at a point y is given by
@[ﬂ-l (Ma o, 55)]1/ = Q[ﬂ-l (M7 Y, .’E)]

Thus, for every contractible open subset U and point y € U there is a
canonical identification Q[my(M;e,z)|(U) = Q[r1(M;y,x)] and a similar
identification for Q[m(M;e,z)]/Q[r1(M;e,x)]JV L. The unit of 71 (M;x)
induces morphisms of sheaves

Q, = Q[mi(M;e, )]

Q, — Q[my(M; e, 2)]/Q[mi (M;e,z)]JV . (3.158)

|

local systems of
paths

J




174 J. I. BURGOS GIL AND J. FRESAN

We next construct a morphism between the local systems RY 7, (K, (N))
and Q[m1(M;e,z)]/Q[r1(M;e,x)]JVTL. Let y € M and let v: [0,1] — M
be a smooth path such that v(0) = = and (1) = y. For each subset
I C {l1,...,N + 1} of cardinal k, the closed subset Y7 C MY *! can be
identified with MN+1=% by deleting the components which are repeated or
equal to x. With each I C [N] we associate the sign

eI)=[J-1" (3.159)
i€l
We denote by 0’4\[’[ the map ANl — Y7 n7~1(y) given by

ot tvn) = (v (). - v (En—in)-

By linearity, every representative v of an element in Q[mi(M;y,x])] gives
. . . N,I . -1
rise to a smooth singular chain 3" in Yy N7 (y).

For each y we denote by
oy HY (MY, Ko (N)) = Qlm (M3 y, a])]Y (3.160)
the map that assigns to a closed element

w = Zwl (= TOtN(S*(Y. N ﬂ—_l(Y)ﬂQ))
I

the linear map oy (w) € Q[r1(M;y,x])]" given by

oy @)(M) =Y e(Dwi(a)™).

I

LEMMA 3.161. The above defined maps oy glue together to a morphism
of local systems

o: RN (JCo(N)) = (Q[m1 (M; e, 2)]/Q[m1 (M; e, z)] JNTHY.

ProOOF. That ¢ is well defined amounts to the following facts:

(i) If w is exact in the complex Tot((S*(Ys N7 1(y),Q))), then o(w) = 0.
(ii) If v and +" are homotopy equivalent paths, then

N,I
D wr(AN) =3 wi (Al
T I
(iil) If [y] € JN*L, then
> wi(alh) =o.
T
(iv) For a path 7y from y to v/, let T,, be the parallel transport along

70 for both local systems (Q[r1(M;e,z)]/Q[m1(M;e,x)]JV+1)V and
RN7,(JC,(N)). Then

Ty, 00y =0y 0Ty,
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Statements (i) to (iii) show that the morphism o is well defined at the level
of fibres and and statement (iv) shows that it is indeed a morphism of local
systems. O

The following result, due to Beilinson, gives a cohomological interpreta-
tion of the finite-dimensional pieces in the pro-unipotent completion of the
fundamental group. There are two proofs of this theorem in the literature
[Gon01, §4] and [DGO5, §3.3].

THEOREM 3.162 (Beilinson).
(1) The sheaf Rim.(JC,(N)) vanishes for alli < N — 1. In particular,
HY(MYN, K, (N)) =0, i<N-—1.

sy’
(2) The maps oy defined in (3.160) glue together to an isomorphism of
local systems
o: RN (K, (N)) = (Qm(M;e,2)]/Q[ry(M; e, x)]JVTHY.
In particular, there are natural isomorphisms

HY (MY, K (N)) — (Qlm(M;y, 2)]/Qry (M;y, )] JV )Y,

sy’

(3) The diagram

RN (Ko (N)) —— (Qr(M; 0,2)]/Q[m1 (M @, 2)] TN )Y

\ l

Q,,

T

T

where the diagonal arrow is (3.157) and the vertical arrow is the
dual of the unit (3.158), is commutative.

PrOOF. We first prove statement (3) in the theorem. Since for y # z
the fibre ((¢2)+Qz)y = 0 we only need to check what happens at the point
z. Then the statement reduces to the commutativity of the diagram

HY (MY, Ko (N)) —— (Q[m (M, 2)]/ TVH)Y (3.163)

yy'va

HY (MY, Q

=(z,...,x)

[=NT) Q

We can compute HY (MY, K2 (IV)) as the cohomology of the complex
C* = Tot(S*(Y1,Q)), |I|<N

where S* denotes the normalized complex of smooth cochains. This means
that the elements of S vanish on degenerate chains.
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Let v, be the constant path z in M. It defines different chains 0’%’[.

These chains are degenerate unless |I| = N. When |I| = N, 0%’1 is the zero
dimensional simplex at the point (z,...,x).

Let w =) ; wr be a closed element of the complex C*. The left vertical
map on the diagram sends w to

> eI, [INDwi (o) (3.164)
[I|=N

If we apply the bottom arrow to (3.164) we obtain, taking into account the
convention (3.145) to the element

> e([NDe(I, [NDwr(ad1). (3.165)
\I|=N
If we apply the top arrow followed by the left vertical arrow we obtain the

element
> eDwr(alh).
I
Since we are using the complex of normalized cochains, this reduces to

> e(Dwr(a). (3.166)
[I|=N
The equality between (3.165) and (3.166) follows from the identity
e((NDe(L.IN) = [T GO TT-0 = T](-1)" = D).
1€[N] i1 i€l

We now turn to the proof of statements (1) and (2) in the theorem. We
proceed by induction on N. The case N = 0 is obvious. Since we already
now that o is a morphism of sheaves, it is enough to prove the statements
fibrewise. Let y € M. From the exact sequence (3.153), we deduce a long
exact sequence

HY =1 (MN, K, (N 1))

T EN N, KGN — 1)) 5 BN (MY, KL (NY) — BN (MY, R (N — 1)
T EN (MY KL (N - 1)) I

(3.167)
and use it to write down the following diagram with exact rows:

HN-Y(MN=1 K (N —1)) —=HN (MY, K, (N)) —— Ker(g) —=0

ry’va ry' v

0 — (Q[mi (M;y,2)]/JN)Y — (Q[m1 (M y, 2)] /TN — (JN/JNF1)Y —0.
(3.168)
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Claim: The left square in the above diagram is commutative.

Indeed, in view of the sign convention 3.144, the first horizontal mal
sends a closed form
o= Y

ICIN-1]
representing a class in HY ~1(MY] K (N = 1)) to the form
fw)= Y (=),
IC(N-1]
where wy is now seen as a cochain in Y{gyy(741)- Therefore, one has

oW = Y eDwi(o) )

ICIN-1]

o)) = Y ({0} uD)(=1) w (M)

Ic[N-1]

and o

N—1,I
o re

for every class v € Q[m1(M;y,z)]. Since the chains o ,JYV’{O}UI a

equal and one has €({0} U I)(—1) = ¢(I), the square commutes.

Once that we know that the square commutes, an easy diagram chase
shows that there exists a map

o: Ker(g) — (JN NV,

that slightly abusively will still be denoted by o, completing (3.167) to a
commutative diagram.

LEMMA 3.169. ‘ _
(1) The equality H! (MY, JC,(N — 1)) = 0 holds for all i < N — 1.
(2) The map o: Ker(g) — (JV/JNTH)V is an isomorphism.
PRrOOF. Let m: MY — M be the projection onto the first factor (note
that, in what precedes, the same symbol 7« was used to denote the projection

onto the first factor of MN*1). We shall compute H:(MY | K, (N —1)) using
the Leray spectral sequence associated with 7:

B9 = HP(M, ROm, (K, (N — 1)) = HPH(MY, K (N = 1)).  (3.170)

x

Taking higher direct images with respect to 7w from the exact sequence
of complexes (3.154) yields isomorphisms

R (K, (N — 1)) 2 Rim (K, (N —1)), i<N-—2,
and an exact sequence of sheaves
0= RN (K (N — 1)) = RN (K, (N —1)) - Q, — 0. (3.171)

The exactness on the right follows, after passing to the fibre at x, from the
surjectivity of the map f in the sequence (3.151).
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N 000
v-1]0® ®© © @

N-210 0 0 0 0

FIGURE 14. The Leray spectral sequence for JC, (N — 1).

Now recall that the induction hypothesis in the proof of the theorem is
that R'm,(JC, (N — 1)) vanishes for all ¢ < N — 2, hence

R (K, (N—1))=0foralli <N —2.

Therefore, the Leray spectral sequence (3.170) looks as depicted in Figure 14.
From this we deduce the equality

. _ _Jo 1t <N—-2
HY (MY, K (N —1)) = {HO(M, RV (K, (N 1)) i=N—1

(3.172)
and a short exact sequence of vector spaces

0— HY(M, RN 1, (K, (N — 1)) = HY (M, K (N — 1)) —
— HO(M, RN 7, (K, (N —1))) = 0. (3.173)
To prove statement (1) in the lemma, it remains to show that
HO(M, RN "', (K, (N —1))) = 0.

The long exact sequence of cohomology associated with the short exact
sequence of sheaves (3.171) yields

a
—

HY (RN, (K, (N = 1)) > HY(RY 7, (K, (N — 1)) — 0.
(3.174)

We shall prove that the map a is an isomorphism, hence the connecting
morphism above is zero and the map b is an isomorphism as well. For this
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we need to compute the cohomology of the sheaf RN 17, (K, (N —1)). By
the induction hypothesis in the theorem, the map

o: RN (K, (N — 1)) — (Q[m(M; e, z)]/JV)V (3.175)
is an isomorphism and in particular the sheaf RN 1, (K, (N —1)) is a local
system on M with fibre

RN_lﬂ—*(oK::c<N - 1>)$ = (Q[ﬂl(M? x)]/JN)V (3176)
Setting I' = 71 (M, z), the cohomology of RV 17, (K, (N — 1)) can be
computed as the group cohomology of I' acting on (3.176):

HI(M, RN (K, (N — 1)) = H'(T, (QL]/T™)).

T

Consider the short exact sequence of I'-modules
0— (QI])/JM)Y = Q)Y — (JV)Y —=o0. (3.177)

The I'-module Q[I']Y being injective, its cohomology is concentrated in de-
gree zero and there is an exact sequence

0 — HOT,(Q[L]/JY)Y) — HO(T,QI]Y) — HO(T, (J)Y)

H(T,(Q[T/T™)Y) 0.

(3.178)

Recall that, if A is a I'-module, then H%(I', A) is the group of invariants A"
From this one easily checks:

e The cohomology H°(I", Q[I']) is the one-dimensional Q-vector space
generated by the function

Z ay[y] — Z ary
yel ~vel
and the dual of the unit (3.158) induces an isomorphism
HO(r,Q[I]Y) = Q.
e The cohomology HO(T', (J™V)V) is equal to (J»V /JV*1)V and the map
HO(L,Q[I]Y) — (J¥ /TN )Y
in the long exact sequence (3.178) is the zero map.

Putting together the above facts, the isomorphism (3.175), and the long
exact sequence (3.178), we deduce

HO(M, RN 11, (K, (N —1)) =Q (3.179)
HY (M, RN 1, (JC (N — 1)) = (JV NV, (3.180)

Besides, the map a in (3.174) agrees with the isomorphism (3.179) by state-
ment (3) in the theorem. From this and (3.172), we derive

HY Y (MY, K (N — 1)) = HO(M, RN ', JC(N — 1)) =0,
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thus concluding the proof of statement (1) in the theorem.
We now turn to the proof of statement (2) in the lemma. Combining
the fact that the map b in (3.174) is an isomorphism with (3.180), we get
HY (M, RN ' (K (N = 1)) 2 (JV /N,
Besides, by the exact sequence (3.173), there is an inclusion
UM, RY 1, (R, (N — 1)) € BV (MY, B (N — 1)),
Claim: This subspace is equal to Ker(g).

To prove the claim, we consider the long exact sequence of sheaves ob-
tained by taking higher direct images from (3.153):
= RV () (O (N = 1) =5 RV (G, (N))
— RV (o (N — 1)) = RN (1) o (o (N — 1)) — -+ (3.181)
Note that the sheaves RIm.(ty)«(,K,(N — 1)) are all skyscraper sheaves
supported at the point y € M, hence have only cohomology in degree zero.
Therefore, in the exact sequence
0= H' (M, RN 1)+ (] (N = 1)) — HY (MY, K, (N — 1))
— HO(M, RN, (1) (,K,.(N —1))) = 0 (3.182)
obtained by applying the Leray spectral sequence to (ty)«(, K, (N —1)), the
leftmost term vanishes and the last but one map is an isomorphism.

Let us introduce the sheaf F = Coker(y) and consider the commutative
diagram with exact columns

0

HY(RV 11, (K (N — 1)) 0

HN(MNvoIC:L‘(N_ 1)) HN(MNil K <N_ 1>)

HY(F) —— H (RN (Ko (N — 1)) —— HO(RNTa(1)4(, o (N — 1))

0 0

where the first column is (3.173), the second column is (3.182), and the
last row is part of the exact sequence obtained by taking cohomology from
(3.181). The above diagram immediately implies that

H' (M, RN 'm0, (Ko (N — 1)) € Ker(g)
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and to prove the reverse inclusion it is enough to show that H(M,F) = 0.
To get this vanishing we will show that F is the extension by zero of a local
system on M \ {y}. We need to distinguish whether the base points = and
y are distinct or equal.

Case x # y. Write U = MV \771(y). Since the complex (t)sy K (N —1)
is supported at m—!(y), one first sees from (3.153) that

y’Cx<N>‘U = o’Ex<N - 1>‘U
and combining this with (3.154) one obtains a short exact sequence
0— @($,,m)[_N] - yIC$<N>|U — oICx<N - 1>‘U — 0.

In the associated long exact sequence

RN (Ko (N = 1)]o) & RVmQ, -] =
RYm (Ko (N)|r) = RV T (Ko (N = 1)) = 0,
the map h is surjective. Thus we get an isomorphism
RN (AN ) gy = BN T o (N = 1)) an -

Since the right-hand side is a local system by Lemma 3.156, the same is true
for the left-hand side. Let now V' C M be a contractible open subset con-
taining y. From the exact sequence (3.153) we obtain a long exact sequence
of hypercohomology

Ko (N)) = Hi(m (V), K (N - 1)) L
Hi(ﬂil(y)7ylcx<N - 1>) —

s HY (YY), v

The fact that V is contractible implies that, for all ¢ > 0, the map j is an

isomorphism. Therefore HY (7~1(V), K2 (IN)) = 0, hence

RV (K, (N)), = 0.

)

Finally, since the source of the map

o RN (1y)« (Ko (N = 1)) = RN (K, (N))

Y

is a skyscraper sheaf supported at y, it follows that this map is identically
zero. We have thus shown that 7 = RN, (,K,(N)) is the extension by zero
of a local system on M \ {y}.

Case v =y. On U = MN \ 771(z), the exact sequence (3.154) yields an
isomorphism
’C$<N> U= .IC.Z’<N - 1>|U>
that implies that F|yn 3 = RV m(,Ku (N))|an oy is a local system. Let
V C M be a contractible open subset containing x. In this case it is no

T



182 J. I. BURGOS GIL AND J. FRESAN

longer true that ,KC, (N)|-1(y) has vanishing hypercohomology. Identifying
(z,...,x) with Yy ny there is a map

Q(m,...,x) [_N] - yK"x<N>|7r*1(V)'

Using that V' is contractible, this map induces an isomorphism in hyperco-
homology

Q= HN(W_I(V%@(

Therefore

ey [N ZHY (r7H(V), KL (N)).

In this case the map

RN_IW*(%)*( K (N=1))z e RNW*(z’Cw<N>)x

T

is surjective and we again deduce that F, = 0. Therefore H°(M,F) = 0,
the map labeled e is injective and

Ker(g) = H' (M, BN~ m, (K, (N = 1)) = (JV/ 7)Y,

To finish the proof of the lemma one needs to check that the above
isomorphism is compatible with the map o. We leave this verification to the
reader. ([

We can now finish the proof of Beilinson’s Theorem 3.162.

Recall that statement (1) is the vanishing H!(MYN, o (N)) = 0 in all
degrees i < N — 1. By (3.167), this group fits into a long exact sequence
— H (MY K (N = 1) = H (MY, K, (V) = H (MY, K, (N - 1))
For ¢« < N — 1, the leftmost term vanishes by the induction hypothesis and

the rightmost term vanishes by the first part of Lemma 3.169, hence the
middle term vanishes as well.

Finally, to prove statement (2) we observe that, thanks to the long ex-
act sequence (3.167), Lemma 3.169, and the induction hypothesis, in the
commutative diagram

0—=HN-Y(MN-1, K (N — 1)) —>=HN(MN, K, (N)) —— Ker(g) —= 0

ry’Nvo yy' v \L
0 — (Q[m1(M;y,2)]/JV)" — Qi (Msy, 2)]/JVH)Y = (JV /TN =0
(3.183)
the rows are exact and the first and third vertical maps are isomorphisms.

By the short five lemma, the second vertical arrow is also an isomorphism.
This concludes the proof. O
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3.5.3. Simplicial and cosimplicial objects. In order to relate the coho-
mology groups appearing in Beilinson’s theorem to the bar construction, we
shall use the language of simplicial and cosimplicial objects.

Let A denote the category with objects the finite sets
A, =10,...,n}, n >0,

and morphisms the increasing maps between the various A,, with respect to
the natural order. Any morphism in A can be written as a composition of

faces §': Ay, — Api1, i =0,...,n+ 1, and degeneracies o: A1 — Ay,
1 =0,...,n, which are defined as follows:
6'(4) = 1" e a'(j)=19". L
j+1 ifj>u, j—1 ifj>q.

In other words, ¢° is the map that skips 7, while ¢ repeats i

DEFINITION 3.184. Let C be a category. A simplicial (resp. cosimplicial)
object in C is a functor A°? — C (resp. A — C).

Using the above characterization of morphisms in A, simplicial and
cosimplicial objects admit a very concrete description. For instance, a cosim-
plicial object X*® becomes a collection (X"),>o of objects of C, together with
morphisms

ot X1 — XL i=0,....,n+1
ol Xl xn, 1=0,...,n,

satisfying the commutativity relations

(a) 876" =667 1, for i < 7,

(b) oo’ =o'l T, for i < j,

(¢) o786 =801, for i < 7, (3.185)
(d) 076" =1d, fori=74,74+1,

(e) ol =107, for i > j + 1.

The maps ' and o’ are again called faces and degeneracies, and one usually

represents these data by a diagram of the form
_—
X0 X1 X2 ...

-

The description of a simplicial object is the dual one. It is thus given by
a collection of objects (Xp,)n>0, together with morphisms

5i:Xn+1—>Xn; 1=0,....n4+1
oit X — Xpy1, ©=0,...,n

satisfying the commutativity relations dual to (3.185).
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REMARK 3.186. The category A is equivalent to the category of totally
ordered non-empty finite sets, denoted by FOS. Therefore, we can also view
a simplicial object X, as a functor FOS®? — C by setting X; = X7 _1,
where |I| denotes the cardinal of I.

3.5.4. Simplicial objects and chain complexes. Simplicial and cosimpli-
cial objects in an abelian category are very close to chain and cochain com-
plexes. In this paragraph, we review some constructions relating them.

Given a simplicial object X, in an abelian category, the associated chain
complex is the complex C' X, with

CXp=X,, d=) (-1)6;: CX, > CXp 1,
=0

and the normalized chain complex is

n—1 n—1 n
NX, = ﬂ Keréi:Xn/ZImm, d:Z(—l)idi.
i=0 i=0 i=0

Similarly, if X*® is a cosimplicial object in an abelian category, the asso-
ciated cochain complex is the complex CX* with

n+1
CX"=X", d=) (-1)'': CX" —» CX",
=0

and the normalized cochain complex is

n+1

n—1 n—1
/\/'X":X"/Zlméi: ﬂKerai, d:Z(—l)iéi.
=0 1=0 1=0

Now for each N > 0 and X, in an abelian category, we introduce a
new complex Cy(Ay, Xo). For each () # J C Ay, using the convention of
Remark 3.186, we have the object X; = X|;_;. If K = {ko,...,kp} with

the indices k; in increasing order, and J = {ko,...,ki,...,kp}, we set as
before e(J, K) = (—1)* and
dK7J:(5i: XK—>XJ.

Then we define

Co(An, X)) = P X (3.187)

0AICAN
[7|=p+1

with differential d: Cp(An, Xe) = Cp—1(An, X,) given by

d= P e(J, K)dk,s.

JCK
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For a chain complex C\, let o<y denote the béte filtration

c C,, ifn<N,
g =
=N 0, ifn>N.

For a proof of the following result see [DG05, Proposition 3.10].

PROPOSITION 3.188. Given a simplicial object X4 in an abelian cate-
gory, the complexes Cy (AN, Xe) and o<nNX, are functorially homotopi-
cally equivalent.

3.5.5. A cosimplicial manifold. The key ingredient in the proof of Chen’s
Theorem 3.138 is the following cosimplicial manifold. We keep the notation
from the previous paragraphs: M is a connected differentiable manifold hav-
ing the homotopy type of a finite CW complex, and x,y € M are base points.

CONSTRUCTION 3.189. We denote by , M7 the cosimplicial manifold
with components

JME =M x "% M,

coface maps
8 MY — ML i=0,...,n+1,

given by
(y,21,...,xy), if i =0,
0 (1, sn) = (X1, o By Ty ooy ), HO0<i<n+1,
(z1,...,Tn, ), ifi=n+1,
and codegeneracy maps
ai:y]\ﬂ”rl =, My, i=0,...,n,
given by
O'Z(:L‘l, e ,:L’n+1) = (1131, ey Ly Lj42y - - - ,l‘n+1). (3190)

3.5.6. An isomorphism of cohomology groups. Given a differentiable man-
ifold X, we denote by S*(X, Q) the complex of smooth singular cochains on
X with rational coefficients and we write

Since S} is a simplicial object in the category of complexes of Q-vector
spaces, we can apply to it the functor C(Ay, -) to obtain a chain complex of
cochain complexes C(Ap, S¥). We convert it into a double cochain complex
by changing the sign of the chain index,

CP(AN,5]) = C—p(AN, 5),

we obtain a second quadrant complex of complexes. Let Tot C*(Apn, S?)
denote the corresponding total complex.
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REMARK 3.191. We do not need to worry about convergence issues be-
cause Cp(Apn,:) =0for p<0orp> N.
LEMMA 3.192. There is a functorial isomorphism
H* (MY, Ko (N)) — H*(Tot C*(An, Sg)[—N]).

Proor. We use smooth singular cochains to compute the cohomology
groups H* (MY, (), so consider the double complex Sy given by

Y =P SP(v1,Q), p>0, 0<g<N,
=g
with differential in the ¢ direction
d: P 5,0 — @ Yk, Q), d=EP e K)dx.s.
|J]=q—1 |Kl=q JCK
Let Tot S5 be the associated total complex. By construction
H* (MY, K, (N)) = H*(Tot Sy).
Let ) #1 C Ay and J = Ay \ I. The inclusion I C Ay induces a map
MUt = ME— MY = MY
which is an isomorphism of yMQ{ with Y. Let

fr: S*(Y,Q) = S*(, M}, Q)

be the corresponding map of cochains. Let e(J) = HjEJ(—l)j the sign
introduced in (3.159). Since J is the complement of I in Ay, then |J| =
N +1—1I|, and

e(J, K)e(I,Ap, \ K) = e(J)e(K).

In consequence, the map
Tot S5 — Tot C*(An, S)[—N]

that sends SP(Y;, Q) to S”(yMé,Q) through the map e(J)fs is an isomor-
phism of complexes, thus proving the lemma. [l

3.5.7. The normalized cochain complex and the reduced bar complex. As
in the previous section, let E*(M, C) denote the de Rham algebra of smooth
complex valued differential forms on M. For simplicity we will assume that
we have A*(M) C E*(M,C) a connected differential graded C-algebra such
that A(M) — E*(M,C) is a quasi-isomorphism. We set

A, MDY = A*(M) @ - @ A*(M).
In particular, A*(yMg) = C. These complexes are functorial on n € A,
hence define a simplicial dg-algebra A*(,My). Thus N'A*(,My) is a chain

complex of cochain complexes. We denote by Tot N'A*(, M) the associated
total complex.



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 187

The subcomplexes o< NN A*(, M) define a filtration of Tot N'A*(, My).
Be aware that the index N in the béte filtration refers only to the chain
degree and not to the total degree.

LEMMA 3.193. The map
Y: B*(A*(M)) — Tot NA*(, M)
[wi] - |wn] — (—1)Zi=1ide8wiy, @ . @ w,

is an isomorphism of complexes that sends the N-th step of the length fil-
tration Ly B*(A*(M)) to Tot c<yNA*(,My). Similarly, if € is the unique
augmentation of A*(M), then the same formula gives us an isomorphism

B*(A*(M),e,2) — Tot CA*(, M2).

PRroOOF. This lemma is an easy verification. We will only prove the first
statement, the second one being analogous. We set

AT (M) = 5 A™(M) = A*(M)/C.
n>0

By the shape (3.190) of the codegeneracy maps 0! we deduce that, for i =
0,...,n—1,

Im(o;) = Im((0;)") = A*(M)® -+ ® C ®- @ A*(M).

i+1
Therefore
n—1
NoA*(,M3) = A*(,M7)/ Y Tm(oy) = AT(M) @ - @ AT(M).
=0

It follows that the map 1 is an isomorphism of graded vector spaces that
respects the filtrations. We next compute the differential in the complex
Tot o< NN A*(, My). Let

Ww=w ® - @uw, € NTTAT(,My) C Tot N"TAY(, My).

Then dw = diw + (—1)"dow, where d; is the differential in the de Rham
complex and ds is the differential in the normalized complex. Therefore

n
dw = Z(_l)zz;ﬁ deg(“’j)wl R Qdw; ® -+ @ w,
i=1
n—1
+ (D™D (D @ Qwi Awip1 ® - @y, (3.194)
=1
Comparing this formula with the differential in Definition 3.115 and noting
that m = > deg(w;), one sees that 1y od = do). This finishes the proof. [
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3.5.8. Proof of Theorem 3.138.

PrOOF. If N =0, then LoB*(A*(M)) = C given by the constant func-
tions, while

Qlmi(M;y,z)]/JQlm (M;y,x)] = Q.

Moreover, the map in Theorem 3.138 sends the constant function a € C to
the map that sends 1 € Q to a, that is clearly an isomorphism.

Fix now N > 0. Applying Lemma 3.193 and Proposition 3.188 we obtain
a quasi-isomorphism

LyB*(A*(M)) = Tot Cy(An, A*(, My)).
For each n, the composition
AY(M)*" @ C — E*(,My,C) — S*(,M;, Q)@ C

is a quasi-isomorphism, functorial in n, from which we deduce a quasi-
isomorphism

Ly B*(A*(M)) @ C —% Tot Cu(Ay, S) @ C.

Combining this quasi-isomorphism with Lemma 3.192 and Theorem 3.162
we deduce the isomorphism

HY(Ly B* (A*(M)) & C) —> (Cln(Ms y,2)]/ T HClr (M, 2))).
Therefore, we get an isomorphism

H°(B*(A*(M)) ® C) = lim H*(Ly B*(A*(M)) © C) —

N
(lim Cr(M;y, )]/ TV HClw (M y,2)))¥ = (Clr(M;y,2)]")Y,
N
as we wanted to prove. ([l

* k x

EXERCISE 3.195. Let M be a topological space and A* a complex of
abelian groups. Consider the Godement resolution C* from Remark 2.12.
Let w € Tot™(I'(M,C*(A*))) and let w[k] be defined as in formula (3.145).

(1) Show that, if w is closed, then w[k] is closed in the complex
Tot" (T'(M,C*(A[k]"))).
(2) Show that w[k][—k] = w.

3.6. A mixed Hodge structure on the pro-unipotent completion
of the fundamental group (after Hain).
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3.6.1. Construction of the mired Hodge structure. Hain [Hai87b] and
Morgan [Mor78] have shown that, if M = X (C) is the set of complex points
of a smooth algebraic variety, then each of the quotients of the pro-unipotent
completion of the fundamental group of M carries a natural mixed Hodge
structure. Using the geometric interpretation of such quotients provided by
Beilinson’s Theorem 3.162, one can improve this result a little bit, showing
that, in fact, if a variety is defined over a subfield k£ C C we obtain a mixed
Hodge structure over k. Later we will see that Beilinson’s theorem allow us
to upgrade these quotients to motives. For now, the precise statement is the
following.

THEOREM 3.196. Let k be a subfield of C, X a smooth algebraic variety
over k, M = X (C) the set of complex points of X viewed as a differentiable
manifold, and x,y € X (k) C M two k-rational base points. For each N > 0,
the finite-dimensional Q-vector space

Q1 (M;y, )]/ TN Qi (M y, )]

carries a mized Hodge structure over k which is functorial with respect to
morphisms of pointed varieties. Moreover, given integers N1 > No > 0, the
quotient map

Qi (X(C);y, )] /I — Q[m (X (C)s y, )] /T2

is a morphism of mized Hodge structures over k.

Proor. We will prove that the dual
(Qlmi(M;y,2))/ TV HQ[m (M:y, )Y

carries a mixed Hodge structure. By Beilinson’s theorem 3.162 we know that

HY (MY, K (N)) — (Qln(M;y,2))/ TV Qln(M; y, )

) y €T
and the groups HY (M~ K,(N)) can be interpreted as certain relative sin-
gular cohomology groups of algebraic varieties over k, thus can be endowed
with a mixed Hodge structure over k.

We can also use Lemma 3.192 and Proposition 3.188 to identify the
groups HY (MY, K2 (IV)) with certain singular cohomology groups of a sim-
plicial manifold , M7. All the maps involved in , M7 are algebraic and defined
over k, therefore , M2 is the simplicial manifold obtained by taking complex
points of a simplicial smooth variety over k. Using a variant over k of the
main construction of [Del74], we endow H™ (MY, K (V) with a mixed
Hodge structure over k.

The claimed functoriality properties follow from the functorial properties
of the mixed Hodge structures on the cohomology of simplicial varieties. [

We have constructed a pro-mixed Hodge structure on the pro-unipotent
completion of the fundamental group by abstract means. Following Hain
[Hai87b], Chen’s theorem provides us with a very clear and transparent way
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to construct such mixed Hodge structure. We now sketch this construction
when X is smooth and defined over C. We will just show how to define
the Hodge and weight filtrations. Consider the dg-algebra EZan (log D) as
in Section 2.6.1. It has two augmentations €1 and €2 given by evaluating
at z and y respectively. The Hodge and weight filtrations of E*Yan (log D)
determine the Hodge and weight filtration on B*(E*Yan (log D)), by saying
that, if w; € FPi fori=1,...,r, then
r] -] € Pt
while, if w; € Wy, then

[wl‘ T ‘wr] € Wn1+~~-+nr+r7

that is, the Hodge type is the sum of Hodge types, while the weight is the
sum of weights plus the length of the element. Then

FPHO(B*(E%n (log D)) = Im(H°(F? B (Epun (log D))

X" 7
Wi HY(B*(E%an (log D)) = Im(H® (W, B*(E%an (log D))).

3.6.2. The case ofIF’(b\{O, 1,00}. Let us now specialize to the case where
X = IP’(b \ {0,1,00} and M = X(C), as in paragraph 3.4.5 and z,y €
X (Q). As we have seen in Example 2.130, we do not need to work with the
whole infinite dimensional dg-algebra Epan (log D), but we can work with
the smaller Q-algebra
A=Q® Quo® Qus.
In this case both augmentations £; and €2 given by evaluating at = and y
respectively agree with the trivial augmentation

e: A — Q
1 — 1
wo — 0 (3.197)
wp +— 0.

This has the added advantage to give us already a mixed Hodge structure
over Q. Since A is connected we can use the reduced bar construction.
Arguing as in paragraph 3.4.5, the Hopf algebra H%(B*(A)) is isomorphic to
the Hoffman algebra. In each finite dimensional subspace H°(LyB*(Ac)),
the Hodge filtration is the decreasing filtration determined by

[wiy |-+ wi, ] € FP
and the weight filtration is the increasing filtration determined by
[wiy |-+ [wi,, ] € Wap.
We now describe an ind-mixed Hodge structure {yAE’N} ~N>0 that corre-
sponds to the algebra of functions over the pro-unipotent completion of
the fundamental group and a dual pro-mixed Hodge structure {, Ul ’N} N>0

that corresponds to the universal enveloping algebra of the Lie algebra of
the pro-unipotent completion of the fundmental group.
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For the Betti part of yAI;’N, we write
APY = Q[r(Myy, )]/ TN Qr(M; y, 2)])Y
with the weight filtration given, for —1 < k < N, by
War (,AP™N) = Wop 1 (,ADY)
= (JQIn(Myy, )]/ TV TIQIr (M y, 2)))
For the de Rham side, we have
yAgRJV — LNHO(B*(A*))
with the weight filtration given, for —1 < k < N, by
Wa (,ASN) = Wap 1 (,AT%N)
= (Ly HO(B*(A")))™*.
The Hodge filtration is given by defining
FP(,ASN)

as the subspace generated by words of length ¢ with p < ¢ < N. Note that
only the Betti part depends on the points z, y.

By duality we write
LU = Qlr(Myy,2)]/ IV Qlr(M; y, )]
and
yU;lR,N — LNHO(B*(A*))\/
with the dual filtrations.

We denote by compgr g the isomorphism of Theorem 3.138 and by
compg g its dual. Then the mixed Hodge structures

HN ._ B,N dR,N -1
yAa: = ((yAx ) W), (yA:C W, F)7 ComdeB)
form an inductive system of mixed Hodge structures over Q and
H,N . B,N dR,N
yU:c = ((y Ua: ’ W)? (yUac ’ W/’ F)’ CompB,dR)
form a projective system of mixed Hodge structures over Q.

3.6.3. Iterated integrals as periods of the fundamental group. We now
show that iterated integrals along paths between x and y are periods of the
mixed Hodge structure ,A"™. We keep the notation X = P!\ {0, 1,00}
and M = X(C).

EXAMPLE 3.198. Let s = (s1, ..., s,) be a positive multi-index of weight
N and write bs(s) = (e1,...,en) for the associated binary sequence. We
consider the algebraic differential form on X% given by

W = priwe, A - APryWey,

where wg = % and w; = %, as usual, and pr;: XN — X denote the

various projections. Since w has maximal degree, it defines a class [(w,0)]
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in the relative de Rham cohomology H (%(X NY), where Y is as in Section
3.5.2. From lemmas 3.192 and 3.193 and Proposition 3.188 we derive
H(%(XNa Y) - yAdeJV'

On the other hand, every path y: [0, 1] — M with v(0) = z and (1) = vy,

determines a singular simplex
o: AN — MN
—

(t1,.- . tN) (v(t1)s -+ v(tN)),

—

where AV is the simplex of Notation 1.107. Clearly, the support of the
chain 0o is contained in Y. Therefore o determines a class [o] in the relative
singular homology group Hy (MY ,Y,Q). By Theorem 3.162,

Hy(MN)Y)= AP

The period associated with these two classes is the iterated integral

([, 0)], ) —/Uw—/wwel---ww

Here we have used two points z,y € X(Q). In order to obtain multiple zeta
values we need to consider the case x = 0 and = = 1, but these points do
not belong to X (Q). For this reason we will need to consider tangential base
points in the next section.

* K x

EXERCISE 3.199 (The nerve of a category). Let C be a small category.
Let N(C)o be the set of objects and N(C); the set of morphisms. For each
n > 2, define N(C),, as the set of n-tuples of composable morphisms

Co o I I, (3.200)
On the one hand, we have maps
(51N(C)n—>N(C)n_1 i:(),...,n,

given by composing at the i-th object or removing it whenever ¢ = 0 or n.
In other words, ¢; sends an n-tuple as in (3.200) to the (n — 1)-tuple

oL = oA s N Cii1 g I
On the other hand, there are maps
UiZN(C)n%N(C)n+1 ’iZO,...,n,

obtained by inserting an identity morphism at the i-th object, that is,

o LI (NYG AR CNYG AL L% SR LN I
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(a) Prove that N(C)s, together with the maps d; as faces and the maps
o; as degeneracies, has the structure of a simplicial set. This con-
struction is called the nerve of the category C.

(b) In particular, identify the simplicial identity which corresponds to
the associativity of the composition of morphisms.

EXERCISE 3.201. Describe explicitly the mixed Hodge structure on the
pro-unipotent completion of the fundamental group of G,,.

3.7. Tangential base points. In this section, we continue working
with the manifold M = P}(C) \ {0,1, 00}, the differential forms wy and wy
and the dg-algebra A7 of paragraph 3.4.5.

Theorems 1.108 and 1.117 show that multiple zeta values and polylog-
arithms can be seen as iterated integrals. Nevertheless we face a technical
problem. The differential forms wy and w; that appear in these theorems
have singularities at the points 0, 1 and oo. Hence they are differential
forms on M, but to obtain multiple zeta values we need to integrate along
the straight path dch

dch: [0,1] (3.202)

which is not contained in M because the end points are 0 and 1. Since dch
is not a path in M, the formulas in theorems 1.108 and 1.117 are not strictly
speaking iterated integrals.

Thus, to see multiple zeta values and polylogarithms as iterated integrals
we have to consider tangential base points. As we will see, these are related
to the regularization discussed in Section 1.7. Tangential base points will
also play an important role later when we consider the algebraic structure
of PL: the variety P \ {0, 1, 00} does not contain any smooth integral point,
thus we will need tangential base points to have a motivic version of the
fundamental group of P% \ {0, 1, 00} defined over Z.

3.7.1. Paths with tangential base points. For simplicity, we will introduce
tangential base points only in the case of M = P(C) \ {0, 1,00}, the only
one we need, but the reader should be aware that the constructions extend
easily to any smooth projective curve minus a finite number of points.

DEFINITION 3.203. Let = € {0, 1} be either the point zero or the point
one in P1(C). A tangential base point is a pair (z,v), where v is a non-zero
tangent vector to P1(C) at z.

Intuitively, a path has an end point at a tangential base point (z,v) if
the end point is x and the tangent vector at the end point is v. However, the
presence of tangential base points causes a nuisance. On the one hand, in
order to be able to compose paths we need to allow tangential points to be
reached by the paths at intermediate points. On the other hand, to define
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homotopy between paths in an easy way it is better to avoid tangential points
at intermediate points along the path. To remedy this problem we define
two kind of paths, the ones that allow tangential points at intermediate steps
(hence can be composed) and the ones that avoid tangential points. The
former will be called cuspidal paths because of the shape we will impose at
the tangential points, while the latter will be called clean paths. Then we
define a homotopy equivalence of clean paths and a map from the space of
cuspidal paths to the space of homotopy classes of clean paths.

DEFINITION 3.204. Let = (z,v) and y = (y,w) be two tangential base
points. A cuspidal path from x to y is a piecewise smooth map ~: [0,1] —
M U {0, 1} satisfying the following conditions

(1) the end points of the path are

W0 =2, T0)=v,

W=y D)= w

(2) the set {t € (0,1) | v(t) € {0,1}} is finite. Moreover, if ¢y belongs
to this set, the left and right tangent vector to v at ¢y are non-zero
and opposed:

dtvy -
= L(tg) = ——L(¢
07— (to) o (to)
This set is called the set of cusps of ~.

When the set of cusps is empty, v is called a clean path from x to y.

The space of cuspidal paths from @ to y is denoted by yP(M ), While
the subspace of clean paths is denoted ,P(M )9.

3.7.2. Composition of paths with tangential base points. The composi-
tion of paths (3.3) cannot be applied directly to define

ZP(M)y @ P(M)y — ;P(M),

for tangential base points «, y and z because condition (1) imposes that the
derivative of the path at zero and one is a fixed vector, while the parametriza-
tion used in (3.3) would multiply this vector by 2. Thus to define the com-
position of paths we consider the functions

G1(t) =t + 2t ¢o(t) = 5t — 2 — 2t°.
These functions are smooth and satisfy the properties
$1(0) = $1(1/2) =1, ¢1(0) =
$2(1/2) = $2(1) =1, ¢5(1) =
1 (t) >0, t€0,1/2], ¢5(t) >0, te[1/2,1],
¢1(1/2) = ¢5(1/2).

Yy Y
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In fact, any pair of smooth functions satisfying all the above properties
would serve for our purposes.

1k
0.8
0.6
2!

0.4

0.2

FiGURE 15. The functions ¢; and ¢9

We define the composition of paths as
PM)y, @ P(M), — P(M),
(71,72) 772
where
Yo (b1(t)),
Y1 (p2(t)),

~ <+
IA A
i

(3.205)

IAIA

Y172(t) = {

o= O

3.7.3. Homotopy of paths. Let v1,7v € 3/73(]\4)2c be two clean paths. A
homotopy between 1 and 79 is a map

F:[0,1] % [0,1] — MU {0,1}

such that
F(t,0) = 1(t), F(t,1) = v(t), t € [0,1]
F(0,s) =z, F(l,s)=y, s€]0,]1]
oOF oF
— = —(1,8) = — 1
F(t,s) € M, 0<t<1, 0<s<1.

The space w(M;y,x) is the set of homotopy classes of clean paths from
to y. Similar notation will be used when only one of the base points is
tangential.

We next construct a map ¢ from ,P(M), to n(M;y,x). Let d(z,y) be
the standard Euclidean distance in C = P*(C)\ {oc}. Let v € ,P(M),,. For
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v ()

FIGURE 16. Retraction at a cusp

each t; in the set of cusps of 7, we can find real numbers 0 < &;,7;, 7, <
satisfying the conditions

1
2

(1) ¢; is the only cusp in the interval [¢t; — 1}, t; + 7;] and 7 is smooth
in the intervals [t; — nl, &) (¢, ti + nil;

(2) the intervals [t; — 1}, t; + n;] are disjoint and do not contain 0 or 1;

(3) the image of [t; — 1}, t; + n;] satisfies

)

) [

d(y(ti +m),y(t:)) = d(y(t),y(t:)) < e, for t; <t <t; +mn;

d(y(ti = ni),v(t:) = €, d(y(t), (1)) < &, for t; —m; <t <t
)

(4) the tangent vector to v does not change very much

|57~ 2 1 i~ )
HCZ@)—CZJ(Q) —iHW(ti) :

Note that condition (4) implies that the path 7 cannot turn around the
point (¢;) between ¢; — n} and t; + ;.

<3lF

(ti, ti + ;).

For each cusp t; let B(~(t;), ;) be the open ball of centre v(t;) and radius
g; and let 7;: C\ {v(t;)} — C\ B(7(ti),ei) be the radial retraction. Then
we define a new path v° defined outside the cusps by

2o(s) = {'y(s) if for all 4, s & [t; —n., t; + nil, (3.200)

ri(y(s)) if s € [ti —nlti + ), s # i
Condition (2) in the Definition 3.204 implies that 7° can be extended contin-

uously to the cusps t; defining a clean path also denoted ~°. The retraction
at a cusp is represented in figure 16.

The following proposition is clear.

PROPOSITION-DEFINITION 3.207. The homotopy class of clean paths of
v° does not depend on the choice of the numbers e;,m;,n;. The homotopy
class of v° in w(M;y,x) is denoted by (7).

Using the map ¥ we can define a composition of clean paths

(M;z,y) x 1(M;y,x) — 7(M; z,x).
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DEFINITION 3.208. Let x, y and z be base points, tangential or not.
Given classes v € n(M;z,y) and 7o € 7(M;y,x), we choose represen-
tatives 41 € ZP(M)S and 7, € yP(M)Om. Then 4172 € ,P(M), and we
define

T2 = Y (1172)-

PROPOSITION 3.209. The composition of clean paths given in Definition
3.208 does not depend on the choice of liftings and turns w(M;x,x) into a
group and w(M;y,x) (resp. w(M;x,y)) into a right (resp. left) m(M;x,x)-
torsor.

The fact that the fundamental groups with different base points are iso-
morphic can be easily extended to tangential base points. The next propo-
sition is proved like the classical one.

PROPOSITION 3.210. Let ®;, 1 =1,...,4 be any base points of M (tan-
gential or not). Letyy € 5, P(M)y, and~yz € 5, P(M),,. Then the following
map s an isomorphism:

3

7T(M; :1:3,%2) — 7T(M; zr:4,:1:1)
Y — 1Y V2-

3.7.4. Logarithmic asymptotic developments. We would like to extend
the notion of iterated integral to tangential base points. The main problem
is that the integral may diverge, so one needs to regularize it. We start by
discussing some preliminaries about asymptotic developments.

DEFINITION 3.211. Let 0 < 7 < 1 be a real number and f: (0,7) —
C a continuous function. We say that f admits a logarithmic asymptotic
development (of degree less than or equal to r) if it can be written as

F() = fo(t) + Y axlog(t)".
k=0

with |fo(t)] = O(t' %) for some § < 1 and a; € C.

LEMMA 3.212. Let 0 < 7 < 1 be a real number and f: (0,7) — C
a continuous function. If it admits a logarithmic asymptotic development
then the development is unique.

PRrROOF. Let f: (0,7) — C be a continuous function that admits an
assymptotic development

F#) = folt) + > aplog(t).
k=0

We can recover a, as
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Once we know agy1,...,a, We can recover ag as
() = Yk aklog ()"
as = lim
-0 log(t)*

Finally, fo = f(t) — > r_oa log(t)¥. Hence the development is unique. [

3.7.5. Asymptotic developments of iterated integrals. We now fix the two
tangential base points 0 = (0,1) and 1 = (1, —1), that is, the tangent vector
1 at the point 0 and the tangent vector —1 at the point 1. For instance, the
path dch(t) = ¢ belongs to {P(M),.

Let x,y € {0,1} UM be base points (tangential or not), v € ,P(M),
a piecewise smooth clean path, and (e1,...,&,) a binary sequence with ¢; €
{0,1}. We consider the iterated integral

/wEl wer'
v

Since the form wg has a pole at 0 and the form w; has a pole at 1, this
integral may diverge. For instance

/ W = Q.
dch

However, if the form w., has no pole at the point y and the form w,., has
no pole at the point x, then the above integral is convergent. For instance,
if v = dch, the integral will be convergent when £; = 0 and &, = 1, that is,
when the binary sequence is admissible.

We now describe the regularization process. Let v € ,P(M )% be a clean
path. For 0 < n < %, we write

Yo(t) =yt —n) + (1 = t)n).
This is a path from ~(n) to v(1 —n), hence completely contained in M.

LEMMA 3.213. Let (e1,...,&-) be a binary sequence. Then the function
(0,1/2) — C given by

T

77 % wEl “ e UJE
Tn
admits a logarithmic asymptotic development of degree < r.

PrRooOF. We write

() =1 —n) + (1 =1)/2),
() =y(t/2+ (1 = t)n).
The path 7,2 goes from v(n) to v(1/2) and v, is a path from v(1/2) to

(1 —n). Moreover, 7, = v,17y,,2 (recall that, according to our convention
for the composition of paths (3.3), this means that we first walk along 7, 2,
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then along 7,,1). Using equations (3.20) and (3.21) in Theorem 3.19, it is
enough to show that the functions

7]'—> Wsl"'wsrv 22172
Tn,i

admit a logarithmic asymptotic development of degree less than or equal to
r. Since both cases are analogous, we will only consider i = 2. We prove the
existence of a logarithmic asymptotic development by induction on r. The
result is clear for » = 0. Let us assume that it holds for a binary sequence
of length less than r. If v} swe, = g, (t)dt and y*we, = he,(t)dt, then:

/ Weq * 0" We, = / gsl(tl)"'gsT(tr)dtl"' dtr
ol

n,2
1>t > >, >0

= / hey(t1) -+ he, (te)dty -+ - dt,.
1/2>41>>t,>n

Now we compute

I(n) = / he (1) - he, (t.)dty - - - dt,
1/2241 >t >0

- / he, (tr)< / heo(t1) - e, (tr1)dty - - dtr_1>dtr.
1/2>tr>n 1/22t1 2>t —1 2ty

By the shape of w., we deduce that
o
he, (1) = £+ 0(1),

T

where « is non-zero if w,, has a pole at the point & and is zero otherwise.
We also apply the induction hypothesis to the inner integral to get

= [ (f+ou)(o+ Sh log(t,)* ) dt;.
" k=0

1/2>t.>n

Estimating this integral, we deduce that I(n) admits a logarithmic asymp-
totic development of the sought shape, proving the result. [l

3.7.6. Regularized iterated integrals.

DEFINITION 3.214. Let (e1,...,&,) be a binary sequence and let v €
P(M)? be a clean path. Let

/

n

Y

.
Wey * - We, = f0(77) + Z ag 10g(77)k
k=0
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be the logarithmic asymptotic development provided by Lemma 3.213. Then
the regularized iterated integral along ~ is defined as

reg
/ Wey *** We, = QAp.
Y

PROPOSITION 3.215. Let v € ,P(M), be a cuspidal path and v° a rep-
resentative of the class () obtained as in (3.206). The reqularized integral

reg
/ Wey 7+ Wey
,yO

does not depend on the choice of ~°.

PROOF. Let 47 and 5 be two choices. Since 7 and 5 only differ from
~ in a small neighborhood of the cusps, for small enough 7,

() =2(n), (@A —n) =31 —n).
Moreover ’yf,n and 757,7 are homotopically equivalent. As seen in paragraph

3.4.5 HY(B*(A*)) = BY(A), thus all the iterated integrals that can be con-
structed from wy and wy are homotopy functionals. Therefore

/ w€1"'w67-:/ wal...w‘sr
Y ot

lo,n g»"
from which the result follows. O

DEFINITION 3.216. Let v € ,P(M), be a cuspidal path. Let 4° be a
representative of the class ¥ () obtained as in (3.206). We define

reg reg
/ wEl P wsr f— / wEl P UJET'
vy v°

Clearly, when the iterated integral is convergent, the value of the regu-
larized integral agrees with the value of the integral.

Regularized iterated integrals share many of the properties of iterated
integrals. In particular, Theorem 3.19 can be extended to the new setting.

THEOREM 3.217. Let v,v1,72 be cuspidal in M whose end points are
either 0, 1 or belong to M and such that v2(1) = v1(0). Let (e1,...,Er45)
be a binary sequence. Then

(1)
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(3)
reg reg reg
/ Wey * Wsr/ Weppr """ Wergs = § : / Wegm11) 7" Wegm1rps)
v v

ocew(r,s) Y

PRrROOF. We first prove (1). If 7 is cuspidal and ~° is a clean path in the
homotopy class 1(y) obtained as in (3.206), then (7°)~! is a clean path in
the homotopy class ¥(y~1) obtained as in (3.206). Therefore, we can assume
that 7 is a clean path. By construction, (7). = (7-)~!. By Theorem 3.19
the asymptotic expansions of

reg
,
/ Wey + - We,, and (—1) /1 We, *** We,
e Ve

agree. Thus we have the equality of regularized integrals.

Statement (3) also follows from the corresponding statement in Theorem
3.19.

Statement (2) is slightly more difficult due to the posibility that the
joining point is a tangential base point. The proof goes as follows.

Assume that 7 and 72 are clean paths. Let v = 1y be their com-
position and 7° a clean path representing v as in (3.206). For sufficiently
small 7, the path (70)77 is homotopic to v1,4%0,,72,7, Where 7o, denotes the
straight path form ~5(1 —7) to v1(n) (see Figure 17 below). By the usual
formula for the composition of paths

/ wEl PEEEEY wET
(’Yo)n

Il
T
&

2
&
T
3
&
Qm
:
&
~
T
&
ey
t
&
o

Yo,n

FIGURE 17. (70),7 ~ Y2000 V1

LEMMA 3.219. One has f'YOm Wej oy -+ wey, = O(nF77).
ProOOF. The key point is that we have power series expansions
72(1 = n) =2(1) = %(1)n+ O
71(n) = 71(0) +1(0)n + O(?).
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Since 72(1) = 71(0) and 74(1) = —~}(0), it follows that
a(1 =) = (n)| = O().
Using the equation 7o, = ty1(n) + (1 — t)y2(1 — 1), one sees that

e @2 () = y2(l = m))dt
Oz i) + (1= t)ye(1 - 1)

Since the numerator is O(n?) and the denominator is O(n), it follows that
Y0.,w = O(n)dt, hence

/ Wejpr " Wk = O(nkfj)a
Y0,n
proving the lemma. ([

To conclude the proof of the theorem, we observe that, by the lemma,
the integral f%n We, 1, *** We;, does not contribute to the constant term in

the logarithmic asymptotic development of (3.218) when k > j. Therefore,

const / Wey *** We,
(v%)n

T

= const/ Wey *+* We; const/ Wejpg """ We, |
T1,m Y2,n

J=0

from which the result follows. Here const means the constant term ag in the
logarithmic asymptotic expansion. ([

As we did before for “honest” base points, the properties of iterated in-
tegrals can be concisely rephrased in terms of the bracket. If v is a piecewise
smooth path and n € B°(A*), we denote

reg
<n,7>reg=/ 7.
Y

THEOREM 3.220. Let v,7v1,7v2 be piecewise smooth paths with any base
points and let n,m,m0 € B°(A*) be elements of the bar complex of A* of
degree zero. Then

(1) (n, )& = (S(n),y ).
(2) (n,7172)"8 = (An, 71 ® 72)"8.

(8) (11, 7)"8 - (12, 7)™ = (1 LW n2, )" 8.
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3.7.7. regularized iterated integrals and regularized zeta values.

ExaMpPLE 3.221. Let us compute an example of a regularized iterated
integral in length 3:

reg

C(1a2)reg:/ W1wow1
d

ch
By definition, this is the constant term in the asymptotic logarithmic devel-
opment of the function

dt1dtodt
SN / 1dtadts

(1 —t1)ta(1 —t3)
1—n>t12>t2>13>0
To be completely precise, according to the above recipe we should have
required t3 > n as well. Note, however, that the last form w; has no pole at
0, so the two asymptotic logarithmic developments agree.

We first compute the integral following the method of examples 1.103
and 1.105. We obtain

dtydtadt 1—n)m

/ 1272703 = % (3222)
(1 —t1)t2(1 —t3) Z n2m

1-n>t1>t2>t3>0 m>n>0

This power series converges for 0 < 1 < 1 but diverges for n = 0 and we have
to find an asymptotic expansion in logn. To this end, we use the equality

dtrdtadty / dt1dtdts

(1 —ty)ta(1 —t3) (1 —t1)ta(1 —t3)
1-n>t1>t2>t3>0 1-n>ta>t3>0

1-n>t12>0
dt1dtadts
—9 : 3.223
/ 0= t)h( — &) (3.223)

1-n>ta>t1 >t3>0

which is a simple consequence of the decomposition of the integration do-
main, together with the fact that the integrand is symmetric in ¢; and t3
(this explains why the last term appears twice). Observe that

dtp, 01—~
[ S

11—t
—n=>t12>0 1 k>1

Combining this with the power series expansions as in Example 1.105, one
sees that the right-hand side of (3.223) is equal to

—log(n) Y a=n"_, 3 w (3.224)

n2
n>1 m>n>1

One can check (Exercise 3.230) directly that this expansion agrees with the
right-hand side of (3.222).

To see that the power expansion (3.224) is useful we have to prove that
the series appearing in that expansion define continuous functions of 7.
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LEMMA 3.225. The following estimates hold when n goes to 0% :

> (1,_1277)n = ((2) + O(nlogn), (3.226)
n>1

> w =((2,1) + O(nlog®n). (3.227)
m>n>1

PROOF. To prove the estimate (3.226), we need to study
(1—n)" 1-(1—n"
R N
n n
n>0 n>0
For 0 < n < 1, we have the inequalities
0<1-(1-n)"<1, 0<1—(1—-n)"<nn.

Therefore

_
3=

]
1—(1—-—n)"
O<Z(n2n)< ngZﬁ

n>1 n=1 n>LlJ
n

Since the first sum is O(nlogn) and the second is O(n), the first estimate
follows. The second one is obtained in a similar way. ]

From Lemma 3.225 we obtain
/ dt1dtadts

(1 —t1)ta(1 —t3)
1-n>t1>t2>t3>0

from which it follows that

¢(1,2)"8 = —2¢(2,1).

= —2((2,1) — ¢(2)logn + O(nlog? ),

The value of ((1,2)™® is equal to the one obtained by shuffle regulariza-
tion in Example 1.178. This is of course no coincidence, as we now prove:

THEOREM 3.228. Let (e1,...,&,) be a binary sequence and consider the
corresponding word w = xz, - -+ Ts,. Then:

e
reg
Cm(w)—/ Wey =" Wep
ol

PROOF. By Proposition 1.173, we need to show that the integral on the
right hand side satisfies the conditions determining ¢;,,(w). Condition (1.174)
follows from Theorem 1.108 combined with the observation that, when the
binary sequence is admissible, then the regularized integral agrees with the
usual integral. Condition (1.175) is checked by a direct computation. Finally
condition (1.176) is Theorem 3.217 3. O
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3.7.8. Chen’s theorem for tangential base points. We finish this section
by stating a version of Chen’s theorem with tangential base points. Recall
that we are writing M = P}(C) \ {0,1,00}, and A% is the dg-algebra of
parapraph 3.4.5.

THEOREM 3.229 (Chen’s m; theorem for tangential base points). For

each integer N > 0 and each pair of points x,y (tangential or not), the
reqularized iterated integrals induce an isomorphism

LyH°(B*(Af)) = Homg(Q[m (M; y, )]/ TV Qlr(M; 2)], C).

Passing to the limit, we deduce an isomorphism between H°(B°(AL)) and
the topological dual (Clm(M;y,z)|")V.

PROOF. We need to show that the pairing between Ly HY(B*(A})) and
71 (M;y,x)/JNT! is non-degenerate. Since both spaces are finite dimen-
sional, it suffices to prove that there is no non-zero v € 7 (M;x, y)/JNJrl
such that (w,v) = 0 for all w. Indeed, assume that such a v exists. Choose

usual base points ' and 3’ and paths 71,72 going from x to 2’ and from y
to 3. Then, by Theorem 3.220 (2), for w € Ly H®(B*(A*))

(w,my72) = D {wr, m)wa, 7) (ws, 72),

where all the elements wy, ws, w3 are of length < N. Thus (w, y1y72) = 0 for
all w € LyHY(B*(A*)). By Chen’s Theorem 3.138, 71772 = 0 and hence
the same is true for 7. O

* K x

EXERCISE 3.230. By expanding log(n) as a power series in (1 —17), prove
the following equality of functions for 0 < n < 1:

1 —mn" (1—n" (1—n"
U N LD Dl T
m>n>0 n>0 m>n>1

EXERCISE 3.231. Let n > 2 be an integer. Adapt Example 3.221 to
compute the regularized iterated integral

reg
/ wlwg_lwl
dch

and show that the result coincides with (1, n).

3.8. Polylogarithms and their monodromy. In this section, we ex-
plain how to make the isomorphism of Chen’s Theorem 3.229 more explicit
in the case of M =P!(C)\ {0, 1,00} by using polylogarithms.
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3.8.1. Generators of the fundamental group of M. In the previous sec-
tion, we have introduced the tangential base points 0 and 1. The funda-
mental group 71(M,0) is generated by the paths vy and ~; of Figure 18.
The space of paths w(M;1,0) is generated as a right 71 (M, 0)-module by
the straight path dch also represented in Figure 18.

(¢) dch
FIGURE 18. Generators

The fundamental group 71 (M, 1) is generated by the paths
75 =dch-~g-dch™!, ~/ =dch-v; -dch™,
and the space m(M;0, 1) is generated as a right 71 (M, 1)-module or as a left
71 (M, 0)-module by the path dch™!.

3.8.2. The dual of Chen’s map. We saw in paragraph 3.4.5 that the
cohomology in degree zero of the reduced bar complex associated with A
is isomorphic, as a Hopf algebra, to the complex Hoffman algebra $ & C.
In Example 3.62 we identified the dual $" with the algebra Q(eg,e1)). We
extend Notation 1.153 as follows.

NoTATION 3.232. If « is a binary sequence, we will denote by z, the
corresponding word in the Hoffman algebra $), by w, the differential form
We in BY(A*) ~ § and by e, the dual element to z, in Q(eo, e1)).

Let M = PY(C) \ {0,1,00}, together with two base points = and y
(tangential or not). Given a path v from @ to y and w € B°(A}), we define

reg
L,(v) = / w e C.
gl
Or, in the notation of Theorem 3.220
Ly(7) = (w, 7).

For a binary sequence «, we set Ly (7y) = Ly, (7). Consider the generat-
ing series

L(’Y) = ZLa("Y)ea € (C«eOvel»‘

Therefore, if w € BY(A%L) ~ $H ® C ~ C{ep,e1))", we have
L(7)(w) = Lo(7)-
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3.8.3. The map L and polylogarithms. Recall that in Definition 1.110
we attached to a positive multi-index s a complex-valued function Lig, the
polylogarithm, defined on the open unit disc |z| < 1. The relation between
these notions is explained by the following lemma, whose proof is parallel
to that of Theorem 1.117. We left the details to the reader.

LEMMA 3.233. Let z be a complex number such that 0 < |z| < 1, v any
path from O to z contained in the unit disc, and s a positive multi-index.
Let bs(s) denote the associated binary sequence. Then:

Lis(2) = Lis(s)(7)-

3.8.4. Computation of L(7y). For any z € C\ {0, 1}, any path ~ from 0
to z and any binary sequence «, L(7) is defined. By abuse of notation, we
will write L, (z) and think of it as a multivalued function.

EXAMPLE 3.234. Let z € C\ {0,1}. Let us show that, for each n > 1,
the following equality of multivalued functions holds:

Lon(2) = —(log 2)" (3.235)

n!

Let v be any path from 0 to z. We argue by induction on n. First, for

n =1, to compute the value
reg dt
Lo(vy) = / 7
¥

one needs to find a logarithmic asymptotic development for
1-n 1—n o/
U / V() = / Lt
U n 7

= logy(1 —n) —log~(n).
Since v(0) = 0 and 4/(0) = 1, one has v(n) = n(1 — O(n)) as n goes to zero.
On the other hand, v(1 —n) = z + O(n). Thus,

&

logy(1 —n) —logv(n) =logz+ O(n) —logn
and the regularization assigns the value

Lo(z) = log z.

Assume now that the identity (3.235) holds for n — 1. Since the number
of shuffles of type (1,n—1) is n (cf. Exercise 1.134), relation (3) of Theorem
3.217 gives the result we wanted:

nLon(2) = /reg wo/wo nl wo = ! (log 2)".
. - (n—1)!
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EXAMPLE 3.236. We are now ready to compute L(7p). Arguing as in
Example 3.234, one gets
1 o
Lon(’)/o) = 5(277'2) .
If o is a non-empty positive binary sequence, Lemma 3.233 implies that

La("}/o) = 0.

In fact, it follows from the compatibility with the shuflle product, part (3)
of Theorem 3.220, that L, (y0) = 0 for all & # () and all k¥ > 0. Summing
up, we deduce that

L(v) = ZLa(vo)ea = Z (2m>neg = exp(2miep). (3.237)

n!
n>0

Thanks to the symmetry z — 1 — z, it follows that
L(v}) = exp(2miey). (3.238)

3.8.5. L evaluated at dch and the Drinfeld associator.

ExXAMPLE 3.239. Theorem 3.228 implies that, for each binary sequence
a, the equality L,(dch) = {,(z4) holds. Therefore

L(dch) = " (u(za)eaq. (3.240)

We write ®(eq, e1) for this power series with real coefficients. We also write

Orcz(eqe1) = Bleo, —e1) = » (=)' ¢y(xa)ea, (3.241)

a

where [(«) is the number of entries equal to 1 in « as in Definition 1.124.

DEFINITION 3.242. The power series ®xz(eg,e1) € R{eg,e1)) is called
the Drinfeld associator.

3.8.6. Chen’s theorem revisited.

THEOREM 3.243. For any two base points x and y, the map L can be
extended to a continuous C-linear isomorphism

L: Clm(M;y, )" — C{eo, e1) = Hom($, C).
The following properties hold:
(1) If u € Clm(M; y, )", then
SY(L(w)) = L(S(u)).
In particular, if v € 7 (M;y, ) is a path, SV(L(v)) = L(y™1).

(2) Given three points x, y and z, and elements v € C[m(M;y,z)]",
u € C[m (M;2,y)]", one has

L(uwv) = L(u)L(v).
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(3) Ifu € (C[WI(Ma Y, w)]/\; then
VY(L(u)) = (L @ L)(A(u)).
In particular, if v € m(M;y, x) is a path, then L(vy) is a group-like

element.

PROOF. We first extend L by linearity to C[m (M;y,x)]. By construc-
tion, for any path -y, the series L(y) starts by one. Therefore, any element
in the augmentation ideal of C[m (M;y, x)] is sent to an element of the ideal
generated by ey and e;. Thus, it can be extended uniquely to a morphism

L: Clm(M;y,x)]" — C{eop, e1) = Hom($,C).

That this yields an isomorphism is simply a reformulation of Theorem 3.229.
Clearly, it is enough to check properties (1) to (3) on paths. All of them
follow from Theorem 3.217.

We start proving (1) using Theorem 3.220 (1).

o (07

We next prove (2) using 3.220 (2)

Limyz) = ) (wasmr2)®ea = ) (Awa, 1 © 72)"Beq

« «

= 3 (b ®war, 11 ©72) Bewrear = L) L(re).

04’70/’

b

Finally we prove (3) using 3.220 (3).

VL) = 3 (war 1) EV Ve

(0%
= Z(wa’,wreg Z LU(O/7 O/l; a)ea’ X eqr = Z (wOé' L wo/’v’y>regea’ & eqr
a o' al o o
= 3 (W ) e, V) B @ ear = L(7) ® L(7).
O/,(XN
This concludes the proof. O

EXAMPLE 3.244. From Theorem 3.243 (3) we deduce that ®(ep,e1) =
L(dch) is a group-like element. In particular, it is the exponential of a
Lie-like element and its inverse as power series is given by its antipode

L(dch™) = ®(eg,e1) ™t = SV(P(eg, €1)). (3.245)
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From examples 3.236 and 3.239 and the compatibility of L with the com-
position of paths in 3.243 (2) we can compute L on the remaining generators
of m(M,0) and 71 (M, 1).

L(m1) = ®(eo, e1) ™" exp(2mie;)®(eo, 1),
L(7p) = ®(eo, 1) exp(2mieo)®(eq, e1) -
3.8.7. The Knizhnik-Zamolodchikov equation. Theorem 3.243 encodes

all the properties of the series L, hence of polylogarithms. The first property
is that it satisfies the so-called Knizhnik-Zamolodchikov equation :

PROPOSITION 3.246. L(z) satisfies the differential equation

d%L(Z) = (60 + >L<z>- (3.247)

z 1—=z2

PROOF. Fix z € M, let v be a path with end point z and let ~.(t) =
z + te. To compute the derivative of L(z) we need to evaluate the limit

iy L0 = L)

e—0 £
By Theorem 3.243 (2)
L(vey) — L(7) = (L(7e) — D L(9).
Moreover,

reg reg
L(yv.)—1= / woeo + / wier + O(e%).

€

Since

o1 1 o1
lim — wp=— and lim - wi = ,
e=0¢e /,, z e=0¢e /,, 1—2

we conclude

Finishing the proof. ([l
3.8.8. The monodromy of L. The second property we want to derive is
an explicit description of the monodromy of L as a multivalued function.
THEOREM 3.248. Let z € M and vy a path from 0 to z. Then
L(y-70) = L(7) exp(2mieo),
L(y-71) = L(7)®(eg, 1) " exp(2mie; ) ®(eg, e1).

PRrROOF. Follows immediately from Theorem 3.243 (2) and examples
3.236 and 3.244. ([
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3.8.9. Further properties of the Drinfeld associator. We next derive the
basic properties of Drinfeld associator ®x . Let Uay be the universal en-
veloping algebra of the Lie algebra of the pro-unipotent completion of the
pure braid group on 4 strings. It is the algebra of power series in letters ¢; ;,
1 <4, <4 with the relations

tii =0,  tij =t
[ti’j, tig + tj7k] =0, for 4, j, k different,
[tij,tki] =0, for 4, j, k,1 different.
THEOREM 3.249 (Drinfeld [Dri90]). The Drinfeld associator satisfies
the following relations.
(1) Symmetry relation: Pk z(ep,e1)Prz(e1,e0) = 1.
(2) Hezagon relation: Write eoo = —eg — €1, then

0P ¢ 7 (€c0, €0) T Dz (e1, €00) ™ P (€0, €1) = 1.
(3) Pentagon relation: For t; ; € Uay we have

Qrz(ti12,t23 +t24)Pxz(t13+ t23,t34)
= Drz(tos, t34)Prz(ti2+tas,toa +1t34)Prz(t12,t23).

PROOF. We start proving (1). Consider the automorphism of M given
by z +— 1 — z. This automorphism sends the form w; to —w;_; for i = 0,1,
hence it sends ey to —e; and e; to —eg. Moreover it sends dch to deh™.
Therefore we deduce that L(dch™!) = ®(—ey, —eg). Therefore

1 = L(dch)L(dch™) = ®(eg, e1)®(—e1, —ep),
which is equivalent to (1).

To prove (2) we need to introduce more tangential points and paths. Let
0~ = (0,—1) be the tangent vector —1 at 0 and 1~ = (1, 1) be the tangent
vector 1 at 1. We consider the point co with local coordinate u = 1/z and
denote co = (oo, 1) the tangent point 1 at oo with respect to this coordinate
and oo™ = (o0, —1). We denote by dp € w(M;0,07) the path that starts in
0—, gives half a turn around zero in the counterclockwise direction and ends
in 0. Similarly, 6; € w(M;17,1) is the path that starts in 1, gives half a turn
in the counterclockwise direction and ends in 1~ and 0 € 7(M; 007, 00) is
the path that starts in oo, gives half a turn in the counterclockwise direction
and ends in co™. Finally we denote by dchy 1 € m(M;00,17) the straight
path that starts in 1~ and ends in oo through the real numbers greater
than one and by dchg o € 7(M;07,007) the straight path that starts in
oo~ and ends in 0~ through the negative real numbers. All these paths are
represented in Figure 19.

Clearly, the composition

dp - dchg o - 6o - dchog 1 - 01 - dch
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dcho, o 0 dch 1 dchoo 1 o0
........ K—‘J w !J -
do o1 doo

FIGURE 19. paths

is homotopically equivalent to the trivial path. Therefore, by Theorem
3.243 (2),
L(60)L(dchg oo) L(d00) L(dchoo 1) L(61)L(dch) = 1. (3.250)
Arguing as in Example 3.236, we can see that
L(dp) = exp(mieg).
We now consider the automorphism of M given by z +— 1/(1— z). This map

sends dg to 91 and 1 to d. It also sends dch to dchy,; and dch 1 to
dChO’oo.

Moreover the pull back by this isomorphism sends the form wy to the
form w; and the form w; to the form —wy — wi. Dualizing we deduce that
this automorphism sends ey to —e; and ej to eg — e;. We deduce that

L(01) = exp(—mieq), L(0s0) = exp(mi(e; — €g)),
L(dchy1) = ®(—eq,e0 —e1), L(dchg) = P(e1 — e, —eop).
Thus equation (3.250) reads
emOP(eq — e, —eo)e”(elfeo)@(—el, eo —e1)e ™D (e, e1) = 1,
which is equivalent to
TPy (e — 60,eo)e”(el_eo)@;{z(—el,el —e0)e TPy 4 (eg, —e1) = 1.
The hexagon relation is obtained by replacing e; by —e;j.

The proof of (3) involves considering a path in the moduli space Mg s
which is a complex surface. To write it properly, we would need to discuss
tangential base points and local monodromy in higher dimensions, so we will
omit it. See for instance [Had] for an outline. O

3.8.10. The associator relations and the extended double shuffie rela-
tions. We close this section by quoting

THEOREM 3.251 (Furusho [Furl0], [Furll]).
a) Let ((°(a))a be a collection of real numbers, one for each binary
sequence. Denote by (5: H° — R the map obtained from these

numbers by linearity. If the power series

S (-1)¢ (@)

«
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1s group-like and satisfies the associator relations of Theorem 5.2/9,
then (R, (%) satisfies the extended double shuffle relations (Defini-
tion 1.192).

b) Let ¢ € R{eop,e1)) be a group-like element with the coefficient of
eger equal to —((2) = —7w2/6. If ¢ satisfies the pentagon relation
3.2/9 (3), then it satisfies the symmetry relation 5.2/9 (1) and the
hezagon relation 5.2/9 (2).

* k x

EXERCISE 3.252. Compute explicitly the terms up to degree 5 of the
Drinfeld associator ®xz(eg, e1). Show that, with the exception of the unit
in degree 0, they can be all written as commutators.

EXERCISE 3.253. In this exercise, we show how Theorem 3.248 encodes
the monodromy of multiple polylogarithms in one variable. We start with
Lis, which is the coefficient of egege; in L. Let z € PY(C)\ {0, 1,00} and let
~ be a path between 0 and z.

(1) Find the coefficient of egege; in L(y-v0) and L(y-71). The obtained
expressions give us the monodromy of Lis.

(2) Compute the monodromy through ~y and v of the functions
Ly=1, Lo, L1, Looot, Loioor-
3.9. The fundamental groupoid of P!\ {0, 1,00}. We continue study-
ing the manifold M = P!(C)\ {0, 1, 00}, but we view it as the set of complex
points of the variety X = IF’@\{O, 1,00} defined over Q. Recall from Example

2.130 that the dg-algebra A* computes the algebraic de Rham cohomology
of X.

3.9.1. Summary of structures. For convenience and to fix notations, we
start by summarizing some results of the previous sections.

SUMMARY 3.254. Let @,y,z € {0,1} U X(Q) be base points, tangential
or not. We have at our disposal the following structures.

(1) (Betti side.) An affine pro-algebraic scheme over Q
B = (P {0,1, 00}y, )™,
a pro-Q-vector space
JUE = Q[m(Py\ {0,1,00}; 9, 2)] ",
the subspace of Lie-like elements
Lo ={re U} | Vz=1@zr+zx1},
and an ind-Q-algebra
vAa = O(II5) = (,Ug)".
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(2) (De Rham side.) An affine pro-algebraic scheme over Q
dewR = Spec(9),
a pro-Q-vector space
yUs = Qfeo, e1),
the subspace of Lie-like elements
Lt ={re R | Vr=1ezs+z21},
and an ind-Q-algebra
dR
Az = 9.

(3) (Comparison.) Comparison isomorphisms’
compyp gt Il X@ C > I3 xg C,
compngB : yU£®Q(C = yUgRGEQC,
compchB: y£5®QC = yEiR@)QC,
compé’dR: yAdmR ®p C — yAg ®q C.

Observe that the de Rham side on Summary 3.254 is independent of
the base points. In fact, there is a canonical de Rham path yldwR in dewR
(it is the unit element in the group scheme Spec($)) and corresponds to the
kernel of the counit : $ — Q). Since the pro-algebraic scheme yHgR is

independent of the base points, we will suppress them from the notation
and we will write IT9® = Spec §.

Moreover, for 7 = B, dR, the pro-algebraic schemes come together with
morphisms

? ? ?
Ly x Il — LI, (3.255)
induced from the composition of paths on the Betti side and the coproduct

of $ on the de Rham side. These maps turn mH?m into a pro-unipotent group
scheme and yH; into a right ,II., torsor and a left yH; torsor.

Therefore, the pro-Q-vector spaces come equipped with the following
structures:

(1) a composition of paths
? ? ?
AV 2Uy @ Uy — JUy;
(2) units
77¥3 Q — :BU;7
(3) a completed coproduct
? 75 777
\VAR yUz — yUp®y Uy

"Recall that yHE and yﬂiR are affine schemes over Q. Below, the notation xgC is a
shorthand for Xgpec(q) Spec(C).
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(4) counits
€ yU; — Q;
(5) a dual antipode
SV yU; — U;.
And the ind-algebras yA?c come equipped with the dual structures.

All the comparison isomorphisms comp?RdR are given by the regularized
iterated integrals. For instance

U . 7/B dR
compyp gt yUy — yUz

agrees with the map L of Theorem 3.243. Moreover they are compatible
with all the structures: The group and torsor structures on II, the product,
unit, coproduct, counit and antipode for A and the completed coproduct,
counits, the composition of paths, units and the dual antipode for U.

It is immediate to extend the construction of Section 3.6.2 to tangential
base points. Therefore the spaces yUf and yAB come equipped with a
weight filtration W and the spaces yUgR and yAdmR with a weight filtration
W and a Hodge filtration F' in such a way that

yAI:;:I = ((yAgv W)a (yAdmR7 VV; F)7 CompB,dR)

is in ind-MHS(Q) and

JUE = ((UB, W), (,UIR, W, F), compy} )

is in pro-MHS(Q).
The filtrations in yU; induce a weight filtration on yﬁg and weight and
Hodge filtrations on yﬁdwR, so that

L= (LB, W), (L3R, W, F), compy} )

is also in pro-MHS(Q).

Moreover, it is easy to check that all the previous structures of (ALl are
morphisms of ind-MHS(Q) and the corresponding structures of (U are
morphisms of pro-MHS(Q).

VARIANT 3.256. The same structures are available for other varieties.
For instance, everything can be easily generalized to any variety of the form
X' = IP’}@ \ S for S C P}(Q) a finite set. In this case we will use the notation
HH(X )B for the pro-algebraic scheme in the Betti side and similar notation
for the other structures. In the sequel, we will only need the case X' = G,,,.
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In this particular case we have

((Gm) AQ =G,
yA(Gm) Qfizo]
WU (Gr)g" = Qleo]
y,C(Gm) = Qep

and the map
compgRB: yU(Gm)E — yU(Gm)iR

will also be denoted by L

3.9.2. The fundamental groupoid and the local monodromy. From now
on, we focus our attention on the pro-unipotent group picture yH;. The

reader will have no difficulty writing the analogous statements for U’, £’
and A"

DEFINITION 3.257. The diagram consisting of the four schemes yH?w,

x,y € {0,1} with the composition of paths will be called the tangential
fundamental groupoid of P\ {0,1,00}. Tt is represented schematically in
Figure 20.

o
1H(')

?
0H1

F1GURE 20. The fundamental groupoid

To the tangential fundamental groupoid we want to add the local mon-
odromy around 0 and 1.

We start with the local monodromy around 0 in the de Rham side. There
is a morphism of Hopf algebras $§ — Q[z] that sends any word containing
x1 to zero, and xo.”.zo to " /n!. We can see this as a map

dR dR
0o — 0A(Gm)o
that induces maps
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The local monodromy around 0 in the Betti side is obtained topologically
as follows. Let A* be a small punctured disc around zero in P*(C)\ {0, 1, co}.
The local monodromy is the composition of the inverse of the isomorphism

T (A*,0)" = 711 (G, 0)"" = G,
with the natural map

71 (A*,0)"™ — 7 (P {0,1,00},0)"™.

Similarly, the de Rham side of the local monodromy around 1 is induced
by the map of Hopf algebras $ — Q|z] that sends any word containing xg
to zero, and x1.”.x1 to 2™ /n!. While the Betti side is obtained from a small
punctured disc around 1.

The local monodromy maps are morphisms of ind-MHS(Q) in the case
of A and morphism of pro-MHS(Q) in the case of U. This means that the
pair of maps

045" — 0A(Gn)§" 0Ao — 0A(Gn)g
is a morphism of ind-MHS(Q)
OAg - OA(Gm)g7
while the pair of maps
oU(Gm)g™t — oUg™ oU(Cm)g — oUS
is a morphism of pro-MHS(Q)
oU(Gm)o — oUp,
and the same is true for the local monodromy maps around 1.

DEFINITION 3.258. We will denote by DR the diagram consisting of the
four schemes demR, @,y € {0,1}, the morphisms given by the composition
of paths, the scheme G, and the two local monodromies

dR dR
G’a—>0]:[0 9 Ga_)]_].—.[l .

Similarly, we write DgR, DjR for the corresponding diagram for the vector
spaces U and the algebras A. Similarly we will denote D® for the corre-
sponding diagrams on the Betti side. Finally we will denote D[I} for the pair
of diagrams Dg and DgR together as a diagram of pro-MHS(Q).

We will see in chapter 4.6 that the diagram DE is “motivic”.
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3.9.3. The automorphisms of DI®. We denote by Aut(D®R) the group
of automorphisms of DR in the following sense: to give an element of
Aut(D®) amounts to giving an automorphism of pro-algebraic schemes
of each yHiR and an automorphism of G, that are compatible with the
composition of paths (3.255) and the local monodromy maps. The group
Aut(DIR) is a pro-algebraic group.

We denote by Aut®(DIR) the subgroup of Aut(DIR) that acts as the
identity on G,. There is an exact sequence

0 — Aut®(D®) - Aut(D®) - G, — 0.

LEMMA 3.259. There is an isomorphism of schemes

Aut’(DIR) — R
f =

where 7 is determined by the equation
F(115%) = 1157 fe

PRrOOF. Recall that the dual of ), that agrees with the completed uni-
versal enveloping algebra of Lie(,IIgR), is the algebra Q{eg,e1). Let R
be a Q-algebra. The elements of GII3¥(R) are the group-like elements of
R{eg, e1)). Moreover we have identities

1H3R(R) = 118R ) OHSR(R>7
olI{* (R) = oIIg™(R) - o177, (3.260)
1H§1R(R) = 113R ) OHSR(R) ) 01(11R'

Let f € Aut’(D®)(R). Since f is the identity in G, we deduce that

f(exp(eo)) = exp(eo),
F115% - explen) - o18™) = 11" - exp(en) - o11™
We also have f(o1a%) = (18R and (1¢R- ;18R = 18R, Therefore the fact that

f is compatible with the composition of paths implies that it is determined
by the image of {138, We write

FGIG™) = 415" - vy

for an element 77 € GIISR(R) C R{eo, e1).

Conversely, let v € (ISR (R) = Spec($)(R). It is a group-like element
of the algebra R{(eg, e1). To give an element of Aut(,II3})(R) is equivalent
to give a continuous automorphism of R{eq, e1) that is compatible with the
completed coproduct and the antipode. We define

f'y(eo) = €0, f’y(el) = 'Y_l ce17.
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This determines a continuous automorphism of R{eg, e1)). To show that it
is compatible with the completed coproduct, it is enough to check it for the
generator e;. On the one hand,

[ (VV(e) = f(1®er +e1@1)
=100 e )+ (v
On the other hand, using that ~ is group-like,
VY(fy(e) =V (e )
=7 '@y (1eea+ea®l) 7Ry
=10 e+ anoL

The fact that f, is compatible with the dual antipode follows from the fact
that, by Lemma 3.105, since v is group-like, then SV(y) = v~ 1.

ey @1

In consequence f-, determines an element of Aut(II3%)(R) that we also
denote f,. Writing
dR dR dR -1 qdR
Sy(116%) = 110" 7, f4(o11Y) =77 - ol
and using the identities (3.260), we obtain R-automorphisms of the four
schemes demR, x,y € {0,1}. By construction, these automorphisms are
compatible with the composition of paths. Moreover they are compatible
with the identity automorphism of G, through any of the two local mon-
odromies. Thus we obtain an element f, € Aut’(DI®)(R).

Clearly, the assignments f ~ 7, and v ~— f, are inverse to each other,
and this concludes the proof of the lemma. O

3.9.4. A new product structure. The isomorphism of schemes of Lemma
3.259 is not a morphism of groups. Therefore, it induces a new group struc-
ture on Spec(9).

DEFINITION 3.261. We denote by (II, o) the scheme IT = Spec($)) with
the product structure induced by the isomorphism of Lemma 3.259.

As schemes II = IT9R = OHSR but the product structure is different.
Therefore we obtain a new Lie bracket on the Lie algebra of IT which is still
the set of Lie-like elements of Q(eg, e1)) that is called the Ihara bracket and
a new coproduct on ) = Q(zp,x1) that is called the Goncharov coproduct.
We now make all these structures explicit.

We start by computing the new product structure of II that we denote
by o. This product is determined by the equation

fv(fu(llgR)) = 118R “(yop).

For a group-like element v, we will denote by (v)o the restriction of f, to
olIaR and also the corresponding continuous automorphism of Q(eg, e1).
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Recall that it is given by
(7)o(eo) = eo, (Moler) =" -er-.
Since f, is compatible with the composition of paths, then
fv(fu(llgR)) = fv(llgR ) = fv(llgR) fy () = 118R v (o(w),
hence

Yo =" {(yo(p) (3.262)

3.9.5. The Ihara bracket. We now compute the new bracket induced in
the set of Lie-like elements of Q(ep,e1)). Recall the notion of derivation
from Definition 2.25. Given a Lie-like element € Q(eg, e1), we define a
continuous derivation 9;: Q{ep, e1)) — Q(ep, e1)) as follows:

0,() = 5 (lexp(t))o(v))|

Explicitly, this derivation is determined by

t=0

Ozey = 0, Ozl = —x-e1+e-x.

Let now x and y be two Lie-like elements of Q{eg, e1)). We denote by
[x,y] = z-y—y-x the Lie bracket corresponding to the composition of paths.
The Lie bracket induced by o will be denoted by {z,y}. It is determined by

{z,y}

= @%(exp(usn) o exp(vy) o exp(—ux) o exp(—vy))

u=0"
v=0

Explicitly, it is given by
{$7 y} = [xa y] + 0zy — 8y$- (3.263)

3.9.6. Goncharov coproduct. Let us now turn to the computation of the
new coproduct on the algebra ) = Q(z, x1).

Following Notation 3.232, if « is a binary sequence, then z, € $ is the
corresponding word in the alphabet {zg, 1}, while e,, € $ is the correspond-
ing word in the alphabet {eg,e1}. As a function z, € $ = O(II), the word
xo sends a group-like element of Q((eg, e1)) to the coefficient of the word e,.

Recall that, by Lemma 3.105, the dual antipode of a group-like element
7 is given by SV (v) = 71, while for a word w = e, ... e, the dual antipode
is given in Example 3.62 by

SY(w) = w* = (=1)"e., ...ec-

We deduce that, if vy =) ~v,w is a group-like element, then

v =) et (3.264)
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The Goncharov coproduct, denoted by AT, is the coproduct induced in
$ by o and is determined by the equation

Al (@) (y @ p) = (v o p) = z(y - (V)o(w)). (3.265)

Note that the product o can be defined, for a group-like element v and
an arbitrary element e € Q(eq, e1) by

voe=7-(Vole) (3.266)

This product is linear in the variable e. In particular, for a word w in the
alphabet {egp, e1}, the product v o w is described as follows:

(1) if the word starts with eg add ~ at the beginning, while if the word
starts with e; add nothing at the beginning;

(2) if the word ends with e; add « at the end, while if the word ends
with eg add nothing at the end;

(3) between eq and e insert y~! and between e; and eq insert ;

(4) between two consecutive occurrences of ey or two consecutive oc-
currences of e insert nothing.

For instance

1 1
v o (epegereperer) = yepeoy eryeoy eiery.

To give a more compact description of this product we introduce the follow-
ing notation
1% =7 oM = 7717 0o =1 1m =1L

For a binary sequence o = (g1, ...,&,), we have
Y O €Eq :1’)/81 - €gq .61762 “€eytt Cgp En/yo (3267)

Given the shape (3.267) of the product o and the inversion formula
(3.264), for any binary sequence «, we introduce the following symbols

I(1;0;0) = 2o,  1(0;e51) =z,
I(0;,0) = I(1; ;1) =1, if a =0, (3.268)
I(0;;0) = I(1;;1) = 0, if a # 0.

All of them are elements of ), hence functions on II. Then, for a binary

sequence «, a group-like element v € II(Q) and elements ¢, € {0,1}, we
have the duality

Talere) = 1€ a56) (7). (3.269)

Armed with this notation, we can compute Goncharov’s coproduct. Let
a be a binary sequence and v, p group-like elements of Q{eg,e1). Write
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=, tww. Then, by equation (3.265),
(AT 20)(y ® ) = zaly o p)
= xa(Z Moy © w)
w

= To [ Z Nw(17s1(w) “Cey(w) T Cegi(w) 5wc(w)(w)fm)]’

where wt(w) denotes the weight of w as in Definition 1.124, and &;(w) is
defined to be 0 or 1 depending wether the i-th letter appearing in w is eg or
e1. Let us write « = €1 -+ €, and set g =1 and €41 = 0.

We need to compute the coefficient of the word e,, in the above bracketed
expression. We will get a contribution for each subword of e, corresponding
to a binary subsequence ¢;, - - - €;, of a. It is easy to see that the coefficient
we are looking for is given by:

k
oo I(evsen o giieni) () [ [ IEii g €ipar—13800) ()
0=ig<ip<-- p=0
<ip<ipy1=n+1

The upshot of these computations is the following result, which was first
obtained by Goncharov [Gon05, Thm. 1.2].

PROPOSITION 3.270. Let gg--- €p41 be a binary sequence. The isomor-
phism of Lemma 3.259 induces, by transport of structure, the following co-
product on the algebra $:

Al I(eo;e1- - enjeny1) =

k
> TG4 €ipricin) ® I(e0iei, - s Engr)-
O0=ip<i1<--- p=0

<ip<igy1=n+1

ProOF. The case ¢g = 1 and €,411 = 0 was settled above. The other
cases follow immediately from (3.268). O

ExaMPLE 3.271. If n =1,
AF 1(60;61; 82)
= I(gp;e1582) ® I(e0;62) + I(c0;61)I(e1;82) ® I(e0;€1;€2)
= I(eo;e1562) ® 1 + 1@ I(ep;€15€2),
since I(¢’;¢) is always equal to 1 regardless of the values of ¢ and &'.

ExXAMPLE 3.272. If n = 2, we get contributions from k = 0,1,2. As
before, k = 0 corresponds to the choice of the empty subsequence and gives
the value I(gg;e162;€3) ® 1, whereas k = 2 represents the choice of the whole
sequence and contributes with 1 ® I(eg;e1€2;€3). For k = 1 we obtain two
terms, corresponding to ¢1 = 1 and ¢; = 2. In both cases, the product
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contains only one non-trivial factor (p = 1 if iy = 1 and p = 0 if iy = 2).
Putting everything together,
Al I(eg;e169;e3) = I(eg;162;€3) @ 1
+ I(e1;e2;€3) ® I (205 €15 €3)
+ I(e0;e1;62) ® I(g0;€2;€3) (3.273)
+1® I(ep;e182;€3).
Specializing formula (3.273) to the cases (1;1,0;0) and (1;0,1;0) we get
A (zoz1) = w21 ® 1 + 29 ® 21 + 71 ® 20 + 1 ® 371,
Ar(azlxo) =z120®1+1Q x120.

Just for fun, let us verify the compatibility with shuffle product. On the one
hand,

AL (zo W z1)
= Al (zgz + T1Z0)
= (xor1 + 2120) ® 1 + 1 @ (2021 + T120) + To @ 1 + T1 ® X0.
On the other hand,
(A z1) W (AT )
=1l®zy+rzo@)W(l@z+21®1)
=1®@owz)+zo@x1+20 @21+ (Lo Wx1) ® 1,
and we see that the expressions are equal.
As the examples show, the formula for Goncharov’s coproduct in Propo-

sition 3.270 contains many trivial factors. Later in Chapter 5 we will give a
linearization which is more suitable for computation.

* k x

EXERCISE 3.274. Prove formula 3.263.

EXERCISE 3.275. Calculate the number of terms appearing in Gon-
charov’s coproduct.
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4. Mixed Tate motives

The goal of this chapter is to give a precise meaning to the statement
that the diagram Dg of Definition 3.258 has motivic origin. The theory of
motives has been a very active area of research in the last decades. This is
a rather abstract theory and it is remarkable that, up until today, the only
proof that we have for the upper bound of the dimension of the space of
multiple zeta values of a given weight uses the theory of motives. A proper
treatment of the theory of motives falls outside the scope of this notes. We
will use the theory of motives as a black-box and we will limit ourselves to
give an idea of its origin and the properties that we will use. The interested
reader is referred to the book [And04] and the references therein.

4.1. Tannakian formalism. The link between mixed Tate motives
and multiple zeta values is made through the group of symmetries of mixed
Tate motives. To make this idea precise we need the formalism of Tannakian
categories that we summarize in this section.

The Galois group of a field extension is one of the basic tools in arith-
metic and one of its more studied objects. In topology, the fundamental
group of a topological space is the analogue of the absolute Galois group
of a field and is one of the basic invariants of a topological space. Fueled
by the utility of the Galois and fundamental groups it is natural to seek for
analogues in other situations. The Tannakian formalism is the basic tool to
define analogues of the Galois group in many algebro-geometric situations.
The origin of this formalism is Pontryagin duality, according to which a
locally compact abelian group is characterized by its character group, and
the Tannaka-Krein duality that states that we can recover a compact Lie
group from the category of its continuous finite-dimensional real representa-
tions. Grothendieck extended the Tannaka-Krein duality to affine algebraic
groups. Saavedra-Rivano [SR72] encoded the properties of the category of
linear representations of an algebraic group in the concept of a Tannakian
category. Conversely, every Tannakian category is isomorphic to the cate-
gory of linear representations of an algebraic group.

Note that the formalism of Tannakian categories is tailored to the study
of affine group schemes. Thus we will not recover the “true” fundamental
group of a topological space nor the Galois group of a field extension with
this formalism, but only its so called pro-algebraic envelope.

We will follow the exposition in [DM&2] to which the reader is referred
for further details. Another nice reference is Chapter 6 of [Sza09]. Through
this section we fix a field k& (of any characteristic), that will play the role of
field of coefficients.

4.1.1. Tensor categories. The definition of Tannakian category gathers
together the properties of finite-dimensional k-linear representations of affine
group schemes.
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First of all, since morphisms between k-linear representations form a
vector space, we need the concept of a k-linear category.

DEFINITION 4.1. A k-linear category C is an additive category such that,
for each pair of objects X,Y € Ob(C), the group Hom¢(X,Y') is a k-vector
space and the composition maps are bilinear.

The tensor product of two representations is again a representation.
Therefore, a Tannakian category should have a tensor product, which is a
bilinear functor with some additional properties.

DEFINITION 4.2. Let C be a k-linear category, together with a bilinear
functor ®: C x C — C.

(a) An associativity constraint for (C,®) is a natural transformation
p=0¢...: .®(.®.) _>(.®.)®.

such that the following two conditions hold:

(1) For all X,Y,Z € Ob(C), the map ¢x,y,z is an isomorphism.

(2) (Pentagon aziom) For all X, Y, Z, T € Ob(C), the following diagram
commutes:

X@Yo(ZeT))

X((Yo2)eT) (X@Y)o(ZeT).

¢X,% ‘sz,T

XY e2)3T —— (XY)®2)T
ox,y,z®I1d

(b) A commutativity constraint is a natural transformation
Y=1.4: Q% — %R -

such that, for all X,Y € Ob(C), the map 1 x y is an isomorphism, and the
following composition is the identity:

Yyxotpxy: XY — X @Y.

(c) An associativity and a commutativity constrain are said to be com-
patible if, for all objects X,Y,Z € Ob(C), the following diagram commutes
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(hezagon axiom):

dxX,v,Zz

XYeZ)— (XeY)®Z

X®(ZeY) Z®(X®Y).

X®©2)eY —=(ZeX)oY

x,z®1

(d) Finally, we say that a pair (U, u) consisting of an object U of C and
an isomorphism u: U — U®U is an identity object if the functor X — U®X
is an equivalence of categories.

We now have all the ingredients to define one of the underlying structures
of Tannakian categories.

DEFINITION 4.3. A k-linear tensor category is a tuple (C,®, ¢,1) con-
sisting of a k-linear category C, a bilinear functor ®: C x C — C, and com-
patible associativity and commutativity constraints ¢ and ¥, such that C
contains an identity object.

The constraints ¢ and 1 are usually omitted from the notation and one
simply denotes a k-linear tensor category by (C,®).

REMARK 4.4. Two identity objects are canonically isomorphic. From
now on, we will fix one and denote it by (1,e).

DEFINITION 4.5. An object L in C is called invertible if the functor
X — L ® X is an equivalence of categories.

One easily shows that an object L is invertible if and only if there exists
an object L' such that L ® L'’ = 1. Then L’ is also invertible.

4.1.2. Rigid categories. The set of k-linear maps between two represen-
tations is again a representation and, in particular, a representation on a
vector space induces a representation on the dual vector space. Thus a
Tannakian category should contain internal Hom’s and duals.

Let (C,®) be a tensor category and let X,Y € Ob(C). We say that
the functor T' — Hom(T ® X,Y") is representable if there exist an object
Z € Ob(C) such that there are functorial isomorphisms

Hom(T,Z) — Hom(T ® X,Y) (4.6)

for all T € Ob(C). If this is the case, we denote Z by Hom(X,Y') and we
call it internal Hom between the objects X and Y. Note that any two such
objects Z are related by a unique compatible isomorphism.
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Taking T' = Hom(X,Y) in (4.6), the image of the identity Idgom(x,y) is
a morphism which will be denoted by

evyy: Hom(X,Y)® X = Y.

The dual of an object X is defined as XV = Hom(X,1). If XV and
(XV)Y exist, there is a natural morphism X — (XV)V. We say that X is
reflexive if this morphism is an isomorphism.

EXAMPLE 4.7. In the category of groups, Z/2 is not reflexive since its
dual is 0. In the category of vector spaces, finite dimensional vector spaces
are reflexive, whereas infinite dimensional ones are not.

DEFINITION 4.8. A k-linear tensor category is said to be rigid if

(1) Hom(X,Y) exists for all X, Y € Ob(C);
(2) for all X1, X5,Y7,Ys € Ob(C), the natural morphism

HOIH(Xl, Yl) X HOHI(XQ, }/2) — HOIH(Xl ® X2,Y1 ® }/2)
is an isomorphism;

(3) all objects of C are reflexive.

4.1.3. Neutral Tannakian categories. The category of finite-dimensional
k-linear representations Rep;(G) of an algebraic group G over k has other
relevant properties. First, it is an abelian category. Second, the one-
dimensional representation given by the vector space k with trivial G-action
is an identity object 1 that satisfies End(1) = k. Finally, the forgetful func-
tor from Rep,(G) to the category of finite-dimensional vector spaces Vecy,
that consists in forgetting the action of G is exact, faithful and compatible
with the tensor structure on both categories. These will turn out to be
all the necessary ingredients to identify the categories of finite-dimensional
representations of algebraic groups.

DEFINITION 4.9. A neutral Tannakian category over k is a rigid k-linear
abelian tensor category C such that End(1) = k and that there exists an
exact faithful k-linear tensor functor w: C — Vecg. Any such functor is
called a fibre functor.

Since we shall never consider non-neutral Tannakian categories in the
sequel, we will just refer to them as “Tannakian categories”.

ExaMPLES 4.10.

(1) The category Vecy of finite-dimensional vector spaces over k, to-
gether with the identity functor, is a Tannakian category.

(2) Let GrVecy be the category of finite-dimensional graded vector
spaces over k. The objects are finite-dimensional k-vector spaces V'
together with a direct sum decomposition V' = €, ., V4, and the
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morphisms are homogeneous k-linear maps. The tensor structure
comes from the tensor product of vector spaces, graded by

1+j=n
The forgetful functor w: GrVecy — Vecy, sending (V, (Vi,)nez) to
V makes GrVecy into a Tannakian category.

Let G be any abstract group and Repy(G) the category of finite-
dimensional k-linear representations of G. Let

w: Rep,(G) — Vecy,

be the functor that forgets the action of G. Then Rep,(G) is a
Tannakian category over k and w is a fibre functor.

Let MHS(Q) be the category of mixed Hodge structures over Q
and let wp and wqgr the forgetful functors of Definition 2.101. Then
MHS(Q) is a Tannakian category over Q and both of the functors,
wp and wggr are fibre functors.

Let X be a path connected, locally path connected and locally
simply connected topological space. The category Loc(X) of lo-
cal systems of finite-dimensional k-vector spaces is a Tannakian
category. For each point x € X, the functor

wy: Locg(X) — Vecy
\% — Vi

that sends a local system V to its fibre at z is a fibre functor.

4.1.4. The fundamental group of a Tannakian category. Fix a Tannakian
category C over k and a fibre functor w.

DEFINITION 4.11. For every k-algebra R, let Aut®(w)(R) denote the set
of families (Ax)xeob(c) of R-linear automorphisms

Ax:w(X)®R — w(X)®R

such that the following diagrams are commutative:

(1)

W

(w(X1) @ R) @R (w(X2) ® R)

w(X1 ® X2) ® R Ax16X3 w(X1® Xo)® R
(X1)®W(X2)®R w(X1)®w(X2)®R

l |

(w(Xl) & R) ®R (W(X2> & R),

Ax, ®RrRAX,
—_—
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wl)® R w1)®R

l i

R Id R,

(3) for every morphism o € Home(X,Y),
A
WX)® RS> w(X)®R
w(a)@Idl lw(a)@ld
A
w(lY)® R—">w(Y)®R.
In the above diagrams, all unlabeled tensor products of vector spaces
are over k and the unlabeled arrows are the obvious isomorphisms.
In particular, we define Aut®(w) = Aut®(w)(k). This is the group of
k-linear automorphisms of the functor w.
The main theorem of the theory of Tannakian categories is

THEOREM 4.12. [DM82, Theorem 2.11] Let C be a Tannakian category
over k, together with a fibre functor w. Then

(1) the functor R — Aut®(w)(R) is representable by an affine group
scheme over k that we denote Aut®(w);

(2) for every X € Ob(C), the group Aut®(w) acts naturally on w(X)
and the functor C — Repy(Aut®(w)) sending X to the vector space
w(X) with this action of Aut®(w) is an equivalence of categories.

DEFINITION 4.13. The affine group scheme Aut®(w) is called the Tan-
naka group of (C,w). Whenever we want to stress the category we are
considering, we will write Aut$ (w).

Given a second fibre functor w’, the functor from k-algebras to sets

R+ Isom®(w,w’)
is representable by an affine scheme which is a right torsor under Aut®(w)
and a left torsor under Aut®(w’), see [DM82, Theorem 3.2].

4.1.5. Matrix coefficients. Instead of proving Theorem 4.12, we will con-
tent ourselves with a description of the Hopf algebra of the Tannaka group
using the notion of matrix coefficients from® [Del90, §4.7].

DEFINITION 4.14. Let (C,w) be a neutral Tannakian category over k,
together with a fibre functor. A matriz coefficient in (C,w) is the data

(X, v, f)
of an object X of C, and elements v € w(X) and f € w(X)Y = Hom(w(X), k).

8See also [Bro17] and compare with the notion of framed objects from [BGSV90].
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Let H be the k-vector space generated by all matrix coefficients, and
V C H the subspace spanned by

(1) (bilinearity relations) for every pair of matrix coefficients (X, vy, f)
and (X, vy, f), and elements A, u € k, the relation

(Xv)‘vl ‘I’:U’/U%f) 7)‘(X7vlaf) 7:“(X71)2’f) ev.

Similarly, for every pair of matrix coefficients of the form (X, v, f1)
and (X, v, fa), and elements A, pu € k, the relation

(X,’U, )\fl + ,qu) - )‘(Xa v, fl) - ,LL(X,U, f2) € V;
(2) (compatibility relations) for every pair of objects X, X', every mor-

phism ¢ € Home (X, X’), and v € w(X) and elements f’ € w(X')V,
the relation

(X,v,w(qb)vf') - (X,’w(¢)vaf/) eV

We set A = H/V and write [X,v, f] for the class in A of a matrix
coefficient (X, v, f). The vector space A comes with the following structures:

(1) Product: The tensor structure of C induces the product
(X0, f] X0 = XX ved fof]

The associativity and commutativity constraints together with the
compatibility relation imply that this product is associative and
commutative.

(2) Unit: Let 1 be an identity object. Then w(1) ~ k. Choose any
v € w(l)\ {0} and let f € w(1)Y be its dual, so that f(v) = 1.
Then [1, v, f] is a unit for the product. By the bilinearity relations,
this class does not depend on the choice of v.

(3) Counit: The counit is the map A — k given by [ X, v, f] — f(v).

(4) Coproduct: The coproduct is modeled on the Hopf algebra of GL,,
(see Example 3.52). Given an object X € C, we choose a basis
(e1,...,en) of w(X). If (e],...,e}) is the dual basis, then

ren

n

ALX, v, f] =) X, v, e ®[X, e, f]. (4.15)
j=1

One checks that (4.15) does not depend on the choice of the basis.

(5) Antipode: Finally, the rigidity of C allows us to define an antipode.
If we identify w(X") with w(X)V, then

S([X.v, f]) = (XY, f,0l.
It is an easy verification to prove the following:

PROPOSITION 4.16. Together with the above structures, A is a commu-
tative Hopf k-algebra.
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of the Tannaka group G = Aut®(w). More precisely,
PROPOSITION 4.17. The map ¢: A — O(G) given by
e([X, v, fA) = f(Ax(v))

is an isomorphism of Hopf algebras.

PRrROOF. We leave it to the reader to check that ¢ is a morphism of Hopf
algebras. By Theorem 4.12, C is equivalent to the category Repy(G) of
finite-dimensional k-representations of G, and we can identify w with the
forgetful functor Rep,(G) — Vecy,.

We first prove that ¢ is surjective. Note that there is a left group action

of G on O(G) given by
(AR) (1) = h(pA).

By Lemma 3.87, O(G) is the union of its finite-dimensional subrepresen-
tations. In other words, given h € O(G), there exists a finite-dimensional
subrepresentation (V, p) of O(G) containing h. It determines an object X
of C such that h belongs to w(X) = V. Let f € V¥ be the element given by
f(u) = u(e), where e is the unit of G and u € V. C O(G). Then, for each
element A € G, we have

[X, b, fI(A) = f(AR) = (Ah)(e) = h(eA) = h(A).
Therefore, ¢([X, h, f]) = h and ¢ is surjective.
We next prove the injectivity. Assume that ¢([X, v, f]) = 0. We identify
X with a finite-dimensional representation (V, p) of G such that v € V. Let
V' be the simple subrepresentation of V' containing v. Then V' is generated
by elements of the form Av for A € G. Since ¢(|X,v, f]) = 0, we deduce

that f|y» = 0. Let X’ be the object of C corresponding to (V',p). By the
compatibility relation

[X,’U,f] = [X/,’U,f‘v/] = [X,,U,O] = 0.
This concludes the proof. O

ExXAMPLE 4.18. Let (GrVecy,w) be the Tannakian category of finite-
dimensional graded vector spaces from Example 4.10. It is equivalent to the
semisimple category generated by objects k,, n € Z with

k, ifn=m,

kn ® kpm = Entm, kn) ~ k.
0, ifn#m, © * w(kn)

Hom(ky, km) = {
For each n choose a non-zero element u, € w(k,) and let u, € w(k,)" be
the element defined by w,/(u,) = 1. Then every matrix coefficient in 7 can
be written as a linear combination of the elements

n € 7.

[k’na u’fH ’LL;,L/],
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Moreover,
s s )]+ [k s ) = (Rt Unctms U )
Thus, if we write ¢ = [k1, u1, uy], there is an isomorphism of algebras
O(Aut®(w)) = k[t t71].
Moreover, the coproduct, the counit and the antipode are given by
At=t®t, et)=et™H =1, Sit)=t"1

From part (2) of Example 3.52, we deduce that Aut®(w) = G,,, the multi-
plicative group. It is a general fact that the presence of a grading is related
to an action of G,,.

EXAMPLE 4.19. Consider the subgroup of GLy(R) given by:
((27) €GLyR) | a2 +4° > 0.

These are the real points of an affine algebraic group S over R called the
Deligne torus. Alternatively, one can define it as

S = Resc/r(Gm),

where Resc /g is the Weil restriction functor. This means that, if A is an
R-algebra, then S(4) = G, (A®rC) = (A®rC)*. The category of represen-
tations of S is equivalent to the category of split R-mixed Hodge structures.

4.1.6. Tannakian subcategories. Let Y be an objects of a neutral Tan-
nakian category C, we denote by (Y') the full subcategory of C that contains
Y and is stable by sums, tensor products, dual and subquotients. Then (Y'),
together with the restriction of any fibre functor w on C is again a neutral
Tannakian category. The action of G = Aut§ (w) on the vector space w(Y)
induces a map G — GL(w(Y)). The following is shown in the proof of
[DMI&2, Proposition 2.8]

LEMMA 4.20. The image G¥ C GL(w(Y)) of G by the above map is a
closed subgroup of GL(w(Y")) which agrees with the Tannaka group M%@ (w)

of the subcategory (Y).

We can order the subcategories of the form (Y) for Y an object of C
by inclusion. With this order they form a directed system. The following
lemma exhibits the pro-algebraic nature of G.

LEMMA 4.21. Let (C,w) be a neutral Tannakian category. Then:

Autd (w) = Liin@?n (w) = lim GY.
(¥) (v)
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PRrROOF. By Lemma 4.20, there is a surjection G — GY for every object
Y of C. These surjections are compatible with the maps G — GY induced
by an inclusion (Y') C (Z). Therefore, there is a surjection

G — limG".
pa—
)
This map is also injective, because if an element of G is sent to the unit, then
it acts trivially on w(Y) for every object Y and is thus the unit of G. O

4.1.7. Tannakian categories and the fundamental group. We next ex-
plore what can be recovered from the classical fundamental group of a
topological space using the Tannakian formalism. This includes the pro-
unipotent completion.

Let X be a path connected, locally path connected and locally simply
connected topological space. Let xg be a point of X and m(X,xo) the
fundamental group of X with base point z9. By part (5) of Example 4.10,
the category Locy(X) of local systems of finite dimensional k-vector spaces
over X is a Tannakian category with fibre functor w,,. Given a local system
V', the fibre at x is a k-vector space with an action of 7 (X, zg). This yields
the so-called monodromy representation

PV 7T1(X, 1‘0) — GL(wa(V)).

It follows that Locg(X) is equivalent to the category of finite-dimensional k-
linear representations of 71 (X, zp). However, since the fundamental group is
not an affine group scheme, it cannot be the Tannaka group of the category
Locy(X). In fact, as we will see, the Tannaka group Aut®(w,,) is the pro-
algebraic completion of 71 (X, o).

Following Lemma 4.21, we can give the following description of the pro-
algebraic completion of I'. Let Y = (V,p) be a k-linear finite-dimensional
representation of I'. The group GY from Lemma 4.21 is the Zariski closure
Wzar of the image of p: T' — GL(V). Let Y’ = (V’,p’) be another rep-
resentation with (Y’) C (Y). By Lemma 4.20, there is a restriction map

——TZar  ———TZar
p(T) Y (1) " The pro-algebraic completion is the projective limit

ree — lim p(0) -,
P
(Vo))

where the limit is taken with respect to the subcategories ((V, p)) ordered
by inclusion.

Similarly, we can recover the pro-unipotent completion of I' using the
Tannakian formalism. A local system is called unipotent if its monodromy
representation is unipotent (Definition 3.92). The category of unipotent
local systems ULocy(X) on X is again a Tannakian category and wy, is
again a fibre functor. In this case, the Tannaka group Aut®(w,,) is the
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pro-unipotent completion of I'. It admits a similar description as the pro-
algebraic completion but restricting to finite-dimensional unipotent repre-
sentations: g
" =lim pI) ",
((V;p)) unip.
where the limit again is taken with respect to the subcategories ((V,p))
ordered by inclusion.

* % %
EXERCISE 4.22. Prove that
XoY,udv, f@gl=[Xu fl+[Y,v,g]

EXERCISE 4.23. Consider the unit circle S as a topological space. Its
fundamental group is 1 (S, 1) ~ Z. Prove that the pro-algebraic completion
728 is infinite-dimensional, while

AN Gaa

the additive group. For the second part use that to give a unipotent rep-
resentation of Z is equivalent to give a finite-dimensional vector space V
together with a unipotent endomorphism of V' and the fibre functor is just
the forgetful functor. Then use the explicit description of the Hopf algebra
of the Tannaka group.

EXERCISE 4.24. Consider the Tannakian category Vecy with the identity
as the fibre functor w. Prove that Aut®(w) = Spec(k), the trivial group.

EXERCISE 4.25 (The pro-algebraic completion of a group). Let k be a
field and I" an abstract group. In this exercise, we present three equivalent
constructions of the pro-algebraic completion of I', which is an affine group
scheme G = I"*8 over k together with a group morphism I' — G(k).

(a) Let C be the category of finite-dimensional k-linear representations
of I'. Equipped with the forgetful functor, it is a Tannakian cat-
egory, and one defines G as its fundamental group. A k-point of
G is thus a collection (Av)ycob(ey of automorphisms Ay : V' — V/
satisfying the constraints of Definition 4.11. To each element v € T’
one associates the collection of automorphisms A = (A{,)y defined
as Al,(v) = X -~. This yields the map I' = G(k).

(b) Consider the collection of pairs (H,pp) consisting of an affine
group scheme H over k and a group morphism ¢p: I' — H(k)
with Zariski dense image. We define a partial order by setting
(H,pp) < (H', pg/) whenever there exists a morphism f: H — H'
such that the induced map of k-points commutes with ¢ and @
and we define the pro-algebraic completion G as the limit:

G =lmH.
—
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(c) The pro-algebraic completion G is an affine group scheme over k
with a group morphism ¢: I' — G(k) such that, for any affine group
scheme H over k and any group morphism ¢p: I' — H(k), there
exists a unique morphism f: G — H such that f oy = ¢p.

Prove that the three constructions give the same pro-algebraic group.

4.2. Triangulated categories and t-structures.

4.2.1. Triangulated categories.

DEFINITION 4.26 (Verdier). A triangulated category T is an additive
category, together with the following extra data:

a) a self-equivalence of categories
1]:7—T
X — X[1].

Once the self equivalence [1] is given, we shall call triangles all
sequences of the form

X5y 35725 X[

A morphism of triangles is a commutative diagram

Xty Y7 s X([1]

Ty

X ——Y — 7 —X'1].

We will use the convention that an arrow decorated with [1] like
A ﬂ> B means a map A — BJ[1].

b) A class of triangles called distinguished triangles.
These data are required to satisfy the following axioms:

(T1) a) For any X € Ob(T), the triangle

X x -0 X1
is distinguished.
b) Any triangle isomorphic to a distinguished one is distinguished.
¢) Any morphism X % Y can be completed to a distinguished
triangle
X5y 5725 X[1).

(T2) The triangle X % Y % Z % X[1] is distinguished if and only if

the triangle Y % Z % X[1] i, Y'[1] is distinguished.
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(T3) Given two distinguished triangles
XSy %z X, xSy oz M x,
and morphisms f: X — X’ and g: Y — Y’ such that gou = u'o f,
there exists h: Z — Z' (not necessarily unique) such that

X tsy -7 " X[

1

/ /

X sy s 7 s X.

is a morphism of triangles.
(T4) Given a diagram of solid arrows

if the three triangles
X%y 475 xq
Yy % z5 x5y
X z0y 5 X[

are distinguished, then there exist dashed arrows f and g as in the
diagram such that the triangle

7' Ly yr 8 xr 0 gy

is distinguished and the following commutation relations hold:
k=nof, (=gom,

mowv = foj, u[lJon=iog.
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EXAMPLE 4.27. The main example of a triangulated category is the
(bounded) derived category of an abelian category. We quickly recall the
main structures associated to the definition of derived categories. Let A
be an abelian category. The category of bounded cochain complexes C?(A)
consists of sequences of maps

N L S SN TS SUENTE NI
with d**! o d* = 0 and such that A" = 0 for large enough |n|. Morphisms

of complexes are commutative diagrams

k f+1
..—>Ak—d>Ak+1d—>Ak+2—>...

ifk lfk-‘—l ifk+2
e ph kT pRe2

Complexes are denoted by A* or, if we want to emphasize the differential,
by (A*,d). Given a complex A*, its cohomology groups are

ns e Ker(d': A™ — A"
H (A7) = Im(dn—1: An=1 — An)’
Given a complex (A*,d), its shift (A[1]*,d[1]) is defined as
A[1]" = A" with d[1] = —d.

A morphism of complexes f: A* — B* induces a morphism of cohomology
groups

H(f): H*(A*) —» H*(B").
A morphism f is called a quasi-isomorphism whenever H(f) is an isomor-
phism.

Another important construction in the category C’(A) is the cone of a
morphism of complexes. Let f be a morphism of complexes as before, then
the cone of f is the complex

cone(f)" = A" @ B, with d(a,b) = (—da,db — f(a)).
The cone is provided with two morphisms of complexes

B — cone(f), b+ (0,—b)
cone(f) — A[l], (a,b)— a,

that induce a long exact sequence of cohomology groups
oo 1A 2 B BYy o HP (come(f)) — HPTH(AY) —s -

Given two morphisms of complexes f,g: A* — B*, a homotopy between
them is a collection of maps s™: A™ — B"~! such that

fn . gn _ dn—l os" + Sn—i—l od".
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If such a homotopy exists, we say that f and g are homotopicaly equiva-
lent. Two homotopicaly equivalent morphisms induce the same morphism
in cohomology groups.

The construction of the derived category is done in two steps. One
first defines the homotopy category K°(A) whose objects are the same as
those of C®(A) but whose morphisms are equivalence classes with respect to
the homotopy equivalence of morphisms of C®(A). In the second step, one
constructs D°(A) by inverting the quasi-isomorphisms. That is, the objects
of DP(A) are the same as the objects of K?(A) (which are the same as the
ones of C®(A)), while the morphism on D°(A) between two objects A* and
B* are equivalence classes of diagrams of the form

A* & C* - B
where the arrow to the left is a quasi-isomorphism. The diagrams
A* <& C7 - B*and A* <& C5 — B*
are equivalent if there is a third diagram of the same type such that

Ci (4.28)

7N

A* <= C§ —— B*

ENVE

¢

commutes in K°(A). This means that all the triangles in the diagram (4.28)
are commutative up to homotopy but they are not necessarily commutative.
To have such a simple description of the morphisms is the main reason to
define the derived category in two steps. One can invert directly the quasi-
isomorphisms in C?(.A), but then morphisms will be chains of the form

A ECH-Cy...Ch & C— B
where all the arrows in the left direction are quasi-isomorphisms.

The category D(A) is a triangulated category, where the self equivalence
[1] is defined by the shift, while the class of distinguished triangles are those
triangles that are isomorphic (in D’(A)) to one of the form

A* L B* 5 cone(f) — A[1]".

4.2.2. t-structures. There are many natural situations where one is able
to construct a triangulated category but would like to obtain an abelian
category instead. In their work on perverse sheaves [BBID&2], Beilinson,
Bernstein and Deligne introduced the notion of t-structure as a way of ex-
tracting an abelian category from a triangulated category. This is how mixed
Tate motives over a number field will be constructed in the sections to follow.
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DEFINITION 4.29 (Beilinson-Bernstein-Deligne). Let 7 be a triangulated
category. A t-structure on T is a pair of strictly full’ subcategories
(T<0,720)
such that, defining for each integer n
T="=T=0=n], T2"=T>"-n],
the following three conditions are satisfied:
(1) One has T<71 C 7=0 and 72! C T20.
(2) (Orthogonality) If X € T=Y and Y € T=!, then Hom7(X,Y) = 0.
(3) Each object X of T fits into a distinguished triangle

Y —X — 7 —Y][l] (4.30)
with Y € 7=0 and Z € T=1.

We say that the t-structure is non-degenerate if, moreover, the intersec-
tions Npez T =" and Nypez T =" are reduced to zero.

DEFINITION 4.31. The heart of a t-structure on T is the full subcategory
T =7="nT7=0.

A functor F': 71 — T2 between triangulated categories equipped with t¢-
structures is said to be t-ezact whenever F(T;=°) C T=" and F(T;=°) € T,2°.
It restricts thus to a functor between the hearts.

Note that the objects Y and Z in the triangle (4.30) are not a priori
required to be unique. However, this follows from the other axioms:

LEMMA 4.32.
(1) The inclusion of T<" into T admits a right adjoint t<,: T — T="
and the inclusion T=" into T admits a left adjoint t>,: T — T=".

(2) For each object X in T, there exists a unique morphism
w € Homy(t>1X, t<oX[1])
such that the following is a distinguished triangle:
tcoX — X — t51X DB toX[1].

Up to unique isomorphism, this triangle is the only one satisfying
the condition (3) in Definition /.29.

Moreover, if a < b, there is a unique isomorphism
tsat<pX — t<pt>a X. (4.33)

The standard example of ¢t-structure is the following:

9By this we wean full and closed under isomorphism.
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EXAMPLE 4.34. Let A be an abelian category. Recall from Example
4.27 that the bounded derived category D?(A) is a triangulated category.
It comes together with a canonical t-structure which measures how far a
complex is from having cohomology concentrated in degree zero. Precisely,
for each integer n, one considers the full subcategories

T ={C* € D"(A) | H™(C®) = 0 for all m > n},
T2" = {C* € D°(A) | H™(C*) = 0 for all m < n}.

It is easy to check that the pair (7<%, 7<) satisfies the axioms (1)-(3) from
Definition 4.29. Moreover, this t-structure is non-degenerate.

The functors t<,, and t>,, are given by the canonical truncations

cm, if m <n, cm, if m > n,
(t<nC)™ =< Kerd, ifm=n (t>,C)" = C"/dC" ', ifm=n
0, if m > n. 0, if m <n.

It follows that
tgotzoC[n] = Hn(C.).

Viewing an object of A as a complex concentrated in degree zero, one
gets an equivalence between A and the heart of D?(A).

For more general triangulated categories, the following theorem makes it
possible to extract an abelian category [BBD&82, Thm 1.3.6]. Recall that an
abelian subcategory A of a triangulated category T is said to be admissible
whenever short exact sequences in A are exactly those sequences

0—B-5C-5A4A-0
such that there exists a distinguished triangle
B-% 0% A% B[ (4.35)

REMARK 4.36. The extension to a distinguished triangle is not unique,
unless A is a full subcategory, that is, Hom4(X,Y) = Hom7(X,Y) for all
objects X,Y € A. Indeed, it follows from axiom (T3) in the definition of
triangulated categories that, given two extensions as in (4.35), the identity
maps B — B and C' — C can be completed to a morphism of triangles

B~ C "= A" B[]
|
B-“-C-Y- 4" B[

in 7. In particular, w = w’ o h and uniqueness amounts to proving that h
is the identity. Since A is a full subcategory, h: A — A is a morphism in A
such that v o h = h, and the surjectivity of v implies h = Id 4.

The following theorem is proved in [BBD82, Thm. 1.3.6]:
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THEOREM 4.37 (Beilinson-Bernstein-Deligne). The heart of a t-structure
on a triangulated category is a full admissible abelian subcategory.

REMARK 4.38. It is not true, however, that T is equivalent, as triangu-
lated category, to the derived category of the heart of a t-structure. Usually,
one does not even have a functor D*(T9) — T (see Exercice 4.44).

DEFINITION 4.39. Let n be an integer. The n-th cohomology of X € T
with respect to the t-structure is the following object of the heart:

(X)) = tgotzoX[n] e T’ (4.40)
This yields a cohomological functor h™: T — TP, in the sense that it
maps distinguished triangles X — Y — Z — X[1] to long exact sequences
s WY(X) — (YY) — h(Z) — B"THX) — ...
4.2.3. Ezxtensions. We now explain the relation between Hom groups in
a triangulated category and extensions in its abelian subcategories.

DEFINITION 4.41. Let A be an abelian category. Given two objects A
and B, a degree n extension of A by B is an exact sequence

F: 0—B—Ch.1——Cy—A—NO.

Two extensions of the same degree E and E’ are said to be equivalent if
there exists a commutative diagram

E: 0 B Cn—l e CO A 0
B 0 B - s ) A 0.

We consider the equivalence relation generated by such relations. The
set of equivalence classes of degree n extensions of A by B forms a group
Ext" (A, B) with respect to the Baer sum.

Consider a full admissible abelian subcategory A of a triangulated cate-
gory 7. Let 0 - B — C — A — 0 be an extension in 4. By Remark 4.36,
it extends to a unique distinguished triangle B — C' — A — BJ1], yielding a
map w: A — B[1]. Moreover, the same argument shows that two equivalent
extensions give rise to the same w. We thus obtain a homomorphism

¢1: Extl(A, B) — Homt (A, B[1)).
More generally, breaking a degree n extension
0-B—->Ch1—-—Co—A—=0

into several short exact sequences gives a morphism A — B[n] which only
depends on the equivalence class of the extension. For instance, if n = 2,
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one associates to 0 — B — €1 — Cy — A — 0 the short exact sequences

0 B Ch Im(a) ——0

0 —— Ker(a) Co A 0.

Setting D = Im(a) = Ker(a) and applying ¢; to the rows of the above
diagram, we get maps o: D — B[1] and 8: A — D[1]. Then we form

all]oB: A — B[2).

PROPOSITION 4.42. Let A be a full admissible abelian subcategory of a
triangulated category T . Assume that A is stable under extension. Then

on: Ext’y(A, B) — Homy (A, Bln]).

is an isomorphism for n =1 and an injection for n = 2.

PROOF. See [Lev93, Prop. 1.6]. O

* k x

EXERCISE 4.43. Show that the distinguished triangle (4.30) in the defini-
tion of t-structure is uniquely determined by X up to a unique isomorphism.
Thus, it makes sense to write Y = X< and Z = X=!. Moreover, the as-
signments X ~— X=0 and X + X=! determine functors t<o and ¢ > 0.

EXERCISE 4.44 (A t-structure such that the derived category of the
heart is not equivalent to the original triangulated category). Let X be
a connected finite CW-complex and let Sh(X) be the abelian category of
sheaves of Q-vector spaces on X. Consider the full subcategory

T C D*(Sh(X))

consisting of complexes of sheaves C' such that all the cohomology sheaves
H'(C) are constant. Then 7 inherits a structure of triangulated category.
We define
T=0 = {C | H{(C) =0 for i > 0},
720 = {C | H/(C) =0 for i < 0}.
(1) Show that the pair (7=, 72°) forms a t-structure on 7, whose
heart is equivalent to the category Vecg of finite-dimensional Q-

vector spaces.
(2) Let Qx be the constant sheaf on X. Show that

Hom7(Qx,Qx[2]) = H*(X,Q).
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However, using the fact that D°(7?) is equivalent to the category
Db(Vecg), we have

HOHlDb(TO) (Qx, Qx [2]) = 0.

Deduce that, as long as H?(X,Q) # 0, the triangulated category
T is not equivalent to the derived category of the heart.

4.3. Voevodsky’s category of motives.

4.3.1. A universal cohomology. Different cohomology theories have been
proved useful in the study of algebraic varieties. For instance, as we saw in
Chapter 2, to any variety X over a subfield k of C, it is attached the Betti
cohomology

Hp(X) = H*(X(C),Q),

which is a finite-dimensional graded Q-vector space. If, in addition, X is
smooth, one has also at disposal the de Rham cohomology

Hig (X) = H'(X, Q%),

which is now a finite-dimensional graded k-vector space. Recall from Theo-
rem 2.60 that both cohomologies are related, after complexification, by the
period isomorphism

Hip(X) ®r C — H5(X) ®¢ C. (4.45)

Another important example is ¢-adic cohomology defined, for a variety
X over a field k of arbitrary characteristic p, a choice of a separable closure
k of k, and a prime number ¢ different from p, by

HZ(X) = l.&ant(Xfm Z/én) ®Zz QE-

When k is embeddable into C, Artin proved that there exists a canonical
isomorphism

Hy(X) ~ Hp(X) ®q Q. (4.46)

All the cohomology theories we have mentioned satisfy similar prop-
erties, such as homotopy invariance, Poincaré duality, Kiinneth formulas,
Mayer-Vietoris exact sequences etc. A fundamental feature is that the cor-
responding vector spaces usually come together with extra structures. We
have already seen that Betti cohomology can be provided with a mixed
Hodge structure, and f-adic cohomology carries a continuous Qy-linear ac-
tion of the Galois group Gal(k/k).

The similarities between different cohomology theories, as well as the ex-
istence of comparison isomorphisms such as (4.45) or (4.46), led Grothendieck
to postulate the existence of a universal cohomology theory which factors all
the others: this should be the motive of the variety. Since its introduction by
Grothendieck, the theory of motives has inspired a wealth of research but,
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although we have advanced a lot in our understanding, many fundamental
questions remain still unanswered.

Restricting to the case of smooth projective varieties, Grothendieck con-
structed a category of pure motives over a field k with some of the desired
properties. However, in order to prove that it has all of them, he stated
a set of conjectures, the standard conjectures, that have proved to be very
difficult and seem to be still out of reach. Nevertheless some of the sought
properties of the category of pure motives, like the fact that the category
of motives modulo numerical equivalence is semi-simple [Jan92], have been
proved without the use of the standard conjectures.

The terminology “pure” comes from the fact that for any smooth pro-
jective variety, its n-th cohomology group always has certain properties that
are encoded in the statement “H"™(X) is of pure weight n”. For instance, if
X is a smooth projective complex variety, the group Hj (X, C) has a Hodge
decomposition

HR(X)®qC~ P H(X).
ptg=n
The fact that only factors with p+¢ = n appear means that its Hodge struc-
ture is pure of weight n. For varieties over a finite field, the corresponding
purity is reflected by the fact that the eigenvalues of the action of Frobenius
on étale cohomology have absolute value qz.

Using resolution of singularities, we can express the cohomology of a
singular quasi-projective variety in terms of the cohomology of smooth pro-
jective varieties, but in this expression cohomologies of different degrees get
mixed. As we have seen in Section 2.5.2 this gives rise to a mixed Hodge
structure in the cohomology of X. Thus, the motive of a smooth projective
variety should be pure while the motive of a singular or quasi-projective
variety should be mized. Since Grothendieck, there has been a great effort
to develop a theory of mixed motives.

Abstractly we can think of a cohomology theory in the following way.
Fix a field k, denote by Var, the category of varieties over k, and let A
be an abelian category (or more precisely a Tannakian category). Denote
by DA the derived category of A. Then DA is a triangulated category
provided with a t-structure (see Section 4.2.2 for a definition) that allows
us to recover A from DA. A cohomology theory (with values in A) is a
contravariant functor

H: Var, — DA
satisfying certain properties. We can recover the “cohomology groups” of
X from H(X) using the t-structure:

H"(X) = tgntan(X) e A
Voevodsky was able to define a triangulated category DMy, (k), which

is a candidate for the derived category of mixed motives over k. The main
missing piece is a suitable “motivic” t-structure. Recently, Beilinson [Beil 2]
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showed that, when k has characteristic zero, the existence of such motivic ¢-
structure implies the standard conjectures. Conversely, Hanamura proved in
[Han99] that, over any field k, the conjunction of the standard conjectures
and conjectures by Murre and Beilinson-Soulé implies the existence of the
motivic ¢t-structure. Thus we are back to Grothendieck insight that to have
a full theory of motives we need to prove the standard conjectures.

4.3.2. The derived category of mized motives. Let k be a field. In what
follows, we give a sketch of Voevodsky’s construction of a derived category
of mixed motives over k with rational coefficients, which will be denoted by

DM(k) = DMgn (k).
For more details we refer the reader to the original paper [Voe00], the
lecture notes [M'VWO06] or part II of the introductory book [And04].

We start with the category Sm(k) of smooth varieties over k. This
category is not additive, for it does not make sense to “sum” two morphisms
of schemes. The first step of the construction will be to enlarge the set of
morphisms through the notion of finite correspondence.

4.3.3. First step: the category of finite correspondences.

DEFINITION 4.47. Let X and Y be objects of Sm(k). A finite correspon-
dence from X to Y is a Z-linear combination of integral closed subschemes
W C X x Y such that the projection W — X is finite and surjective over a
connected component of X.

Finite correspondences form an abelian subgroup of the group of alge-
braic cycles Z9™mY (X x Y'), which will be denoted by ¢(X,Y).

ExXaMPLE 4.48. Given any morphism of schemes f: X — Y, the graph
'y € X xY is a finite correspondence. In general, we can think of finite
correspondences as multivalued maps on a connected component of X.

Given X,Y,Z € Sm(k), we will denote by pxy, pxz and pyz the pro-
jections from X XY x Zto X xY, X x Z and Y X Z respectively.

LEMMA 4.49. Let X,Y,Z be objects in Sm(k). Consider finite corre-
spondences W € ¢(X,Y) and W' € ¢(Y,Z). Then the cycles p (W) and
Py, (W') intersect properly on X xY x Z. Moreover, the projection of the
cycle pxz(pixy o - by ,B) is finite over X and surjective over a connected
component.

Thanks to the above lemma, we can define the composition
0:¢(X,Y) x (Y, Z) = (X, 2)
by
oo =pxz(pxya-pyzB). (4.50)
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The category SmCor(k) has the same objects as Sm(k), but the mor-
phisms are given by finite correspondences with Q-coefficients:

HomSmCOr(k) (X7 Y) = C(X7 Y) ®z Q.

There is a functor Sm(k) — SmCor(k) that is the identity on objects and
sends a map f: X — Y to its graph I'y. By Exercise 4.71, the composition
of maps is compatible with the composition (4.50) of finite correspondences.
We denote by [X] the image in SmCor(k) of a smooth variety X.

The direct sum in SmCor(k) is given by the disjoint union of varieties.
This category is also equipped with the tensor product

(X]®[Y]=[X x; Y]

4.3.4. Second step: A triangulated category with homotopy invariance
and Mayer Vietoris. The second step is similar to the construction of the
derived category of an abelian category. We start with the category

C*(SmCor(k))
of bounded chain complexes in SmCor(k). The objects are diagrams

On
s [Xn] — [anl] o
where X; is in Sm(k) and 9, € ¢(X,,X,—1) ® Q are finite correspon-
dences such that 9,1 0 9, = 0. Then we define the homotopy category
K*(SmCor(k)) as the one having the same objects as C*(SmCor(k)), and
morphisms given by homotopy classes of morphisms of complexes.

Two examples of objects of K*(SmCor(k)) are:
(1) (homotopy complex) for any X in Sm(k), the complex

(X x Al 25 [X]

placed in degrees 1 and 0.

(2) (Mayer-Vietoris complex) for any X in Sm(k) and any open cover
X =U UV, the complex

tunv,u +iunv,v U, x —iv,X
| ————— 1 | — |

Unv Uls [V X],

where [UNV] sits in degree 2, and the arrows iy x, iy, x, ivnv,r and
iynv,v are the obvious inclusions.

We want to force the homotopy invariance and the Mayer-Vietoris prop-
erty, which mean that the above two complexes are acyclic. To this end,
we take the quotient of K®(SmCor(k)) by the thick triangulated subcate-
gory generated by all homotopy and Mayer-Vietoris complexes. It has the
structure of a triangulated category.
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4.3.5. Third step: The pseudo-abelian envelope. The next step is to take
the pseudo-abelian envelope of the quotient obtained in the previous step.
The resulting category is denoted by DM;f,E(k:).

Recall the construction of the pseudo-abelian envelope

DEFINITION 4.51. Let C be an additive category. The pseudo-abelian
envelope of C is the category with

e objects: (X,p) where X is an object of C and p € Home (X, X) is
an idempotent, that is, p> = p.

e morphisms: Hom((X,p), (Y,q)) € Home(X,Y) is the subgroup of
those f such that f =qo fop.

There is a fully faithful functor C — C,q sending X to (X,id). Pass-
ing to the pseudo-abelian envelope allows us to consider the kernel of each
idempotent p: X — X as a subobject of X. This will be crucial when we
want to talk about “pieces of the cohomology”.

REMARK 4.52. By a result of Balmer and Schlichting [BS01], the pseudo-
abelian envelope of a triangulated category remains triangulated. Thus,
DM ;S;(k) is still a triangulated category.

We have a functor M: Sm(k) — DM;gl(k:) sending X to [X], regarded

as a complex concentrated in degree zero. The category DMgegl(k) is also
equipped with a tensor product that is characterized by the property

MX)eM(Y)=MX xY).
The unit object is the motive of the base field, which will be denoted by
Q(0) = M (Spec(k)).
Note also that there is a functor
C*(SmCor(k)pa) — DMn (k) (4.53)

from the category of bounded complexes in the pseudo-abelian envelope of
SmCor(k) to the category of effective motives DM;g(k).

4.3.6. Fourth step: inversion of the Tate motive. Given X in Sm(k),
let X — Spec(k) denote the structural morphism. We can think of it as a
complex sitting in degrees 0 and —1:

[X] — [Speck]. (4.54)

DEFINITION 4.55. The reduced motive of X is the object M(X) of
DMgefg(k) determined by the complex (4.54).

When X has a k-rational point, there is a direct sum decomposition (see
exercise 1.72)
M(X) =Q(0) ® M(X).
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DEFINITION 4.56. The Tate motive Q(1) is M(PL)[—2]. For n > 0, one
defines Q(n) as Q(1)®".

The last step of the construction of DM(k), necessary to obtain a rigid
tensor category, is to formally invert the motive Q(1). By this we mean the
following: an object of the new category DM (k) is a pair (M, m), where M
is an object of DM, gef,fl(k) and m € Z. Morphisms are given by

HomDM(k) ((M7 m)’ (N7 n))

= lim  Hompyen ) (M @ Q(m +7), N @ Q(n +r)).
r>—m,—n

The resulting category has the following property:

THEOREM 4.57 (Voevodsky). The category DM(k) is a rigid tensor Q-
linear triangulated category.

PROOF. See [MVWO06, Theorem 20.17]. O

4.3.7. Properties of DM(k). All the usual machinery to compute the
homology of algebraic varieties is still available in the derived category of
motives:

(1) (Kiinneth): M(X xY)=M(X)o M(Y).

(2) (Al-homotopy invariance): M (X x Al) = M(X).

(3) (Mayer-Vietoris): For X = UUV as before, there is a distinguished
triangle
MUNV)->MU)eM(V)— M(X)— MUNV)[1].

(4) (Gysin) If Z C X is a smooth closed subscheme of codimension ¢
of a smooth scheme X, then there is a distinguished triangle

M(X\Z)—= M(X)— M(Z)(c)[2¢c] = M(X \ Z)[1].
(5) (Blow-ups) Let Z C X be a smooth closed subscheme of a smooth

scheme, Blz X the blow-up of X along Z, and F the exceptional
divisor. Then there is a distinguished triangle

M(E) - M(BlzX) ® M(Z) — M(X) — M(E)[1].

Moreover, if Z has codimension ¢ in Z, the triangle yields a canon-
ical isomorphism

c—1
M(BIZX) = M(X) & @ M(2)()[2i].
i=1

(6) (Duality) There is a duality A — AY that, for X smooth and
projective of dimension d, satisfies

M(X)Y = M(X)(—d)[-2d].
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(7) (Adjunction) The duality and tensor product are related by the
adjunction formulas

Hom(A ® BY,C) = Hom(4,C ® B),
Hom(A ® B,C) = Hom(B, AY ® C).

REMARK 4.58. We observe that the functor from Sm(k) to DM (k) is
covariant, thus is a “homological” functor in contrast to the contravariant
functor chosen by Grothendieck for pure motives that was cohomological.

ExXaAMPLE 4.59. Let us use some of these properties to show that
M(P") =Q(0) # Q(1)[2] & - -- & Q(n)[2n].
This should be compared with Example 2.92, where the cohomology of P
is computed, but noting that M (P™) is to be seen as the homology of P™.

We proceed by induction on n, the case n = 1 being reduced to the
definition of Q(1). For n > 2, the standard closed immersion P"~! C P"
satisfies P" \ P"~! = A", By the Gysin property, we have the distinguished
triangle

M(A™) — M(P") — M(P"H(1)[2] = M(A™)[1]. (4.60)
Note that M(A™) = Q(0), as one can prove by repeatedly applying the
Al-homotopy property. Moreover, the composition

M(A™) = M(P") — M(Spec(k))

is the identity Q(0) — Q(0). Thus, the triangle (4.60) is split and M (P") =
Q(0) @ M(P"1)(1)[2]. The result follows by induction hypothesis.

REMARK 4.61. To understand the different roles of the twist and the
shift, it is instructive to compare the reduced motives of P! and G,,. In the
first case, we have M (P') = Q(1)[2]. For the second case, one can use the
Mayer-Vietoris triangle for the open covering P! = UUV, with U = P!\ {0}
and V = P!\ {co}. One gets an exact triangle

M(Gm) — Q(0) ® Q(0) — Q()[2] — M (Gm)[1],

from which it follows that M (G,,) = Q(0)®Q(1)[1], thus M (G,,) = Q(1)[1].
This can be compared with the fact that, for any cohomology theory, H(G,,)
and H?(P!) are isomorphic, but they lie in different degree. In particular,
the Hodge structure H?(P!) is pure of weight 2 and Hodge type (1,1). The
same is true for H'(G,,), but, since this last group lies in degree one, we
consider it as a mixed Hodge structure.

4.3.8. Motivic cohomology. Voevodsky also computed some morphism
groups in the category DM (k). In particular, he defined:

DEFINITION 4.62. The motivic cohomology of X is
Hj (X, Q(p)) = Homppyr) (M (X), Q(p)[n]).
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Using Bloch’s formula relating higher Chow groups and K-theory he
proves ([Voe02], [Blo86], [Lev94])

THEOREM 4.63. Given a smooth variety X, there is an isomorphism

HiY(X,Q(p) = (Kap-n(X) @2 Q)P

where Ko(X) denotes Quillen’s K -theory of X and the index (p) means the
eigenspace for the Adams operations.

4.3.9. The normalization of a cosimplicial scheme. To every variety X,
not necessarily smooth, it is attached a motive M (X) in Voevodsky’s cate-
gory. Using tools from homological algebra, one can construct more general
motives, for instance the motive of a cosimplicial variety.

Recall that in Section 3.5.4 we defined the normalized complex associated
to a cosimplicial object in an abelian category. It turns out that it is enough
to work in a pseudo-abelian category.

LEMMA 4.64. Let X* be a cosimplicial object in Sm(k). Given integers
m >n >0, the following endomorphism in SmCor(k) is idempotent:

pn=(1-08%"1 -6 (1=6""): [X™] — [X™].

PROOF. We argue by induction on n. For n = 0, note that the relation
0%6% = Id implies that §°¢° is an idempotent, hence the same holds for
1—0%70. Let us now assume that p,_; is idempotent. We next observe that
for i = 0,...,n — 1, the face ¢ commutes with 6°c?. Indeed, by relations
(c) and (b) in (3.185),

O_n((sio_i) —_ 51'0_71710_1‘ — (510_1)0_n

Moreover, relation (d) in (3.185) implies ¢”(1 — 6"0c™) = 0. These two
equations together imply
o"(1—6%%) .- (1-6"") =0. (4.65)

We now compute, using equation (4.65), and the induction hypothesis,

pE=(1-8%") - (18" "o )(1 ~ 5"")

Pn—1
(1—6%%---(1—=6"to" H1 - 6"™)
Pn—1
=pp_1(1=0"0") = pp1(1 = 8"0") = py,
as we wanted to show. (|

Since p,, is idempotent, Im(p,) is an object of the pseudo-abelian en-
veloppe of SmCor(k). By convention, we write p_; = Id.
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DEFINITION 4.66. Let X* be a cosimplicial object in Sm(k). The nor-
malization of X* is the complex in SmCor(k)p, given by

N(X®)" =Im(p,—1: [X"] = [X"]),
together with the differential

n+1

d=>) (~1)'6": N(X*)" = N(X*)"H1,
=0

In general, the complex N (X*®) is not bounded. To obtain a bounded
complex, we consider the béte truncation o<y N (X*), that is,

N(X*)" n <N,
USNN(X.)n:{o( ) Z;N

This is now an element of C’b(SmCor(k:)pa). For each N > 0, applying the
functor (4.53), we obtain a motive

[o<n N(X®)].
Clearly, given integers M > N > 0, there is a morphism of complexes
o<uN(X®) = o<y N(X*®).
The system ([o<nN(X*®)])n>0 is a pro-object in DM(k).

REMARK 4.67. The advantage of using Lemma 4.64 is that it provides
us with an explicit idempotent cutting out the normalized complex from
the cochain complex. However, we could have also constructed it directly
by abstract means, as we now explain'’. Recall that a category is said to
be preadditive if the morphism sets are abelian groups and the composition
of maps is bilinear. Given a preadditive category A, let Ab(.A) denote the
category of presheaves of abelian groups on A, by which we simply mean
additive contravariant functors from A to Ab. Then Ab(A) is an abelian

category, and the Yoneda lemma ensures that the natural functor
h: A— Ab(A)

which sends X to Hom(—, X)) is fully faithful. Assume now that A is pseudo-
abelian. If Y’ is a direct factor of an object of the form h(X), then projecting
to the complement one gets an idempotent p of h(X) such that Y/ = Ker(p).
By fully-faithfulness, we can see p as an idempotent of X, and the object
Y = Ker(p) in A, determined up to unique isomorphism, satisfies h(Y) =Y.
If X* is a cosimplicial object in A, the associated cochain complex CX* is
a complex in A whose formation commutes with the functor A, in the sense
that h(CX*) = C*(h(X*®)). Since Ab(A) is abelian, the normalized complex
N*(h(X*®)), as introduced in Section 3.5.4, is a direct factor of C*(h(X*®)).
Proceeding as above, one gets a complex (up to unique isomorphism) N X*
such that h(NX*) = N*(h(X*®)).

10We thank J. Ayoub for pointing this argument to us.
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4.3.10. Hodge realization. From now on, we assume that k has charac-
teristic zero and comes with an embedding k < C. We end this section
recalling the existence of the Hodge realization functor.

THEOREM 4.68. There is a covariant functor of Q-linear rigid tensor
triangulated categories

RY: DM(k) — D°(MHS(k)).

The proof of this theorem is sketched in [DGO05, §1.5]. The main diffi-
culty is the covariance of the de Rham complex for finite correspondences.
A more detailed version of the argument is exposed in [Bou09].

We now give a sketch of the construction of the Hodge realization functor
in the case of the motive [o<yN(X*®)] from the previous section. Let X*
be a cosimplicial object in Sm(k). Assume that there is an embedding of
cosimplicial smooth varieties over k,

je:i X* > X",
such that all the X are smooth projective varieties and D* = X\ X" is

a simple normal crossing divisor. The Hodge realization of [o<y N (X*®)] is
constructed as follows.

(1) Betti part RB. For each n, let C*(X™(C),Q) be the Godement
canonical flasque resolution of the locally constant sheaf Q of the
complex manifold X"(C) and let j,.C*(X"(C),Q) be the com-

plex of sheaves on X" obtained by direct image by the inclusion
Jn: Xn = Xpn. On this complex of sheaves we put the canonical
increasing filtration

jn,*Ck(X"((C),@), if k <m,
Winjn<C¥(X™(C),Q) = { Kerd, if k=m,

0, if k> m.

We construct filtered acyclic resolutions (Kp ,,, W) of the complex
(jnsC(X™(C),Q), W) in a functorial way. For instance using again
the Godement canonical flasque resolution, this time on X . Tak-
ing now global sections we obtain a filtered simplicial complex
(F(Y’,Kﬁ »), W). Finally, taking the normalization, the trunca-
tion and the total complex of the resulting double complex we ob-
tain a filtered complex

(Tot o< NNT(X", K ,), W).

Finally, since we want the realization functor to be covariant, so we
write

(RB(0<nN'X*), W) = (Tot o<y NT(X", K ,.), W)Y. (4.69)

Here it is important to note that the normalization of simplicial
and cosimplicial objects are dual of each other.
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(2) de Rham part R®. For each n let Q% (log D™) be the de Rham
complex of algebraic forms on X = with logarithmic poles along D™.
This complex has a decreasing Hodge filtration F' that counts the
number of differentials and an increasing weight filtration W that
counts the number of poles of a differential form. We construct
an acyclic bifiltered resolution (Kggr,F, W) again in a functorial
way. We now repeat the process done in the Betti case: we take
global sections, the normalization and truncation on the simplicial
direction, the total complex and the dual to obtain a bifiltered
complex

(R™(o<nN'X*),F,W) = ((Tot o<y NT(X*, Kar)¥, F,W).  (4.70)

(3) The comparison isomorphism. Going to the cosimplicial complex
manifold X" (C), we can construct a bifiltered complex

(RdR(USNNX.(C))7 F, W)7

that is the analogue of the complex (R®(c<yNX®), F,W) but
using holomorphic forms. Then the maps

(R (o< N X*(C)), W)

|

(R (o<nNX*), W) ©q C

(RP(0<nN'X*®), W) ®q C

are filtered quasi-isomorphisms giving the comparison isomorphism.

* K x

EXERCISE 4.71. Prove that the composition of the finite correspondences
given by the graphs of two morphisms of algebraic varieties f: X — Y and
g: Y — Z, as defined in (4.50), is the graph of go f: X — Z.

EXERCISE 4.72. Let X be a smooth variety over k, together with a
rational point x: Spec(k) — X. Consider the composition

p: X — Spec(k) - X.

(1) Show that p is a projector and that the class of (X,1 — p) agrees
with the reduced motive M (X) from Definition 4.55. Thus there
is a decomposition

M(X) =Q(0)® M(X).

(2) Show that the reduced motive M (X) is independent of the choice
of the rational point x.
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4.4. Mixed Tate motives. As was mentioned in the previous section,
it is not known how to construct a motivic ¢t-structure yielding the desired
abelian category of mixed motives. However, when k is number field, one
can extract from DM(k) an abelian category of mixed Tate motives with
similar properties to mixed Hodge Tate structures. The keystone is Borel’s
computation of the K-theory of number fields.

4.4.1. The derived category of mixed Tate motives. The motives Q(n)
are the simplest non-trivial objects of the category DM(k). It is thus rea-
sonable to figure out what can be built starting from them.

DEFINITION 4.73. The derived category of mized Tate motives over k is
the smallest triangulated subcategory DMT (k) of DM(k) containing the
objects Q(n), for all n € Z, and stable under extensions.

Recall that the latter condition means that if A - B — C — A[l] is a
distinguished triangle in DM (k) and two objects among A, B, C' belong to
DMT(k), then so does the third.

Thanks to the comparison between motivic cohomology and K-theory
(Theorem 4.63), the extension groups of simple objects in the category
DMT(k) are given by

Ext’(Q(1), Q(m)) = Ext'(Q(0), Q(m — 1))
= Hompny(x) (M (Spec(k)), Q(m — 1)]i])
= (Ka(m-1)—i(k) ® Q).

The K-theory groups of general fields are still largely unknown, but,
when k is a number field, Borel computed their ranks:

THEOREM 4.74 (Borel, [Bor74]). Let k be a number field with r1 (resp.
2r9) real (resp. complex) embeddings. Then:

,

Q, ifi=0, m—1=0,

X ©70Q, ifi=1, m—1=1,
(Kom_n_i(k) @ Q)mD = dqQrtr2 ifi=1, m—1>3 odd,
Qr, ifi=1 m—12>2 even,
0, otherwise.

The important information we should get from this is

(1) the only non-zero groups Ext? occur for i = 0, 1;

(2) Ext®(Q(1),Q(m)) = Hom(Q(l), Q(m)) = 0 unless m = [, for which
it is equal to Q;

(3) if Ext}(Q(1), Q(m)) # 0, then m > I;
(4) the only infinite-dimensional group is Ext*(Q(l), Q(l + 1)).
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In particular, when k£ = Q, we have ry = 1 and 5 = 0, so

Q*®zQ ifn=1,
Ethl)MT(Q) (Q(0),Q(n)) = Q if n >3 odd
0 otherwise.

This and the fact that EXt%MT(Q)(Q(O), Q(n)) = 0 for i > 2 will determine
the structure of the category of mixed Tate motives over Q.

EXAMPLE 4.75 (Kummer motives). Since
Extpvr (Q(0), Q1)) = k* ®2 Q,

there are plenty of non-trivial extensions of Q(0) by Q(1). They are all
rational linear combinations of Kummer motives. For each ¢t € k* \ {1},
consider the complex K; in SmCor(k) given by

Spec(k) @ Spec(k) LN P} \ {0, 00},

where Spec(k) @ Spec(k) = {1, 2} sits in degree 0 and the finite correspon-
dence f; is defined by the cycle [(*1,1)] — [(x2, 1)].

The class of K; in DM(k) belongs to DMT (k) and the degrees are
chosen so that it belongs to MT(k). The Kummer motive KM is the class
of K; in MT (k). For t = 1 we write K}°! for the trivial extension of Q(0) by
Q(1). The Hodge realization of the Kummer motive is the Kummer mixed
Hodge structure of Example 2.158.

Another well understood case is the K-theory of finite fields, which was
completely computed by Quillen in [Qui72, Thm. 8], shortly after he intro-
duced the definition of higher algebraic K-theory:

THEOREM 4.76 (Quillen, [Qui72]). Let F, be the finite field with q ele-
ments. Then:

7 i =0,
Ki(Fy) =<Z/(¢"—1) i=2n-1,
0 otherwise.

CONJECTURE 4.77 (Beilinson-Soulé). If k is a field, then Kn(k)g) van-
ishes for all n > 2r.

An immediate corollary of Borel and Quillen’s theorems is:

COROLLARY 4.78. The Beilinson-Soulé conjecture holds when k is either
a number field or a finite field.
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4.4.2. A t-structure on DMT (k) after Levine [Lev93]. For each pair of
integers a and b, let us denote by T, the strictly full triangulated sub-
category of DMT (k) generated by the objects Q(n) for a < —2n < b. We
denote T, 4 simply by 7,, and we extend the definition to cover the cases
a = —o0 or b= oo as well. In particular, 7(_, o) = DMT(k).

LEMMA 4.79. Let a < b < ¢ be integers (the cases a = —o0 and ¢ = 00
are also allowed). Then (Tjyp—1), Tp,e) @5 a t-structure on Tj, -

In particular, for each integer b, the pair (7T(_oo ], Tjp+1,00)) Provides a
t-structure on DMT(k). Let us emphasize that this is not the ¢-structure
we are looking for, since its heart is reduced to zero. However, it will allow
us to define a weight structure.

The truncation functors for the t-structure (7(_ o 1), Tjp+1,00)) on DMT (k)
will be denoted by
ng: DMT(]{}) — 72_007[)}
W>P: DMT(k) — Tjpr1,00)-
The reason for the subindex or superindex is that one will give an increasing
filtration whereas the other will give a decreasing filtration.

Let W=% denote W>b~1 and define
Cr}V (M) = W2Wey (M),
For each even integer a, let 7,50 (resp. 7,2°) be the full subcategory of T,
generated by Q(—a/2)[n] for n < 0 (resp. n > 0). Finally, let 7—[(132] (resp.
[ig]) be the full subcategory of 7T(,; generated by the objects M such that
Gr% (M) belongs to T=C (resp. T.2%) for all a < ¢ < b.

C

THEOREM 4.80 (Levine). Assume that the field k satisfies the Beilinson-
Soulé conjecture. Then the pair of strictly full subcategories

<0 >0
( (—O0,00)’ (_00700))

forms a non-degenerate t-structure on DMT (k).

DEFINITION 4.81. The category MT (k) of mized Tate motives over k is
the heart of the above t-structure.
The category MT (k) has the following properties:

(1) It is a neutral Tannakian category generated under extensions by
the objects Q(n), n € Z.

(2) Each object M of MT (k) has an increasing weight filtration WeM
such that

Gri M ~ Q(n)®*n, Gryy 1 =0

for some natural numbers k,,.
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(3) A fibre functor is given by
w(M) = @ Hom(Q(n), Gy, M). (4.82)
n

Moreover, Wildeshaus [Wil09, Théoreme 1.3] proved that there exists
a canonical equivalence of categories

F: D*(MT(k)) — DMT(k). (4.83)

The functor F is t-exact, induces the identity on the heart MT(k),
and has the property that the composition with the cohomology functor
HY associated to the t-structure as in (4.40) coincides with the canonical
cohomology functor D®(MT(k)) — MT(k). In view of Remark 4.38, the
main difficulty does not lie in proving that the two categories are equivalent
but in constructing a functor between them.

4.4.3. Ezamples. If the motive of a variety X is of mixed Tate type, i.e.
belongs to DMT(k), then decomposing M (X) (or rather its dual) by means
of Levine’s t-stucture we obtain the cohomology motives

W'(X) = t<ot>o(M(X)"[i]) € MT(k).

Thus we can isolate the different cohomological degrees, something we do
not know how to do for general motives.

ExaMpPLE 4.84. By Example 4.59, the motive of the projective space
M (PP}) is of mixed Tate type and one has

Bi(PT) = {Q(—m) i= 2mj 0<m<n
0 otherwise.

Using properties of DMT(k) such as the homotopy invariance or the
long exact sequence of a closed immersion, we can show that certain motives
are mixed Tate. For instance, if a variety X possesses a stratification such
that the motive of each locally closed stratum is mixed Tate, then the whole
M(X) is a mixed Tate motive.

ExaMPLE 4.85. Let n > 3 be an integer and consider the moduli space
My, of distinct n-points in P!. It is a smooth variety of dimension n — 3
which is defined over Q. Since any three points can be sent to 0,1, 00 by
a projective transformation, one has M3 = Spec(Q) and My = P\
{0,1,00}. In general, My, = (P! \ {0,1,00})" 3\ diagonals. We will write
elements of My, as tuples (0,1,00,24,...,2y,).

Let us show by induction that M (M) belongs to DMT(Q). The result
is clear for n = 3 and 4. For n > 5, we can decompose M, as follows:

n
Moy ~ (Mo x Moy-1) \ | [{wi = z4}.
i=5
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By the Kiinneth formula and the induction hypothesis, the motive of X =
Moy x Mypn—1 belongs to DMT(Q). The same is true for the motive of
Z =" s{xi = z4}. Now the Gysin triangle reads

M(Moyn) = M(X) = M(Z)(1)[2] = M(Mon)[1]
and since M (X) and M (Z)(1)[2] belong to DMT(Q), so does M (M ).

EXAMPLE 4.86. Let L = LoU---UL, and M = MyU ---U M, be
hyperplanes in the projective space P". Assume that they are in general
position, meaning that the divisor L U M has normal crossings. Then the
following motive belongs to MT(k):

H*(P"\ L,M\ (M NL)).

4.4.4. Realizations. Recall that in Definition 2.102 we introduced a cat-
egory MHTS(Q) of mixed Hodge Tate structures over Q. Then the functor
RY of Theorem 4.68 restricts to a functor

DMT(Q) — D’ (MHTS(Q)).

As explained in Example 4.34, the category appearing on the right-hand
side has a canonical t-structure. We have also defined a t-structure on
DMT(Q). Since it is motivic, any realization functor is t-exact in the sense
of Definition 4.31, hence restricts to a functor on the hearts. Specializing
to RY, we obtain a functor from MT(Q) to MHS(Q). Taking into account
that the Hodge realization of a mixed Tate motive is a mixed Hodge Tate
structure, we actually get a functor

RY: MT(Q) — MHTS(Q) (4.87)
which respects the weight filtrations.

It is important to note that the category MHTS(Q) is much bigger than
MT(Q). For instance compare the set of extensions of Q(m) and Q(n) in
the category MHTS(Q) given by Theorem 2.154, that is uncountable, with
the set of extensions in MT(Q) given by Theorem 4.74, that is countable.
Thus it is important to know which mixed Hodge structures come from
geometry. This leads to the precise meaning to the word “motivic” when
speaking about a mixed Hodge Tate structure:

DEFINITION 4.88. We say that a mixed Hodge Tate structure over Q is
motivic if it lies in the essential image of the functor RH. The same definition
applies to pro-mixed Hodge Tate structures. More generally, we say that a
diagram of pro-mixed Hodge Tate structures is motivic if it is isomorphic to
the image by the functor R of a diagram of pro-mixed Tate motives.

Even if MHTS(Q) is much bigger than MT(Q), the realization functor
between them is fully faithful and stable by subobjects. This is a very useful
result to prove that many mixed Hodge structures have motivic origin. We
should mention that to determine whether the Hodge realization functor
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from the hypotetical category of mixed motives is fully faithful (i.e. bijective
on Hom sets) would be a extremely difficult problem. For instance, if one
restricts to the category of pure motives it amounts to the Hodge conjecture.
That we can do it for MT(Q) relies again on Borel’s results about the K-
theory of number fields.

PROPOSITION 4.89 (Deligne-Goncharov). The realization functor (4.87)
is fully faithful and its essential image is stable under subobjects.

PrRoOOF. The key point of the argument is that the realization functor
RY determines injections

Extyrp(g)(Q(0), Q(n)) — Extyres(q) (Q(0), Q(n)) (4.90)

into the extension groups which were computed in Theorem 2.154. For
n = 1, this follows from the injectivity of

log|-|: Q@ ®z Q — C/2miQ.
For n > 1, the injectivity follows by interpreting Extll\/IT(Q)(Q(O),Q(n)) as

a part of the motivic cohomology of Spec(Q), which can be computed using
K-theory:

Ethl\/[T(Q) (Q(0),Q(n)) = H}(Spec(Q),Q(n)) = K2,-1(Q) ® Q,
then interpreting Ethl\/[Hs(Q) (Q(0),Q(n)) as Deligne cohomology groups:

Exthss () (Q(0), Q(n) = Hh (Spec(Q), Q(n)).

Under this interpretation, the realization map (4.90) should correspond to
the Borel regulator map mentioned in Digression 1.14, which is known to be
injective by the work of Borel.

Consider now the fibre functors wqr on MHS(Q) (Definition 2.101) and
w on MT(Q) (4.82). These fibre functors are compatible and induce maps
at the level of Tannaka groups

GEdR = Mf\%{HTs(Q) (war) — M%&T(Q) (w) = Go. (4.91)

By the Tannakian dictionary, the functor R is fully faithful if and only if
the morphism (4.91) is surjective.

To show this we argue as follows: both GEdR and G, can be written as

the semidirect product of G, and a pro-unipotent group.
Gl —Ul wG,, G,=U,xGp.

WdR WdR
Then the injectivity of (4.90) implies the surjectivity of (4.91) (see the proof
of Theorem 4.123 for the precise relationship between the Ext groups and
the Lie algebra of U,,). O

ExaMPLE 4.92. Let n > 0 be an even integer and H a mixed Hodge
structure over Q that is an extension of Q(0) by Q(n). If this extension is
non-trivial then it is not motivic over Q, in the sense that it can not be the
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Hodge realization of a motive over Q. Indeed, assume that there is a mixed
Tate motive over Q whose Hodge realization is H. Since the realization
functor is fully faithful, from the exact sequence

0—-Qn) - H—Q0O)—0
corresponds an exact sequence of mixed Tate motives

0— Q(n) - M — Q(0) — 0.
Since Ethl)MT(Q) (Q(0),Q(n)) = 0 this extension is split. Hence the sequence
of mixed Hodge structures is also split.

Of course, there exist motivic non-trivial extensions of Q(0) by Q(n)
defined over non-totally real number fields.

* k Kk

EXERCISE 4.93. Prove that the pair of subcategories (7<%, 729) of Ex-
ample 4.34 forms indeed a t-structure.

EXERCISE 4.94. Let Gr(d,n) be the Grassmanian scheme of d-planes in
k™. Show that the motive of Gr(d,n) belongs to DMT (k).

4.5. Mixed Tate motives over Z. From now on, we specialize further
to the case k = Q. The category MT(Q) is still too big for our purposes
since the extension group

Extiyrrg) (Q(0),Q(1) ~Q* ©zQ~ P Q
p prime
is infinite-dimensional. To remedy this, Goncharov [Gon01, §3] introduced
a subcategory of “mixed Tate motives over Z”.

4.5.1. Definition and basic properties.

DEFINITION 4.95. A motive M in MT(Q) is said to be everywhere un-
ramified if, given any integer n, there is no subquotient £ of M which fits
into a non-split extension 0 - Q(n +1) — E — Q(n) — 0. The full sub-
category MT(Z) of MT(Q) consisting of everywhere unramified motives is
called the category of mized Tate motives over Z.

To a motive M over Q and a prime number ¢, we can associate the
f-adic realization of M. For instance, to the motive corresponding to a
smooth variety X over (Q we associate the dual of the f-adic cohomology
Hgt(X@, Qg). The f-adic realization is a Qg-vector space, together with a

continuous action of Gal(Q/Q). Let p be a prime number distinct from /.
The choice of an algebraic closure @p of @, and a field embedding Q= @p
allows one to see the Galois group Gal(Q,/Q,) as a subgroup of Gal(Q/
Q). By restriction, we obtain a representation of Gal(Q,/Q,). Recall that
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the Galois group of the maximal unramified extension Q, C Q)" C @p is
isomorphic to Gal(F,/F,). The inertia subgroup I, is defined by

1 — I, — Gal(Q,/Q,) — Gal(F,/F,) — 1.

DEFINITION 4.96. Let p: Gal(Q/Q) — GL(V) be an f-adic representa-
tion, and p a prime number distinct from £. We say that p is unramified at
p if its restriction to the inertia subgroup I, C Gal(Q,/Q)) is trivial.

We have at our disposal the following criterion to decide whether a mixed
Tate motive over Q belongs to MT(Z).

PROPOSITION 4.97 (Deligne-Goncharov). A mized Tate motive M over
Q belongs to MT(Z) if and only if, for each prime number p, there exists a
prime £ # p such that the (-adic realization we(M) is unramified at p.

PROOF. See [DGO5, Prop. 1.8]. O

ExAMPLE 4.98. Let K}M°' be the Kummer motive associated to an ele-
ment t € Q* as in Example 4.75. For each prime ¢, the ¢-adic realization of
Kg\/h’t is the extension

0— Q1) = K¢ L5 Q(0) = 0

corresponding to the Qy(1)-torsor given by the projective limit of ¢"-th roots
of unity of ¢. This is unramified everywhere if and only if ¢ € Z*. Thus,
taking into account that Z* ®zQ = 0, the only Kummer motive that belongs
to MT(Z) is the trivial one KM°t. This solves the problem of the extension
groups being infinite-dimensional.

The main properties of the category MT(Z) are summarized in the
following theorem

THEOREM 4.99.

(1) MT(Z) is a Tannakian category generated by the objects Q(n) for
all integers n € 7.

(2) Each object M of MT(Z) has a canonical increasing weight filtra-
tion W indexed by even integers, and such that

Gryy M = Q(—n)®*n
for some integers ky, > 0.

(8) The extension groups in the category MT(Z) are given by
Q, ifi=0m—1=0,
Exthypz) (Q),Q(m)) =4 Q, ifi=1, m—1>3 odd,

0, otherwise.

Hence all of them are finite-dimensional.
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Since MT(Z) ¢ MT(Q) is stable under subobjects, we immediately
deduce from Proposition 4.89:

COROLLARY 4.100. The realization functor
R: MT(Z) - MHTS(Q)

is fully faithful with essential image stable under subobjects.

4.5.2. Fibre functors. In this section, we introduce various fibre functors
on the category MT(Z) and compute the corresponding Tannaka groups.
The first one is defined using the weight structure on MT(Z) given by part
(2) of Theorem 4.99. For each motive M in MT(Z) and each integer n € Z,
we write

wn(M) = Homppr(z) (Q(n), Gr'%, (M)
and define a fibre functor w: MT(Z) — Vecg by

w(M) = P wn(M). (4.101)

Observe that w factors through the category of graded Q-vector spaces.

From the Hodge realization of a motive we obtain two fibre functors.
The de Rham fibre functor, denoted by wqggr, is the de Rham part of the
Hodge structure. For a motive M € MT(Z), the vector space wyr(M)
comes equipped with two filtrations, the decreasing Hodge filtration F', and
the increasing weight filtration . Since (wgqr (M), F, W) is part of a mixed
Tate Hodge structure, these filtrations are opposed in the sense that, if we
write

war(M)" = F"war (M) N W_gpwar (M),

then
war(M) = P war(M)",

FPuar(M) = @ war(M)™,
m<p
W_gnwdR(M) = @ wdR(M)m.
m>n
Thus the de Rham fibre functor wqr also factors through the category of
graded vector spaces.

LEMMA 4.102. The de Rham fibre functor wqr, is canonically isomorphic
to the fibre functor w.

There is also a Betti fibre functor wg given by the Betti part of the Hodge
realization. The rational vector space wg is provided with a weight filtration
W, but not a Hodge filtration. Note that wp does not factor canonically
through the category of graded vector spaces.
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Finally there is a comparison isomorphism
compg g : war ®g C — wp ®q C. (4.103)

ExaMPLE 4.104. In this example we compute explicitly the de Rham
and Betti realizations of Q(1) and the comparison isomorphism. First we
need a variety whose motive contains Q(1). Let

X = IP’}@ \ {0,000} = A(l@ \ {0} = G,,,,0 = Spec(Q|z, z1).
Recall from Remark 4.61 that M(X) = Q(0) & Q(1)[1], hence

Q>i), ifi=0,1,
0, otherwise.

to(M(X)[—i]) = {

We already have a nice compactification X C IP}@. We can write down ex-

plicitly the complex of differential forms on P(b with logarithmic poles along

{0, 00}. The sheaf Q3 (log{0, c0}) is (’)%, the sheaf of rational functions on
)

IP’}@. The sheaf QII% (log{0, 00}) is the (’)% -module generated by the differen-

dr _ _ dz~1!

tial form <* o

. Thus, as a sheaf, is isomorphic to (’)% . Since
H'(Pg, Opy) =0, fori>0,

there is no need to search for a resolution of the complex Qg (log{0,c0})

and we can use directly the complex of global sections to compute de Rham
cohomology. We have
F(Pb» Q[%}@ (IOg{Ov OO})) = Q[l‘» x_l]v
1 ol _1pdx
F(PQ7QP6(1Og{OaOO})) = Q[I‘,IE ];
The differential map is given by daz™ = nz"~!. Hence

Hir(X)=Q, Hip(X) = Qdf-
Therefore
Vv
wan(@) = (@)

Thus wqr(Q(1)) is a one dimensional vector space and we have identified a
canonical generator (dz/z).

The Betti realization is given by the singular homology of the space of
complex points. Thus

wp(Q(1)) = H1(C\ {0},Q)

This is again a rational vector space of dimension 1. A generator of it is
given by the unit circle traveled in the counterclockwise direction, that we
denote 7.
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The comparison isomorphism is obtained from the integration of differ-
ential forms along singular chains. Since

d
W or

,Y,I

we deduce that compgg g(v) = (dz/z)¥ ® (27i).

4.5.3. Tannaka groups of MT(Z). We now turn to the description of the
affine group schemes associated to the various fibre functors on the category
of mixed Tate motives over Z.

NoTATION 4.105. The following notation will be used throughout:

Gar = Aut®(w) = Aut®(war), (4.106)
Gp = Aut”(wp), (4.107)
P ar = Isom® (war, ws), (4.108)
Par,p = Isom® (wp, war)- (4.109)

Observe that both Ppgr and Pyrp are Ggr-torsors and compp gr (resp.
compyg ) is a complex point of Pg4r (resp. Pir,B)-

In what follows, we will use the subscript dR/B for properties which are
common to Ggr and Gg.

LEMMA 4.110. The groups Gar/g fit into an exact sequence
l— UdR/B — GdR/B — G, — 1, (4.111)

where Uggr /B s a pro-unipotent group.

PROOF. Recall that the category M'T(Z) contains the object Q(1). Since
war/B(Q(1)) is a one-dimensional Q-vector space, we obtain a morphism

tar/p: Gar/p = GL(war/B(Q(1))) = Gm. (4.112)
We define Ugr/p as the kernel of this morphism.

Since the action of Ggr/p is compatible with the tensor product, an
element g € Gggr/p acts on war/p(Q(n)) as tqr/p(g)". Since the weight fil-
tration is a filtration in the category of motives, Gqr/p respects the weight
filtration. This means that, if g € Gqr/p and X € Ob(MT(Z)), the ac-
tion of g in war/p(X) sends Wywar/B(X) = war/B(WnX) to Whwar/s(X).
Therefore, it acts on Gr)" war /B(X). Since Crl wyr /B(X) is a sum of copies
of wqr/B(Q(n)), g acts on GV war/B(X) as tqr/B(g)" and the action of an
element u € Ugr/p on the same space is trivial. This implies that Ugg /g is
a pro-unipotent group, that is, an inverse limit of unipotent affine algebraic
groups. O
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At this level, an advantage of using the de Rham fibre functor w = wqgr
instead of the Betti one wp is that the exact sequence (4.111) admits a
canonical splitting 7: G,,, = Ggr. Indeed:

LEmMMA 4.113. One has
GdR = UdR X Gm.
PROOF. We use the fact that w = wyr factors through the category of
graded vector spaces. Given t € G,,, let 7(t) € Ggr denote the element that

acts as multiplication by "™ on w,. This defines a section 7: G,, — Gggr of
tar. Hence GgR is a semidirect product. O

COROLLARY 4.114. Any Gggr-torsor is trivial.
ProoOF. We assume that the reader is familiar with the vanishing of the
Galois cohomology groups
Hl(Qma) = Hl(@a Ga) =0

(see for instance [Wat79, 18.2] or [Ser94, Chap. II, §1.2, Prop. 1]). It
follows that, for any unipotent group U or any group G that is an extension
of G,,, by U, the Galois cohomology groups are also trivial

H'Y(Q,U)=H'(Q,G)=0.
Now, the group Gg4r can be written as

N
Gar = lim Gy,
N

where each GéVR is an extension of G,, by a unipotent group and all the
transition maps are surjective. By Mittag-Leffler we deduce that

H'(Q,Gqr) = lim H(Q, Gdx) =0,
N
which implies that any Ggr-torsor defined over Q is trivial. [l

The corollary has the important following consequence, which will be

exploited in the next chapter.

PROPOSITION 4.115. There exists an element a € Gqr(C) such that, for
all motives M of M'T(Z), one has

wp(M) = (compp, qr 0a)(war(M)). (4.116)

Moreover, a can be chosen of the form a = ug - 7(2mi) with uy € Ugr(R).

ProOOF. We follow [Del89, §8.10]. Recall from (4.108) that
Pp ar = Isom® (war, wB)
is a Gqgr-torsor with a complex point compg 4 € Pg gr(C). In particular,

Pg gr is non-empty. This implies that Pg 4r has a Q-rational point, hence
it is a trivial torsor over Q. By Corollary 4.114, the torsor has to be trivial
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already over QQ, which implies the existence of a rational point, that is an
isomorphism of fibre functors o: wqr — wg. Define

a = cOmMpyg p O (4.117)

By construction, a is an element of G4r(C) and compg 4g ca = a, from
which (4.116) follows. Note also that any other element of Gyr (C) satisfying
this propery is of the form a7y with v € Gar(Q).

Let us now turn to the second assertion, that a can be chosen of the form
up - 7(2mi) with ug € Ugr(R). This uses in a crucial way the compatibility
between the comparison isomorphism and complex conjugation explained
in Proposition 2.73. Interpreted in our context, it says that the following
diagram of fibre functors is commutative:

a

comp
wdRLwBC—>wB RC——wgr ® C

pT poc| e

comp
wdR—>wBC—>wB ®C—>wdR®C

a

where p is the map induced from complex conjugation on the topological
space and c is complex conjugation on the coefficients. Note that p is a
rational point of Gg. The complex conjugate of a is @ = Id ®c o a. Define
x = a~'a. By the commutativity of the diagram, x = a~'pa. Thus x €

G4r(Q) and has order two.
Let us apply (4.117) to the motive Q(1). Since

compyg : wB(Q(1)) — war(Q(1))

is multiplication by 27 by Example 4.104 and «(Q(1)) is an invertible
map of one-dimensional Q-vector spaces, it follows that tqr(a) € Gy, lies
in 2miQ*. Thus, up to replacing a by a7y with v € G4r(Q), we can assume
that

a la=1(-1). (4.118)
Any other element satisfying both (4.116) and (4.118) is of the form a~y
for some v € Gqr(Q) such that y~!'7(—1)y = 7(—1). In particular, any
v € 7(Q*) works. Therefore, replacing a by ay with v € 7(Q*), one can
choose a such that tqg(a) = 27i. This amounts to saying that a = ug-7(27%)
with ug € Ugr(C).

It remains to show that up € Ugr(R). By (4.118),

7(2mi) ! Uy UOT( 27i) = 7(—1)

and writing 7(—1) = 7(274) ~!7(—2mi) one gets ug = p. O
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4.5.4. The period map and the period conjecture. Recall from the previ-
ous sections that Pyr p denotes the scheme of tensor isomorphisms between
wp and wggr, which has the structure of a pro-algebraic variety over Q. The
ring of regular functions O(Pyr g) forms an ind-object in the category of
Q-algebras of finite type.

DEFINITION 4.119. The period map is the ring morphism
per: O(Pgr) — C (4.120)
given by evaluation at the point compgp p:
per(f) = f(CodeR,B)-
Similarly, evaluation at the point compg 4g yields a period map

O(P&dR) — C.

The following is a variant of Grothendieck’s period conjecture for the
category of mixed Tate motives over Z (cf. also [And04, 25.2]).

CoNJECTURE 4.121 (Grothendieck). The point compgg g is generic.

To give a meaning to the word “generic”, observe that, as in Lemma
4.21, Pggr can be written as the projective system of torsors P%/ qr for
mixed Tate motives Y. Then, by “generic” we mean that, for every qﬁotient
Pg ar — P]_{ qr the image compng of the point compg 4 in Péj 4R is not
contained in any proper subvariety defined over Q. Therefore compg 4g is
generic if and only if, for every mixed Tate motive, the period map

per = ev : (’)(P]{dR) — C

compg aR
is injective. Moreover, if compg 4 is generic, then the transcendence degree
of the residue field of compgdR is equal to the dimension of ng dR-

From the previous discussion, we see that Grothendieck’s period conjec-
ture for mixed Tate motives is equivalent to the following:

CONJECTURE 4.122. The period map (4.120) is injective.

4.5.5. Lie algebras. Let ugg be the Lie algebra of Ugg. The decompo-
sition Ggr, = Ugr % G, from Lemma 4.113 yields an action of G,, on ugr
which is compatible with the Lie algebra structure in that ¢ [a, b] = [t-a,t-b]
for all t € Gy, and all a,b € ugr. Let ujy C ugr be the subspace where
t € G, acts as multiplication by t"™. Then

n—+m

[udr, Udr] € ugg

and therefore we get a graded Lie algebra

gr __ n
Uir = @ U4R-

ne”L
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The fibre functor wyr induces an equivalence of categories between finite-
dimensional graded vector spaces together with an action of uﬁrR compatible
with the gradings and the category MT(Z).

The main result of this section is the following;:

THEOREM 4.123. The graded Lie algebra ucgﬁq is free with one generator
in each positive odd degree n > 3.

The theorem will be a consequence of Lemma 4.126 below. Since we
have not found a suitable reference, we include a proof of it.

Recall that a finite-dimensional Lie algebra £ is said to be nilpotent if
there exists an integer n such that [a,[a,.?.,[a,b]...] for all a,b € £. This
definition admits several generalizations to infinite-dimensional Lie algebras.
The one that will be useful for us is the following:

DEFINITION 4.124. A Lie algebra £ is called quasi-nilpotent if
e e, £.8]...]=0.

n
ExXAaMPLES 4.125. Any nilpotent Lie algebra is quasi-nilpotent. A pro-
nilpotent Lie algebra is quasi-nilpotent. The graded Lie algebra associated
to a pro-nilpotent graded Lie algebra is also quasi-nilpotent. Any subalgebra
of a quasi-nilpotent Lie algebra is quasi-nilpotent.

LEMMA 4.126. Let £ = ,, £, be a quasi-nilpotent graded Lie algebra
over Q with H1(£,Q) concentrated in positive degrees and Hz(£,Q) = 0.
Then £ is isomorphic to the free algebra generated by Hy(£,Q).

ProOOF. We use the Koszul complex of £ to compute its homology

o—sengnge—enelle Yo

where the last map in the complex is the zero map and the previous to the
last is given by the Lie bracket. From this complex we derive the well known
identity
H1(£,Q) = £/[£, &].

The map £ — H;(£, Q) is homogeneous and surjective, thus we can choose a
homogeneous lifting H;(£,Q) — £. In general, this lifting is non-canonical.
Let § be the free Lie algebra generated by Hi(£, Q). It is a graded algebra.
By the universal property of free Lie algebras, the chosen lifting defines a
graded map § — £. We want to show that this map is an isomorphism.

Let F), denote the increasing filtration of £ and § given by the degree:
F.e=@ v, F.5=ED 3w
n’'<n n'<n
We prove by induction on n > 0 that the map F,§ — F,£ is surjective.

By construction, Fp§ = 0. Since £ is graded, we deduce that FyL is a
Lie subalgebra. Since £ is quasi-nilpotent, the same is true for Fp£. Since
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Hy(£,Q) is concentrated in positive degrees, Fy£ is also perfect: Fpf =
[FoL, FoL]. This implies that Fp£ = {0} so we get the case n = 0 in the
induction process.

We assume now that F,,§ — F,»£ is surjective for all n’ < n. Since we
can write
F.L/F,_1£=H(£Q),+[£ L]
the definition of §, the fact that Fyp£ = 0 and the induction hypothesis imply
that the map F,§ — F,£ is surjective. Since £ is graded,

e=Pe. = s
nez n>0
and we conclude the surjectivity of § — £.

Let now ¢ C § denote the kernel of the map § — £. We have a commu-
tative diagram

FANE——=¢

|

SASNAS SAS 5

N

CANENLE—-LNE——- L —> H{(£

where § A £ is the image of F® € in § A §. The long vertical sequences and
the upper long horizontal sequence are exact by definition. The lower long
sequence is exact because Ha (£, Q) = 0. From this we deduce

£ c [t 3.

Since § is also quasi-nilpotent we conclude that £ = 0, thus showing the
injectivity of the map § — £. O

PrOOF OF THEOREM 4.123. We start by computing the Lie algebra co-
homology of uf,. To this end, let Repd (Usr) (respectively Repg (Gar))
denote the category of continuous Q-linear representations of Uggr (respec-
tively Ggr), not necessarily of finite dimension. We have a fully faithful
functor

MT(Z) = Repg(Gar) — Repg (Gar)-
In particular, there are representations Q(n) of Ggr on which G4r acts
through its quotient G,,. Then

H (udR’ Q) = EXtZRePBD (Uar) (Q’ Q)’
where Q is viewed as the trivial representation of Uyg.

In order to compute the groups ExtRep (Uar) (Q Q) we will use the

theory of induction and restriction of representatlons From the inclusion
Ugr — Ggr we have a functor from the category of representations of Ggr



270 J. I. BURGOS GIL AND J. FRESAN

to the category of representations of Ugg that consist simply in restricting
the group that act. This functor is denoted Resgjg. This functor admits a

left adjoint denoted Indgjg.

The properties we need are the computations

Res;ji%(Q) = Q, and Indgjg (@ = H Q)

Uar
nez

and the adjoint property. Then

EXti{epff(UdR) (Q7 Q) EXtRep (U4r) (Q7 ReSGdR (Q))

Uar

= ExtRepm<GdR)<Ind5;§<@>, Q)

- EXtZReP (Gar) H Q(n

nes
= @ EXt?Rep(‘{)f (G4r) (@(n)7 Q)
neZ
It follows from part (3) of Theorem 4.99 that

ude @ EXtMT (Q(n),Q(0)),

n<—3
n odd

(udRu Q) = 0

where each summand ExtMT(Z) (Q(n),Q(0)) is one-dimensional and sits in
odd degree n < —3. Going to homology we deduce that

H(u§;,Q) = P Q (4.127)
n>3
n odd

H(ufg, Q) = 0. (4.128)

To prove the theorem we only need to show that u5y satisfies the hypoth-
esis of Lemma 4.126. By definition, it is a graded Lie algebra. Since Ugr
is pro-unipotent, we deduce that ugg is pro-nilpotent, hence uﬁ% is quasi-
nilpotent. The other assumptions of the lemma are nothing but conditions
(4.127) and (4.128) above. O

REMARKS 4.129.

(1) Following [DGO05] and [Dell3], the grading on ufy that we con-
sider is the one coming from the action of G,,, where ¢ acts as ¢
on Q(1). This is why we obtain a positively graded Lie algebra in
contrast with [And04] or [Brol2] that have a negatively graded
Lie algebra.

(2) Consider the abelianization

b
(ugr)™ = vdr/ (Ui Url:
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which is a graded vector space. The proof of Theorem 4.123 yields
a canonical identification

(W) = (Bxtlymz (Q(0), Q1))

Moreover, udR is isomorphic to the free Lie algebra generated by
(ui%)ab. Nevertheless, there is no canonical lifting from (u8y)*" to
ué dR, hence no canonical isomorphism between ui% and the free Lie

algebra generated by (uSg)*".

(3) Note also that ugg and uﬁ% are not isomorphic. In fact, ugg is the
completion of uf; with respect to the grading, which implies that
ugR is not a free Lie algebra.

4.5.6. The Hilbert-Poincaré series. From Theorem 4.123, we deduce that
the universal enveloping algebra U (ugi{) of u(gﬁDL is the free associative graded
algebra with one generator in each odd degree n > 3. The algebra of regular
functions O(Uqgr) is also graded and is the dual of the completed universal
enveloping algebra U (uR) in the graded sense.

For simplicity we will consider the grading by the codegree in O(Ugr)
that is the opposite of the one induced by the grading of uirR. Thus it is
also positively graded. We can compute its Hilbert-Poincaré series

1
HO(UdR) (t) = 1—13 —¢5 — t7 _
1—¢2
S — 4.130
1—12—¢3 (4.130)

from the dimension of the graded pieces of U (u5y).
Let us now, somehow artificially, introduce the algebra

HMT = O(Uar) ®q Q[f2], (4.131)
where fs is in degree 2. From (4.130) we immediately deduce:

LEMMA 4.132. The Hilbert-Poincaré series of HM7 is given by
k
1— t2 — 3 Z dkt

where the integers dy, are the same as in Zagier s Congecture 1.71.

Hymr(t) =

Following Deligne, Goncharov and Terasoma, in order to prove the upper
bound dim Z; < dj of Theorem 1.95, we will construct in Chapter 5 a Q-
algebra H, which injects into M7, and comes together with a surjective
graded map H — @ Zj. This will imply immediately the bound. The
reason we have changed the grading of O(Ugr) is precisely to make this
map compatible with the degree. We have already seen that multiple zeta
values appear as periods of the pro-unipotent completion of the fundamental
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group of ]P’(b \{0, 1, 00}. The motivic interpretation will give the link between
‘H and @ Zk

* Kk

EXERCISE 4.133. Find examples which show that all the hypothesis in
Lemma 4.126 are needed.

4.6. The motivic fundamental groupoid of P!\ {0,1,00}. We con-
tinue considering the algebraic variety

X =Py \{0,1,00}
over Q and the complex manifold
M = X(C) = P(C)\ {0,1,00}.
As in Section 3.9, we set:

O0=the tangential base point (0,1), i.e. the tangent vector 1 at 0,
1=the tangential base point (1, —1), i.e. the tangent vector —1 at 1.

Let ¢,y € X(Q)U{0,1} be rational or tangential base points. The aim
of this section is to explain that the pro-unipotent completion of the torsor
of paths from x to y, as well as the extra structures given by composition
of paths and local monodromy, are motivic in the sense of Definition 4.88.
In fact, we want to add to Summary 3.254 a motivic side whose Betti and
de Rham realizations give the Betti and de Rham sides of that summary.
To exhibit the motivic nature of the group schemes and torsors in that
summary, it seems necessary to use the language of algebraic geometry over
a Tannakian category [Del89, §6]. In order to avoid this language, we will
only consider the motivic analogues of JU; and L.

4.6.1. The pro-mized Tate motive yU}EVIOt. We start with the case of two
rational base points z,y € X(Q) C M. Recall the cosimplicial manifold
y My from Construction 3.189. As we already used in Section 3.0.1, when
endowing the fundamental group with a mixed Hodge structure over QQ, all
the maps involved in , M7 are algebraic and, the points z,y being rational,
defined over Q. We will denote by , X7 the corresponding cosimplicial object
in the category Sm(Q).

As explained in Section 4.3.9, to , X7 one associates a family of motives
{lo<n Ny X2} >0
By construction, given integers M > N > 0, there is a morphism
O’SMNyX; — O'SNNyX;
making {[c<yN, X]}n>0 into a projective system of motives.

LEMMA 4.134. The object [oc<yN, X3] belongs to DMT(Q).
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We can therefore consider its cohomology with respect to the t-structure
of DMT(Q).

DEFINITION 4.135. For each N > 0, we define a mixed Tate motive
yUalcv[Ot,N = HO([USNNyX;]) € MT(Q)

As N varies, these motives fit into a pro-mixed Tate motive yU}:\/IOt.

We also consider the constant cosimplicial variety Spec(Q)® given by
Spec(Q) in all degrees, with coface and codegeneracy maps all equal to the
identity. Applying the previous construction to Spec(Q)®, one easily finds
(Exercise 4.163) that, for all N > 0,

Hy([o<nN Spec(Q)°]) = Q(0).

4.6.2. The structures of yUEE\/IOt. We next introduce some extra struc-
tures carried by yU}C\/IOt: the unit and counit, the completed coproduct, the
composition of paths and the antipode. The idea is to give a geometric
analogue of the constructions in the reduced bar complex of a connected
dg-algebra (see Definition 3.115), in such a way that they are compatible
with the isomorphism from Lemma 3.193.

We start with the unit and counit. Each point € X (Q) determines a
morphism of cosimplicial varieties

ny: Spec(Q)* — X3 (4.136)
which sends Spec(Q)"” = Spec(Q) to the point (z,...,z) € ,X. Besides,
we have for each pair of points x,y € X(Q) a map of cosimplicial varieties

e, X2 — Spec(Q)*® (4.137)
given by the structural map in all degrees. These induce morphisms

ny s QO) — U™,
e yU}CV[Ot — Q(0),
which are called unit and counit respectively.

REMARK 4.138. To understand the notation we will use in the follow-
ing constructions, recall from 4.3.3 that the direct sum in in the category
SmCor(Q) corresponds to the disjoint union of varieties, whereas the ten-
sor product is given by the cartesian product of varieties. Note also that
the description we will give of morphisms should be understood as cor-

respondences. For instance, the map for the antipode below is the cy-
n(n+1)

cle in X™ x X" given by (—1)" 2 I, where I' is the graph of the map
(1, .y xn) = (T, ...y x1).
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For any two rational points z,y € X(Q), consider the unbounded com-
plex C*(, X7) in the category SmCor(Q) given by
Ch(,X3) =, X3,
together with the differential

n+1
d=) (-1)'6": C*(,X3) — C"T(,X2).
=0

We consider the morphism
[X]®” N @ [X}®p ® [X]®q
pt+q=n
in SmCor(Q) that sends the point (z1,...,2,) to
Z Z (—1>0<1‘0(1), - ,xa(p)) ® (ma(p+1), - ,J}U(n)), (4139)
P+q=n oeLl(p,q)

where (—1)7 is the sign of the permutation o.

REMARK 4.140. Notice that what appears in this product is the permu-
tation o instead of ! as in Proposition 1.151 or Definition 3.115. This is
due to the contravariant nature of differential forms.

One can check that this map induces a morphism of complexes
vVY: C*(,Xz7) — C*(yX;) ® C*(yX;).
Now, for points x,y,z € X(Q), and integers p,q > 0, we consider the map
[X]°P @ [X]P1 — [x)50+0)
given by
(1., 2p) @ (Y1,--,Yg) V> (1, ., Tp, Y1, -+, Yg)- (4.141)
Varying p, ¢ we obtain a morphism of complexes
AV CHLXD) ©CH(,XE) — CT(LXD).

Finally, the correspondence [X]®" — [X]®" given by
n(n+1)
(1, ... xn) — (1) 2 (xp,...,21) (4.142)
defines a morphism of complexes, called the dual antipode,

SV C*(,X3) — C*(, X))

The next step is to induce morphisms at the level of the normalized com-

plexes NV(, X7). For this, one needs to check that the chain morphisms com-

mute with the projector p, of Lemma 4.64 and take care of the truncations.
The precise statement is the following lemma whose proof is elementary.

LEMMA 4.143. Let N, M > 0 be integers.
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(1) If N > 2M, the map V" induces a morphism of complezes
VY oanN(,X3) — o<uN(,X3) @ o< N (, X3).
(2) If N > M, the map AV induces a morphism of complexes
AV: 02NN (XD) ® o<y, X2) — oeuN (L X2).
(3) If N > M, the map SV induces a morphism of complezes
SV oonN(,X3) — o< N(, X;).

Moreover, when N and M vary within the above constraints, the three mor-
phisms yield maps of projective systems.

As a consequence of Lemma 4.143 we obtain the following result.

PROPOSITION 4.144. Given any three points x,y,z € X(Q), there are
morphisms of pro-mized Tate motives

(1) a composition of paths
A\/: ngl/\/IOt ® yU;:V[Ot SN ZU;\/IOt;
(2) a unit
e Q(0) — LU
(8) a completed coproduct
\VAR yU;EV[Ot — in\/IOt@yUgle[Ot;
(4) a counit
eV yU;V[Ot — Q(0);
(5) a dual antipode

A\ Mot Mot
ST Uy — U

4.6.3. The motivic nature of the fundamental groupoid of P(l@ \ {0, 1, 00}.

THEOREM 4.145 (Deligne-Goncharov [DGO05]). For z,y € X(Q), the
Hodge realization ofin\/[Ot agrees with the pro-mixzed Hodge structure yU;{
described in Summary 5.25:

RU(, U =, UL

y-x

Moreover, R™ is compatible with the composition of paths, the unit, the
completed coproduct, the counit and the dual antipode. In particular, the
diagram JUR for e x varying in rational base points, is motivic.

PRrOOF. Let A* be the differential graded algebra given in Example
2.130. Recall that it is given by

AOZQa AIZQWO®@W1



276 J. I. BURGOS GIL AND J. FRESAN

with zero differential. The product in this algebra satisfies wg Aw; = 0. The
Hodge filtration is given by
FO=A*>F'=A'">F?*=0
and the weight filtration by
W_1=0CWy=A"C W, = A*.

As we have seen in Proposition 2.132, the differential graded algebra A*
allows us to compute the de Rham cohomology of Py \ {0,1,00} with its
weight and Hodge filtration. We have seen also in Section 3.6.2 that it can
be used to compute the de Rham side of ,U}.

We will now use this algebra to compute the de Rham side of RY (y UMoty,

Consider the variety (IP)}@)” and the divisor D,, consisting of all points
with one coordinate equal to 0, 1 or co. This is a simple normal crossing divi-
sor. Then, for every pair of rational points z,y € X (Q), the n-th component
of the cosimplicial scheme , X7 is given by

, X5 = (Pg)"™ \ Dh.
Let (E];l(c)n (log Dy,), F,WW) be the de Rham algebra of complex valued
smooth differential forms on (P!(C))™ with logarithmic poles along D,, with
its Hodge and weight filtration (see Section 2.6.1). We now denote
A (X)) =A"® . @ A"
The Hodge and weight filtrations of A* induce Hodge and weight filtrations
on A*(yX;‘). For all rational points z,y and integer n > 0, there is an
inclusion
A%, X7) = Epi(cyn(log Dy)
given by
1®"‘®Wei®'”®1'_>wai(ti)a

where €; = 0, 1, the 1-form w, is in the position 7 and ¢; is the i-th coordinate
of A% C (PL)". From the fact that

A" ® C = Epi(cy(log Dn)

is a bifiltered quasi-isomorphism (see the end of Example 2.130) we deduce
that the map

A*(, X)) ® C = Epicyn(log Dy)

is also a bifiltered quasi-isomorphism. Thus A*(, X}') determine the Hodge
and weight filtration of the de Rham cohomology of | X7, even with its Q-
structure. The important point to note now, that is easy to check, is that
the previous inclusions are functorial with respect to any morphism involved
in the structures of | X7'. More precisely
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LEMMA 4.146. The family of inclusions
A*(,Xy) — Ef;l((c)n(log D,), (4.147)
for x,y € X(Q) and n > 0 is functorial with respect to

(1) the coface and codegeneracy maps of the cosimplicial schemes yXai

(2) the maps (4.136) and (1.137), where we identify Spec(Q) with ng
through the structure map of Q-schemes;

(3) the maps (1.139), (4.141) and (4.142) that will induce the product,
the coproduct and the antipode.

Moreover, each map in the family is a filtered quasi-isomorphism.
PROOF. The fact that each map in the family is a quasi-isomorphism
has already been discussed. To be precise of the meaning of functoriality

in this lemma we spell out the case of a coface, being all the other maps
treated in a similar way. Consider the coface

& X0 — Xt
given by 6°(x1,...,2,) = (y,21,...,2,). Then there is a diagram
A*(yX;H_l) - [El(((j)nH(IOg Dyy1)
l(tso)*
EE;I(C)H (log Dy,).

The statement of the lemma means that there is a unique morphism, also
denoted by (69)*,

A*(, X7)

A (XH) — AT, XT)
completing the diagram to a commutative square. By the fact that the
horizontal arrows are injective the unicity is clear and we have to show the
existence. The needed map is obviously given by

(50)*(a1 ® - ®apt1) = e(a1)ag @ - ® apt1,

where ¢ is the augmentation of A* given by (3.197). All the remaining maps
are defined in a similar way. The compatibility of all the morphims with the
composition of maps is just a consequence of the injectivity of the morphisms
(4.147). O

The main consequence of Lemma 4.146 is that to compute the de Rham
realization functor as explained in section 4.3.10 we can use the algebras
A*(,X7) and we deduce that

R, UYYY = lim Hy( Tot o<y N A*(, My)).
N

By Lemma 3.193, there is a canonical isomorphism

~

Tot NV AZ 5 B*(A%).
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Taking the truncation, the cohomological functor H% and the inductive limit
we deduce that RdR(y UMotyv — yAgR. By duality we get

RdR( UMOt) UdR.

The next step is to check the compatibility with the structures on both sides.
This is the content of next lemma.

LEMMA 4.148. The morphism ¢ of Lemma 5.195 is compatible with the
shuffle product, the coproduct and the antipude.

PROOF. Since the different structures do not depend on the rational
points z,y we omit them from the notation. We begin by proving the com-
patibility with the shuffle product. For non-negative integers p, q,r, s, the
map (4.139) induces a map

Vi AT(XP) @ A% (XT) — ATH(XPT)

given by
V((wi(@) A--- Awp(ap)) @ ( (l‘p+1) A N wpig(Tpg))) =
Z 1(x<7(1)) ARRRRA Wp+q(xo(p+q))
cew(p,q)

The sign (—1)? comes from the definition of the map (4.139), while the sign
(—=1)P% comes from the fact that we have to swap the simplicial degree p
with the differential degree s. We now compute

V(@ ([wr]. - wp]) @ P(lwpta] - - lwptal)) =

+ 1deg(w; o
ST (CD)EEEE) (L 1)w (200) A A Wt (To(prg))-
ocul(p,q)

In this equality we have used that

p q q p+q
> ideg(wi) + Y jdeg(wpry) +p Y deglwpry) = Y ideg(w;) (4.149)
i—1 =1 =1 =1

We also compute

P(V([wil. - |wp] @ [wpt1]- - |wpq]) =

pt 7, e 0.) —
ST (o) (=)= = O e @)y (1) A A Wt g (Tpag)s
o€wi(p,q)

where 7(0) is the sign determined by equation (3.120). In order to see that
the signs in both expressions agree we introduce formal variables a; . .. ap4q
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of degree —1, and put @ = a; A --- A apyq. Then, on the one hand,

(o) (1) 2 Hdesleri)y,

0*1(1)(:31) N N Wo=1(ptq) (Tpq) Na
=n(0)ar Awe-1(1)(T1) A+ A Gpig A W1 (1) (Tptq)
= A1) A W1(Te(1)) A A Gg(prg) N Wpta(To(prq))s

while, on the other hand,

+aq ) o
(—1)2=1 48D (1) (2,0)) A -+ Awprg(To(pig) A a

p+qz- w;
= (—1)2i=1 1B (2, ) A AWpig(To(pra) A o) A A G (pig)

= Ao(1)) ANWL(To (1) A AN opig) A Wptq(To(pra))
proving the compatibility with the shuffle product.
We next prove the compatibility with the coproduct. The maps (4.141)
induce morphisms
A AKX — P P AT(XP) @ A% (X)
r+s=t p+q=n

given by

A(w1($1) A Awp(an))

= (‘DpZLPH deB(wi) g (@1) A+ Awp(Tp) @ wp1(Tp1) A+ Awn(an),
p=0

where the sign comes again from the fact that we are swapping a simplicial
degree with a differential degree. Then Aot =1 oA is easily checked using
equation (4.149).
Finally, the map (4.142) induces a morphisms
S: AM(X") — AT (X™)
given by

n(n+1)

S(wi(x) A Awp(zp)) = (1) 2 wi(zp) A Awp(xr).

The proof of the compatibility of the antipode S with the the map 1 follows
the same method as the previous compatibilities. O

As a consequence of this lemma we know that the de Rham realization
RM(, UMO) agrees with = , US® including all the structures.

To conclude, the fact that
B/ rrMoty _ 7/B
R (y Ur ) - yU:c

follows from Theorem 3.162, Lemma 3.192, Proposition 3.188 and the de-
scription of the Betti realization functor in Section 4.3.10. [l
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4.6.4. The case of tangential base points. We next have to consider the
case of tangential base points and prove that the space of paths with tan-
gential base points is also motivic.

We start with the particular case of G, = P}@\{O, oo} and the tangential
base point 0 = (0,1). Recall that in Variant 3.256 we have stated that
the method used to study P(b \ {0,1,00} can be used to study G,,. In
this case the dg-algebra we use is A(G,,) = Q ® Qwp and we obtain that
WU (Gn)z" = Q[eo]

PRrROPOSITION 4.150. There is an isomorphism

oU(Gn)o — 1U(Gm)T
Moreover, if x € G,,(Q), then there is an isomorphism

U (Gm)y = 1U(Gm)y-

T

PrOOF. We only prove the second statement. The proof of the first one
is similar. We define the de Rham component of the sought isomorphism
as the identity. Clearly it is compatible with the Hodge and the weight
filtrations. This is justified because as was the case of IP’}@ \{0,1, 00}, the de
Rham side is independent of the base points.

We have introduced the straight path dch between 0 and 1, given by
dch(t) = t for t € [0,1]. We define the Betti part of the isomorphism
as the map induced by the composition of paths which sends a path v €
71(Gm;0,2) to the path dch -y € m1(Gyy;1,2). We need to prove that
both isomorphisms are compatible with the comparison isomorphism. The
comparison map comp = compgp g is given by the iterated integral map

comp(y) = Z e / wp.™.wo
n>0 v

and satisfies comp(7y - 4') = comp(y) comp(y’). Thus we only need to check
that comp(dch) = 1. This last equality follows by taking the limit z — 1 in
Example 3.234.

That the Betti part of the isomorphism is compatible with the weight
filtration is now a consequence of the fact that the de Rham side is. O

From the proposition we immediately deduce:

COROLLARY 4.151. The pro-mized Hodge structures qU(G,)E and gU(G,,) &
are motivic (i.e. they are in the essential image of R ).

The next lemma describes the structure of (U(Gy,)E.

LEMMA 4.152. The pro-mized Hodge structure qU(G,)8 is split and

agrees with
ITem).

n>0
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In particular, oL(Gp)i = Q(1).

PROOF. Let f,, and b, be generators of Q(n)qr and Q(n)p respectively;
they satisfy comp(b,) = (274)™ f,,. Let 79 be the generator of m(G,,,0) in-
troduced in Section 3.8.1. By Example 3.230, we know that compgg 5(70) =
exp(2miep). Consider the power series

log(70) = log(1 + (0 — 1)) € Q[m1 (G, 0)]".
For each n, we define a map
on: Qn) — (,U(Gm)gI (4.153)
which sends f,, to e} € Q(ep) and b, to log(v)" € Q[m1(Gy,0)]*. This
map is compatible with the comparison isomorphism:
compgg g (¢n (b)) = compyg g(log(v0)™)
= (2mi)"eg
= @n(comde,B(bn))'

Moreover, taking into account that

log(10)" € J"Q[r1 (G, 0)]" = W_2,Q[m1 (G, 0)]"

and ef € F7"NW_2,Q{eo)), the map (4.153) is a morphism of mixed Hodge
structures. The maps y,, induce the sought isomorphism of pro-mixed Hodge
structures. The second statement follows immediately from the first one. [

We next reduce the question of showing that the mixed Hodge structure
of the universal enveloping algebra is motivic to the question that the one
of the Lie algebra is motivic.

LEMMA 4.154. Let x and y be two base points of M (tangential or not).
Then the pro-mixzed Hodge structure yUE is motivic if and only if the struc-

H .
ture Lo 8.

- H
PROOF. Since ,L5

sition 4.89, if yUaIc{ is motivic, then yﬁg is also motivic.

is a sub-mixed Hodge structure of yUg, by Propo-

Conversely, assume that yﬁg is motivic. Recall that yﬁg is an inverse
limit
H_ 1 H H
yﬁa: = 1<£1y‘ca:/(yﬁm)ZN—H'
N
By Proposition 4.89, each quotient in this limit is motivic. Since

JAN = h_]rv,nsym*(yﬁg/(yﬁg)zfvﬂ)va

we deduce that yAE is also motivic. By duality, we conclude that yUE is
also motivic.
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Now let z € X(Q) = P}(Q) \ {0,1,00} be a rational point and O the
tangential base point (0,1). By Lemma 4.154, to show that (U is motivic,
it is enough to show that oL is. To show that LI is motivic, we will
embed it in a mixed Hodge structure that we know is motivic. Once this is
proved, that ; Ul is motivic follows from the symmetry of X that sends z
to1l—x.

Let f: X — G,, be the natural inclusion. Then f induces a morphism
of mixed Hodge structures

o1: oL — oL(G,). (4.155)
The map f also induces a local monodromy map
f*: oU(Gm)g — oUp'-

Consider the composition of morphisms of mixed Hodge structures

VV®ld ~
0U2 ® gU(Gm)o —— U ®oUx' ® oU(Gm)o
SVeIldeId A
el xUé{(X)OUE ® OU(Gm)g xU;Ia

where the last morphism is induced by the composition of paths
N @Y @93 =71 [ (13) 2.
Restricting to Lie type elements we obtain a map
oLl ® oL(Gp)d — cH. (4.156)
Now the identification o£(G,)i = Q(1) yields a morphism of pro-mixed

Hodge structures
@1 oL — LH(-1). (4.157)

LEMMA 4.158. The following morphism of pro-mized Hodge structures
18 injective:
+ 21 LY — LG @ £l (-1)
1T P2 oy 0 m)g U xS~y :

PROOF. It is enough to check the injectivity on the de Rham side. Let £
be the free Lie algebra with generators ep and e; on degree —1. Let L be the
completion of £ with respect to this grading. Then we have that (L = C
and and (L(G,,)! = Qeg. Clearly, the map ¢ is the projection to the eg
component. By construction, the map (4.156), is given by a ® eg — [ep, al.
Therefore, the map ¢2: £ — L is given by a — [e0, a]. Denote by ¢h: L — L
the map given by the same formula. By [Reu93, Theorem 2.10] the kernel
of the map ¢}, is Qep. It is an easy exercise on inverse limits to show that
this implies that the kernel of s is also Qeg. Since 1 does not vanish on
the kernel of o we deduce the lemma. ([

Combining Proposition 4.150 and Theorem 4.145 we know that the pro-
mixed Hodge structure oL(Gy, )@ L2 (—1) is motivic. By Proposition 4.89,
we deduce that oL is motivic and by Lemma 4.154 that (U is motivic.



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 283

We now have to consider the case of two tangential base points. Let
x,y € {0,1} two tangential base points of X. Let z € X(Q) = P}Q) \
{0,1, 00} be a rational point. The composition of paths gives us a surjection

H H H
yUz ® .Uy — Uy

Since we already know that the structures on the left-hand side are motivic,
we deduce that yUaIc{ is also motivic. Once we know that, for all z,y € {0,1},
the mixed Hodge structure yUE is motivic, the realization functor RY being
fully faithful, any morphism among them is also motivic. Therefore, the
composition of paths, the completed coproduct, the antipode, the unit and
the counit, and the local monodromy maps are motivic.

4.6.5. The main theorem and some consequences. From the previous dis-
cussion we deduce

THEOREM 4.159 (Deligne-Goncharov [DGO05]). For each pair of tan-
gential base points ¢,y € {0,1} of X, there is a pro-mized Tate motive
yU}XIOt whose Hodge realization is isomorphic to yUg. By the fully faithful-
ness of the realization functor, yUg/[Ot is unique up to unique isomorphism.
Moreover, the unit and the counit, the composition of paths, the completed
coproduct, the antipode, and the local monodromy maps are motivic.

In fact we can do even more

THEOREM 4.160 (Deligne-Goncharov [DGO05]). For each pair of tan-
gential base points x,y € {0, 1}, the pro-mized Tate motive yUgXIOt 8 a pro-
object in the category MT(Z). The motive gU(Gyy, )5t belongs to MT(Z).

PRrROOF. The proof of this theorem relies on showing that the f-adic
realizations of these motives are unramified (see [DG05, Proposition 4.17])
and using Proposition 4.97. O

COROLLARY 4.161. The diagram Dg of definition 5.258 is motivic and
defined over 7.

The importance of this result is that it connects a very abstract and non-
explicit group Ggr = Aut®(wqr), but with known structure (see sections
4.5.3 and 4.5.5), with a very concrete combinatorial group Aut(D{R) (see
section 3.9.3). The group Ggg is the group of symmetries of the category
MT(Z). Therefore it acts on every motive defined over Z or even in any
diagram of motives defined over Z. Since the diagram DG[UR is motivic, the
group Gggr acts on it and we obtain a group homomorphism

Gar — Aut(DIR).

The subgroup Ugr C Ggr acts trivially on the motive Q(1), which implies
that its image acts trivially on ¢L£(Gy,)gY, hence on oU(Gy)g. Therefore
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the image of Ugg is contained in Aut®(DI®) and we obtain a commutative
diagram

0 Uar Gar Gm 0

| |

0 —— Aut?(DR) — = Aut(DR) — = G,, — 0

The next chapter will be mainly devoted to extract consequences of this
diagram.

* k x

EXERCISE 4.162. Use that [X] belongs to DMT(Q) and the fact that
DMT(Q) is closed under products and extensions to prove by induction
that [o<ny N, X?] belongs to DMT(Q).

EXERCISE 4.163. Show that the complex N Spec(Q)® is isomorphic in
C(SmCor(Q)pa) to the complex Spec(Q) concentrated in degree zero. Con-
clude that Ho(o<nyN Spec(Q)®) = Q(0) for all N > 0.
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5. Motivic multiple zeta values
(after Brown, Deligne and Goncharov)

In this final chapter, we pull together all the techniques developed so
far to prove theorems A and B from the preface. An important part of the
strategy will be to upgrade multiple zeta values to motivic multiple zeta
values, which are elements of a Hopf algebra. At the end of the chapter,
we will state some remarkable consequences of both theorems, among which
are the fact that periods of mixed Tate motives over Z are Q[%m.}—linear
combinations of multiple zeta values, and that Zagier’s conjecture implies
the algebraic independence of 7, (3),{(5),....

5.1. The upper bound. We now have all that we need to prove The-
orem A, the upper bound for the dimension of the Q-vector space generated
by multiple zeta values of a given weight.

5.1.1. Setting. Recall the construction of the Tannakian category MT(Z)
of mixed Tate motives over Z. The simple objects are the Tate motives Q(n),
for all n € Z, and the structure is determined by the extension groups

Q ifn>3odd

. (5.1)
0 otherwise

Extyrrz) (Q(0), Q(n)) = {

and the vanishing of higher extensions. The fibre functor
w: MT(Z) — Vecq

from (4.101) makes MT(Z) into a Tannakian category, hence equivalent to
the category of representations of the pro-algebraic Q-group

Gar = Aut®(w).

We have already determined the structure of Ggg using the computation
of the extension groups. It is a semidirect product

Gar =2 Ugr x Gy, (5.2)

where Ugg is a pro-unipotent algebraic group over Q. The Lie algebra ugg of
Uqr is (non-canonically) isomorphic to the completion of the free Lie algebra
with one generator og,+1 in each degree —(2n + 1) for all n > 1. Therefore,
the graded Lie algebra uﬁ% is a free Lie algebra.

Besides, in Section 3.9 we introduced the algebraic groups of symmetries
of the de Rham fundamental groupoid of P!\ {0, 1, 00}, which were denoted
by Aut’(DR) and Aut(DIR). Moreover we showed in Lemma 3.259 that
there is an isomorphism of (Q-schemes

Aut®(DR) ~ 1R,

This led us to define an algebraic group (I, o) with underlying scheme IHSR
and the multiplication induced by the above isomorphism (Definition 3.261).
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The group (I, o) acts on ;IIaR and the map v + v(;14) is an isomorphism.
Thus, IT4R is a trivial torsor under (II, o).
Theorem 4.159 implies that the diagram DR is the de Rham realiza-

tion of a diagram of mixed Tate motives over Z. Therefore we obtain a
commutative diagram

0 Udr Gar Gm 0 (5.3)
0 I Aut(D®) —~ G,,, — 0.

and we denote the first vertical arrow by
I:Ugp — 11 (5.4)
In particular, G4r acts on the pro-scheme 1H‘01R.
We introduce the notation

AMT = O(Uar),  A=0(I(Udr)). (5.5)
Note that there is an injective morphism of algebras A — AMT.
In (4.131) we introduced

HMT _ AMT ®0 Q[fg]

It is a Hopf module over AM7 | with f, in degree two, and its Hilbert-
Poincaré series is given by

Hypar () =Y dyt".
k>0

5.1.2. The algebra of motivic multiple zeta values. From now on we will
let dch®® denote the image by
COMPyR B+ 1H§(C) — 1H8R(C)
of the straight path dch € {II§(Q) from 0 to 1. This is nothing other than
what was previously denoted in (3.240) by:

L(dch) = (u(za)eq.

In particular, dch®®, which was a priori only a complex point of IHSR, lives

actually in ;TI3R(R), since all (regularized) multiple zeta values ¢, (z4) are
real numbers.

Recall that the affine ring of 1H8R is
O(IIR) = Q(zo, 1) = 9.
Evaluating an element f € O(lﬂgR) at the point dch® yields a map
dch: O(III?) — R



MULTIPLE ZETA VALUES: FROM NUMBERS TO MOTIVES 287

given by dch(f) = f(dch®®). For a word w in the alphabet zg,z, we get
w(dch®™) = ¢ (w). Thus, by Corollary 1.177, we obtain a surjective map
from O(;11aR) to the algebra Z of multiple zeta values.

REMARK 5.6. This map is very far from being injective, as all relations
between multiple zeta values belong to the kernel. As a result, the algebra
Q(xg,x1), which has the advantage of being elementary, is too big for the
purpose of proving Theorem A. The algebra O(Gggr) looks more promising
but it is still too big. In fact O(G,,) = Q[x,z~!] with z in degree 1. Using
the splitting of Lemma 4.113 we derive

O(Gar) ~ AMT ®¢ Qz, 2]

The presence of 71, that has degree —1, implies that the dimension of each
graded piece of O(Ggqr) is infinite, therefore this algebra is also not useful
for our purposes. Identifying fo with 22/24 we obtain an injective map
HMT — O(Gqr). The strategy to prove Theorem A is to prove that the
evaluation map “dch” factors through 7. This can be done in an ad hoc
way or we can use a nice geometric interpretation due to Brown.

Following Brown [Bro12, §2.3], we define a closed subvariety ) C ,IIgF
as the Zariski closure of the orbit of dch®®, that is:

Y = Ggg - dch®®. (5.7)
LEMMA 5.8. The subvariety Y is defined over Q.

PRrROOF. To see that )V is defined over Q we give another interpretation
of it. Recall that Pyrp is the torsor of isomorphisms between the fibre
functors wg and wqr. Thus there is an action

Par,p % 1115 — 411"
The point dch € II§(Q) induces a map dch: Pygrp — ;II3%. This map
is Ggr-equivariant and sends compggp g to dch®®. Thus, Y is the Zariski
closure of the image of the map dch. The point dch being rational, we
deduce that Y is defined over Q. O
We consider the Q-algebra
H=0).

The action of G,, on ) induces a grading of . Since ) contains dc
the map “dch” factors through H giving a map

per: H — R. (5.9)

dR
h™,

By Corollary 1.177 the image of “per” is Z. Moreover, since the action of
Gy, on Y is compatible with its action on IHSR and the grading that this
action induces on O(;I14R) agrees with the natural grading of Q(zg, z1), we
deduce that the image of Hy is Zp.
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DEFINITION 5.10. H is called the algebra of motivic multiple zeta values
and the map “per” the period map.

The map (5.9) is called the period map is because it is compatible with
the period map from Definition 4.119. In fact, since

dch(compgg ) = dch®,
there is a commutative diagram

O(Y) —*% O(Pir ) (5.11)

lper
per

C.

REMARK 5.12. We can interpret H as follows. Let Z C Q(zg, z1) be the
ideal of functions vanishing on dch. This is the ideal of rational relations
among multiple zeta values. The ideal of ), denoted by JM7, is the ideal
of motivic relations between multiple zeta values, that is, those explained
by geometry. The fact that J™7 C 7 will imply the upper bound of the
dimension of the space of multiple zeta values, while Zagier’s conjecture
will be equivalent to J™M7 = Z, that is, that every rational relation among
multiple zeta values comes from geometry.

Now, the strategy to prove Theorem A is to get the inequality dim Hj <
dj, from an injection H — H™M7. This injection will come from the study
of the geometry of ). As a consequence of Theorem B to be proved latter,
we will see that, in fact, the equality dim Hy = dj holds and the algebras H
and HMT are isomorphic.

5.1.3. The structure of ). Recall from Proposition 4.115 that there ex-
ists an element

a=up - 7(2mi) € Ugr(R)7(27mi) C G4r(C) (5.13)
such that wg(M) = (compp 4 oa)(war (M)) for all M in MT(Z).
LEMMA 5.14. There exists v € II(Q) such that
dch®™ = (I(up) o 7(271) (7)) (110)- (5.15)
Moreover, for any v satisfying (5.15), one has 7(=1)(y) = 7.
PROOF. By Proposition 4.115 thereis a+’ € ;IIg%(Q) such that dch? =
a(y'). Let v € II(Q) such that v = (;15). Then
dch® = (ug - 7(274)) (7))
= I(uo)(7(2mi)(v(110)))
= (I(uo) o 7(2mi)(7))(110)-
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The second assertion follows from the fact that both dch and wug are
real, hence so is 7(27i) (). Writing v = >_ ¢, w in Q{eg, 1)), it follows that
cw = 0 for w of odd degree, thus 7(—1)(v) = ~. O

Let us write v = > cuw in Q{eg,e1)). Since 7(—1)(y) = ~ by the
previous lemma, only monomials w of even degree contribute. It follows
that the map G,, — II defined by t + 7(¢)(vy) depends only on 2. Indeed,
if one defines

p(t) = theg;w)cww (5.16)
one has 7(t)(y) = p(t?). Observe that p extends to Al with p(0) = 1.
THEOREM 5.17. The morphism of schemes
V: I(Ugr) x A — 11
(u,t) —> uwop(t)
induces an isomorphism I(Ugr) x Al ~ Y given by (u,t) — ¥(u,t)(11,)-

PROOF. Recall that the graded Lie algebra ufy, is positively graded and
is zero in degree < 3 by Theorem 4.123. Thus any element u € I(Ugr) can

be written as
u=1+4+ Z EwlW.
deg(w)>3

The coefficients of the monomial epe; in p(t) and u o p(t) agree. Let us
compute the former. Recall that

dch®® =1 — ¢(2)ege; + higher degree.
Since dch™® = (u o 7(27i)(7))(;1¢) by Lemma 5.14, one has (27i)2cepe; =
—((2), which yields the value ceye, = i by Euler’s formula. The coefficient
of epey in p(t) is thus equal to .
This leads naturally to consider the maps
c: 11— Al
r —— 24 - coefficient of ege; in .
p: II — 11
z— z o ple(z)) L.
By the previous discussion, we have c¢(¢(u,t)) =t and p(¢(u,t)) = u. In
particular, the morphism ¥ is injective.

Observe that x € II is in the image of ¢ if and only if ¢(x) belongs to
I(Ugr). Therefore, Imp = o 1(I(Ugr)). Since I(Ugr) is closed in II, the
same holds for Im . By Lemma 5.14, (Im 1)1, contains Ggg - dch®™® as an
open dense subset, so it has to be equal to its closure J). Write ) for the
preimage of ) in II. To conclude, we note that the map )’ — I(Ugr) x Al
given by = — (p(x),c(x)) is an inverse of 1). O
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COROLLARY 5.18. There is an isomorphism of graded algebras
H =~ A®q Qlt],

where t sits in degree two. This isomorphism induces an injection H —
that sends t to 24 fs.

fHMT

PrOOF. We need to show that the map ¢ from the previous theorem is
G n-equivariant provided that one makes A € G,, act on A' by ¢ — \?t. On
the one hand, formula (5.16) gives p(A%t) = 7(\)(p(t)). On the other hand,
using Proposition 4.113, we get

T(A)(wop(t)) = 7(A)(u) o T(A)(p(1)),

from which the result follows. O

5.1.4. Proof of Theorem A. Since the map (5.9) is surjective and respects
the weight, it suffices to show that dimH; < di for each k£ > 2. But
Corollary 5.18 and Lemma 4.132 yield

dim Hy, < dim(HM7), = di.

5.2. Motivic multiple zeta values and the motivic coaction. In
this section, we define some elements of the algebra H which will be called
motivic multiple zeta values. Thanks to the existence of the coproduct, we
can find many relations between them, which will translate into relations
for the usual numbers.

5.2.1. The structure of AM7. From the fact that Lie(Ug) is isomor-
phic to the completion of the free Lie algebra with one generator in each
odd degree < —3, we know that A7 is non-canonically isomorphic to the
graded Hopf algebra

U =Q(f3, fs, fr,---)
whose underlying space is the set of non-commutative words in symbols
foix1, 1 > 1in degree 2i + 1, whose product is the shuffle product and whose
coproduct is the deconcatenation coproduct

A(fisfis - fi) =D fir o i @ firyr - i (5.19)
k=0
We introduce the commutative graded algebra
U=U" ®q Q|fa], (5.20)
with f2 in degree 2. There is a coaction
AU —U @U (5.21)

obtained by declaring Afy = 1 ® fo, that turns & into an U’-comodule.
Clearly HMT7 is non-canonically isomorphic to U.
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For later use, it will also be convenient to introduce the elements fo,
for n > 2. They are defined as fa,, = by, f3', where b, is the rational number
satisfying ((2n) = b,((2)™ by Euler’s Theorem 1.3.

The Hopf algebra U’ and its comodule U are useful for explicit compu-
tations. Later we will fix a convenient isomorphism

o HMT U (5.22)
satisfying certain normalization requirements. But for the moment we de-
note by ¢ any such isomorphism.

For compatibility with the theory of multiple zeta values, the grading in
U, U, H and the other algebras will be called the weight.

We first present the computational tools we will use at the level of U/’
As in Definition 3.69, the Lie coalgebra associated to U’ is

L=Uo/( />0)2-
Since there is a canonical decomposition U’ = Q@& UL ;, we have a projection
q: U — L. The Lie coalgebra L inherits a grading from U’. Let Ly be the
subspace of weight N and py: L — Ly the projection. We define a map
Dori1: U — Loryq (2%0) Uu (523)

as the composition

i ®ld
U 2 Y oo u N Legu TS Loy @g U,

where A is the extended coproduct (5.21). We will see in Exercise 5.46 that
the maps Do, 1 are derivations. We put

Dcy= € Do (5.24)
3<2r+1<N
LEMMA 5.25. Let N > 2 be an integer. Then:

(Ker Don) NUN = Qfn.

ProoF. We first show that fy € Ker D.n. When N is even, we already
have Afy —1® fy =0. If N is odd and 2r + 1 < N, then

Doy y1fn = pary1(a(fn)) @1 =0.

Thus fy € Ker D.y. Conversely, let & € Uy. Such an element can be
uniquely written as

E=afy+ Z for10p
3<2r+1<N

with v, € Uny_9,_1 and a € Q. Using the explicit expresion of the coproduct
A, we see that

Dori1€ = for41 ® v + other terms,
where none of the monomials of U3, ; which appear in the extra terms is
for41. Thus, if Dor11& = 0 we deduce that v, = 0. O
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5.2.2. Motivic multiple zeta values. Recall that, in formula (3.268) at
the end of chapter 3, we introduced, for each binary sequence «, a function
on II which we denoted by

I(1;050) = z4.

We now let I™(1;a;0) denote the restriction of this function to Y, that is,
the projection to the quotient

I™(1;0;0) € H = 0O(11)/ M.
Following formulas (3.268), for latter use, we denote
I™(0;051) = 2|y

and
1 a=0,
0 a#.

We now list some useful properties of the motivic iterated integrals.

I™(0;0;0) = I"(1;051) = { (5.26)

LEMMA 5.27.
(1) If N > 1, then I™(eg;e1---en;en+1) =0 when e; = -+ = ep.
(2) Reflection formula
I™(Ler---en;0) = ()N I™ (05 -+ €13 1)
=I"(1;1—en---1—¢71;0)
PROOF. Property (2) follows from Theorem 3.217 (1) and the symmetry
zr—z— 1.

We prove property (1). Since I™(0;0;0) = I™(1;;1) = 0 for a non-
empty binary sequence o and, by (2), I™(0;etV} 1) = (=1)N 1™ (1; 1V} 0),
it suffices to show that I™(1; eV}, 0) = 0. For this, we use the identity

1
mer. AN gy — .o )Y
I™(1;¢ ’0)_N!I (1;£;0)
and the fact that I™(1;¢;0) = 0 since the algebra H has no elements in
degree one. O

DEFINITION 5.28. For a positive multi-index s = (sq,...,s,), the asso-
ciated motivic multiple zeta value is the element of H given by

(™(s) = I™(1; 0t~ ot =1 o).
The binary sequence (0t1=1} 1 ... 0fs-=1} 1) is called the binary se-
quence associated to s and is denoted in Definition 1.124 as bs(s).

The period map per : H — R from Definition 5.10 satisfies

per(C™(s)) = Cw(s).
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REMARK 5.29. Due to the different convention on the definition of mul-
tiple zeta values and of iterated integrals there is a discrepancy between the
symbols used here and the symbols used in [Brol2], that we summarize
here. We denote (§(s1,...,5r), IB(c0 : €1,...,6n : €ny1) and (p(s1,...,S)
the motivic multiple zeta values, motivic iterated integrals and multiple zeta
values used in [Brol2]. Then

CB(Slv"'vsT) — Cm(Sr,.. . ,81)
Ig(eo:e1, .. 6nEnt1) = I"(Ens1 1 €n, ..., €1 1 €0)

CB(s1y..y8r) =C(Spy. ., 81).

The map per is the same in [Brol2] and in this book because it is the
evaluation morphism at a point. The translation from motivic multiple zeta
values in [Brol2] is given by

CB(s1,...,8,) = I5(0: 10t= 1 1ofsr—1h 1),
while here is given by

C™(s1,...,8,) = I™(1: 0t~ U1 ol . ),

Both equations are compatible via the change of notation.

If s is admissible, then (™(s) # 0. In particular, (™(2) # 0. In fact
¢™(2) is the function on Y that sends an element g of Y(Q) C Q{ep,e1))
to its coefficient on epe;. It follows that (™(2) is sent to o5 under the
isomorphism H — A ® Q[t] of Corollary 5.18. Therefore it is sent to fo
under the injection H — HM7 of the same corollary.

REMARK 5.30. The fact that ¢™(2) is not zero is an important differ-
ence between Brown’s and Goncharov’s approaches to motivic multiple zeta
values. Recall that Ugr C Ggr and that we had elements 1gr € II(Q) and
dch®® € II(C). Goncharov works with the orbit of 1qg under Ugg:

X = UdR -1gr C II

which is isomorphic, as a variety, to I(Ugr). Hence O(X) ~ A. However,
Brown works with the variety ) defined as the closure of the orbit of dchi®
under Ggr

Y = Ggr - dch®™® ~ [(Ugg) x Al
Since the leading term of dch®® is 14r we deduce that
%%T(t)dchdR = 14r.
Therefore X C Y and the inclusion from & to ) is given by x — (z,0). In

other words, the inclusion X — ) is given by the algebra morphism
T H— H/(M(2)H = A. (5.31)
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5.2.3. The motivic coaction. Goncharov’s coproduct from Proposition
3.270 induces a coaction

ArH— AR H (5.32)
given by the formula
AI™(eg;€1+ - EN;EN+1) =
k
Z T H Im(Eip; €iptl """ Eipyr—15 5ip+1)
0=ig<i<-- p=0

<ip<ipy1=N+1
&® Im(Eo; i 7 Eik;5N+1)a (5.33)

where 7 denotes the projection (5.31).

LEMMA 5.34. For all N > 2,
A(™(N) =1 (™(N) +7((™(N)) ® 1.
PROOF. By Definition 5.28, we have ¢(™(N) = I™(1;0{¥=1}1;0). Using

part (1) of Lemma 5.27, we see that the only non-vanishing terms in the
coproduct formula (5.33) correspond to the partitions

k=0,ig=0,iy=N-+1, k=N, i;=4, j=0,...,N+1.
The first partition yields the term 7 ({™(N)) ® 1, while the second one gives
1® (™(N), thus proving the result. O

The formula (5.33) is rather complicated, so we will use an infinitesimal
version of it, which is the analogue of the derivations D, for the algebra
of motivic multiple zeta values H. For this, we consider the Lie coalgebra

L=A-0/(As0)%,

which inherits a grading from A. Let £y be the subspace of degree N and
pn: L — Ly the projection. We still have a projection ¢q: A — L.

DEFINITION 5.35. We define a map

D2T+1Z H—> £27«+1 ®Q H (536)
as the composition
- 1 1®1d
WA A g H L LogH S £y 0o K
We put
Doy = @ Doryy. (5.37)

3<2r+1<N

For any isomorphism ¢: AM7T — 1’ of Hopf algebras, we extend it to
an algebra isomorphism, ¢: HM7 — U by sending fa to fo. It is also an
isomorphism of comodules. By abuse of notation, we will denote by ¢ the
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restriction of ¢ to A and the map £ — L induced by A — AMT ﬂ u'.
Then the following diagram commutes:

1 ¢ u (5.38)

Dory1 l lD2r+1
PR
Lory1 @ H—— Lor11 QU.

LEMMA 5.39. There exists an isomorphism ¢: HMT — U as before that
sends C™(N) to fn for all N > 2.

PROOF. We start with any such isomorphism ¢. By construction ¢ sends
f2 to fa. By the discussion before Remark 5.30, ¢ sends (™(2) to fo.

By Lemma 5.34 we deduce that Doy(™(N) = 0. By the commutativity
of the diagram (5.38) we deduce that Doy¢(¢(™(N)) = 0. By Lemma 5.25,
#(C™(N)) = anfn for axy € Q*. For N = 2r even,

d(C™(2r)) = aar for = aorby fo = d(aarb.CM(2)").

By the injectivity of ¢ we deduce that ("™(2r) = ao9,b.(™(2)". Taking the
period map we see that as, = 1.

By the structure of U’, for any family of non-zero rational numbers
aor1+1, 7 > 1, there is an automorphism of U’ that sends fo,41 to azj,lﬂ fors1-
Therefore we can normalize ¢ as we want.

As a byproduct of the proof, we have seen that
¢™(2r) =b.C™(2)". (5.40)

The following projection will appear in the explicit description of the
operators D,,.

DEFINITION 5.41. For each n > 1, we denote w, =pp,oqonm: H — L,.

The projection o, kills (™(2), all products and all motivic multiple zeta
values of weight different from n.

PROPOSITION 5.42. For n < N odd, the action of D, is given by
DypI™(e0;61- - enjeN+1) =
N—n
Z @n (1™ (Ep Ep+1 " * Eptm Eptn+1))
p=0
@ I™ (0581 €py Eptntly-- - ENSEN41)- (5.43)

PRrROOF. The projection ¢ kills all decomposable elements of A~y and
the projection p,, kills all the elements of degree different from n. Taking
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into account that
I™(g;0;¢") = 1, if @ = 0, while
I™(g;05¢") € Aso, if a # 0,
it follows that in the sum that runs over partitions
O=t<u< < <ipr1=N+1

only the terms having exactly one gap of length n survive. This gives the
desired formula. O

5.2.4. The kernel of Dy .
THEOREM 5.44. Let N > 2 be an integer. Then
Ker Doy NHy = QC™(N).

PRroOOF. Choosing a normalized isomorphism ¢ as in Lemma 5.39, the
result follows from the combination of Lemma 5.25 and the commutativity
of the diagram (5.38). O

The theorem has the following useful corollary:

COROLLARY 5.45. Let N > 2 be an integer and a™ an element of Hy.

Assume that Doy (a™) = 0 and per(a™) = a((N) for some rational number
a. Then a™ = al™(N) in H.

PROOF. Since a™ € Ker Doy N Hy, Theorem 5.44 gives the existence
of a rational number § such that a™ = S(™(N). Applying the period map,
one gets BC(N) = per(a™) = a((N), hence 8 = a. O

The importance of this corollary is that it allows one to lift relations
between classical multiple zeta values to their motivic counterparts.

* k x

EXERCISE 5.46. Show that the maps Day41: U — Loy41®oU from (5.23)
are derivations, that is, they satisfy

Dayy1(6182) = (1 @ &1)Dory1(82) + (1 @ &2) Dary1(61)

for all &1,& € U. The same holds for the maps Dy,y1: H — Lor41 ®g H
introduced in Definition 5.35.

EXERCISE 5.47 (Linear independence of (™(2,3) and (™(3,2)). The goal
of this exercise is to prove the linear independence of the motivic multiple
zeta values (™(2,3) and (™(3,2) by exploiting the derivation Ds. Since Hs
has dimension at most ds = 2 by Theorem A, it will follow that they form
a basis. This is the first non-trivial case of Brown’s theorem.

(a) Prove that I™(1;010;0) = —2¢™(3) and I™(0;100;1) = —¢™(3).
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(b) Use the general formula (5.43) for the action of the derivation Ds

and the identities from part (a) of the exercise to compute
D3(™(2,3) = —2w3(¢"™(3)) ® ¢™(2),
D3(™(3,2) = 3ws(¢™(3)) ® ¢™(2).
(c) Now assume that ¢(™(2,3) = A(™(3,2) for some rational number \.

By part (b), then one necessarily has A = —2/3. Upon application
of the period map, argue that this leads to a contradiction.

EXERCISE 5.48 (Brown’s proof in weight 5). The trick from the previous
exercise does not generalize to higher weight. Here we present an alternative
argument which can be seen as a toy case of Brown’s proof.

(a) Prove the equality D3(¢™(3)(™(2)) = w3(¢™(3)) ® ¢(™(2). Together
with the computations in Exercise 5.47 and Theorem 5.44, this
implies that there exist rational numbers «, 5 € Q such that

¢™(2,3) +2¢"(3)¢™(2) = a™(5),
¢™(3,2) = 3¢"(3)¢™(2) = BCV(5).
(b) By virtue of Corollary 5.45, the stuffle product and the first identity
in (1.68), deduce that « =9/2 and g = —11/2.
¢) Let grf' H>? ¢ ‘Hs be the subspace spanned by (™(2, 3) and (™(3, 2
( ) g1y 5 P p Y ) 9
(the reason for this notation will become apparent later). We define
a linear map (f,g): grf?—lé’?’ — Q? by requiring
Ds(a) = f(a)ws(¢™(3)) @ C"(2),
Ds(a) = g(a)ws (¢ (5)) ® 1
for all a € grf’l—[?’g. Use parts (a) and (b) to show that this map
has rank two, hence (™(2,3) and (™(3,2) form a basis of Hs.

5.3. Two families of motivic multiple zeta values and Zagier’s
theorem.

5.3.1. Certain relations among motivic multiple zeta values.

LEMMA 5.49. For each n > 1, the following equality holds:

LC"‘(Q)”'

@) = (2n +1)!

PRrROOF. Recall that
¢m2ihy = 1™(1;01.7.01; 0).
Then Do, 1¢™(2{") = 0 for all 3 < 2r + 1 < 2n, because in formula (5.43)
every sequence of the form ¢, ..., ep42-42 Will start and end with the same

value. By (5.20) the corresponding motivic iterated integral is zero. Hence
¢™(21"}) € Ker D_y,. By Theorem 5.44 and equation (5.40), we deduce that
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¢™(2{"}) is a rational multiple of ¢™(2)™. To get the precise multiple we use
the period map and Example 1.29. O

In order to simplify notations, we write
¢M(s) = I™(1; 0871 ofsr =10, 0).
LEMMA 5.50. Forn > 1 the following equalities hold:

¢r2lndy = QZC“‘ (2t g2{n=i=1}) (5.51)
=0
(2{n}) = QZ )™ (20 + 1)¢m (2t (5.52)

PROOF. Recall from (5.26) that I™(1;0;1) = 0. Since the multiplication
in H is given by the shuffle product, we have

n—1
0 =I"™(1;01.7.01; 1)I™(1;0; 1) = (P (20) +2) " ¢retisatn—=1h,
=0
from which the identity (5.51) follows.
5.5

To prove equation (5.52) we first show the equality of multiple zeta

values

n

n—1
=Y ¢etaalrTiT) = 3 (—1)°¢(2i + 1)¢ 2 (5.53)

i=0 i=1
using the stuffle product. Indeed, by Exercise 1.46, we have

n—2
¢(3)¢(2in=1h Z ¢(2tigatn=1-iy 4 Z ¢(2t52in—2-i}y

=0 i=0
n—2 n—3

()M =3 ctst) 4 3 ¢ tnate)
1=0 i=0

C2n—1)¢(2) =C¢(2n—1,2) +¢(2,2n — 1)+ ((2n + 1)
C2n+1)=¢2n+1).
Taking the alternate sum of each row we obtain equation (5.53).

We now prove equation (5.52) by induction on n. The case n = 1 is
contained in Exercise 5.47. By Exercise 5.77, for 3 < 2r +1 < 2n,

Do 1 (7' (21 = w1 (R (2IH)) @ ¢ (2777, (5.54)
by induction hypothesis and the fact that wa,41 kills products

Daraa (P (20 = 2(=1) @21 (C™(2r + 1)) @ (2.
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Moreover, using the fact that Da,1 1 is a derivation,
Dapr (C™(2r + 1)¢™ 2 )) = warpa (C(2r + 1)) @ ¢ (5.55)
and for r # i
Dor i1 (C™(2i + 1)¢™ (2" = 0. (5.56)

Therefore, if O is the difference of the two terms of equation (5.52), then for
3<2r4+1<2n,

D27«+1@ - 0
Hence, by Theorem 5.44, O is a multiple of (™(2n + 1), and formula (5.52)
follovvs from Corollary 5.45 and equations (5.53) and (5.51). O

Given two integers r and s, we let I(r > s) denote the indicator function

>
]I(rZs)-{l r > s,

0 else.

LEMMA 5.57. Let a,b > 0 be integers. For each 1 <r < a+ b, one has
Dop1¢M(20132() = @, (&) @ (2L,

where the element & , € H 1is given by

&y = Z ¢m(2tPgatady Z ¢™(2fetzaifh)

a<la a<a
B<b B<b
a+pB=r—1 a+B=r—1

+ (16> 1) = T(a = 1)), (5.58)

ProoF. To prove the result it is enough to check which non-zero terms
appear in formula (5.43). These terms are given by consecutive subsequences
of 2r + 1 entries and can be of the following types:

(1) subsequences containing 001 and starting with 1, these contribute
to the first sum;

(2) subsequences containing 001 and starting with 0, after applying the
reflection formula of Lemma 5.27, these subsequences contribute to
the second sum;

(3) when b > r there is exactly one sequence ending with 00 this gives
the term I(b > r)¢M(217});

(4) when a > r there is exactly one sequence starting with 00. After ap-
plying the reflection formula we obtain the term —I(a > r)¢(2{").

Using equation (5.26) is easy to check that all the other subsequences do
not contribute to the result. O
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PROPOSITION 5.59. Given a,b > 0, writen =a+ b+ 1. There exists a
unique n-tuple of rational numbers (ozg’b),nzl,,,,,n such that

¢m2®halel) =3 "ar ™2 + 1), (5.60)
r=1

PROOF. The proof proceeds by induction on n. Assume that the result
holds for all integers smaller than n. In particular, all the numbers o ,
are defined for a + b+ 1 < n. Consider a,b such that a +b+ 1 = n. We
compute Dy, 1¢™(21033219}) for all 7 < n. Let &ap De the term that appears
in Lemma 5.57. By induction hypothesis and equation (5.52) we can write

o = g p¢"(2r + 1) mod products

for a rational number o] ,. Therefore

w2r41(€ap) = Qgp@2r+1(CN (27 + 1)), (5.61)
from which it follows that
Dara¢™(20132(91) = o o, 1 (C(2r + 1)) @ ¢ (21, (5.62)

Using equations (5.55) and (5.56) we deduce that both sides of the equation

to be proved have the same image under D.9,+1. By Theorem 5.44, they
differ by a rational multiple of (™(2n+ 1) and one defines @, in such a way
that this difference is zero. O

We have here a remarkable example of both the strength and the limits of
the motivic formalism. Applying the period map (5.9), the motivic identity
(5.60) implies that the same holds for usual multiple zeta values, something
which would have been difficult to predict working only with numbers, where
the coaction is invisible. However, the motivic formalism alone does not
allow us to compute the precise value of the constants O‘Z,b' For this one
needs to prove the corresponding identity of numbers first, then show that
it is motivic. The first task was accomplished by Zagier in [Zag12].

5.3.2. Zagier’s theorem. Define, for each a,b,r > 0, rational numbers

2r 2r
Al = np=(1—27"" : :
= (pry) Bu=0-2(,77 ) e

As in the previous paragraph, we set n = a + b + 1.

THEOREM 5.64 (Zagier, [Zag12]). The following equality holds:
¢824y =23 (=1)" (A7, — Byy) ¢(2r + 1)), (5.65)
r=1

REMARK 5.66. The original proof of Zagier’s theorem has been simplified
in [Li13]. It is also worth mentioning that Terasoma [Ter13] showed that
the relation (5.65) holds for any associator.
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5.3.3. Lifting Zagier’s theorem to a motivic identity. The first non-trivial
case of Zagier’s theorem are the identities

€(2,3) = —2¢(3)¢(2) + 5¢(5),
((3,2) = 3¢(3)¢(2) — 5¢(5).
In Exercise 5.48 we show that they lift to motivic equalities.

THEOREM 5.67. For a,b >0 and1 <r < a+0b+ 1, the numbers o ,
from the statement of Proposition 5.59 are equal to
oy = (—1)"2 (AL, — By,) - (5.68)

In other words, writing n = a + b + 1, the following identity of motivic
multiple zeta values holds:

¢m(2th32ted) = 2% (- ne) CTr+ 1R (5.69)

)

PRrOOF. We first note that, for any a,b > 0 and 1 <r < a+ b+ 1, the
following identities are satisfied:

= > Alg— > AL +Ib=r)—I(a>r), (5.70)

a<la a<la
B<b B<b
a+p=r—1 a+p=r—1
= Y, Bls— > Bja (5.71)
a<a a<a
B<b B<b
a+p=r—1 a+pf=r—1

This can be proved using that A;b does not depend on b, that B, does

not depend on a, and the symmetries Agzﬁ o Ao‘+ﬁ Zitl and BO‘J“BJrl =

-1
Bgzﬁ 1 For instance, the second equality is clear because by symmetry

each term of the second sum cancels one term of the first sum; the only
remaining term in the first sum is B]_;_ bb that agrees with B} , because it
is independent of a. To prove the ﬁrst equahty we may dlstlngmsh different
cases according to whether a¢ and b are bigger or equal to r or not. For
instance if a < r and b > r, the term Az;b is different from zero. In this
cases both sums range from (o, ) = (a,7 —1 —a) to (0,7 — 1). By the
symmetry of the A’s all terms cancel except Aj . , from the first sum,
that agrees with A7 , and —AJ_; o = —1 that cancels with I(b > r). The
remaining cases are similar.

We now prove the result by induction on n = a+b+1. So we assume that
equation (5.68) is true for all ’, b’ with '+b" < n—landall1 <7’ < d'+0'+1
and fix a,b with a +b+ 1 = n. We conpute Dy,1¢™(2{73219}) in two ways
and compare the results. The first way is equation (5.62), while the second is
to apply Lemma 5.57, then use Lemma 5.50 to get rid of the terms Cf‘(Z{”})
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and apply equation (5.61) to the terms o, 1(¢™(217132 7})). Comparing
both results we obtain

Wp= D, Ghg— D b +2-) (1027 ~1a2r)).

a<la a<la
B<b B<b
a+p=r—1 a+p=r—1

By the induction hypothesis and equations (5.70) and (5.71), we deduce the
equality (5.68) for 1 <r <a+b.

To treat the remaining case r = a+b+1, let © be the difference between
the left and right hand sides of equation (5.69); it is a motivic zeta value of
weight 2a + 2b + 3. The identities we already proved and equation (5.60)
yield Dogiap+3(0) = 0. By Zagier’s Theorem 5.64, we obtain per(©) = 0.

Finally, Corollary 5.45 implies © = 0, thus proving the result. O
5.3.4. The coefficients cs. Among the coefficients o, ,, the leading one
aZ'ZbH will play a special role, so we single it out.

DEFINITION 5.72. Let s = 2173219} be an admissible multi-index with
only one entry equal to 3 and all the remaining entries equal to 2. We set

a+b+1

Cs = Qyp

We will also write
Cramy = 2(—1)".
Lemma 5.50 and Proposition 5.59 are then rephrased as follows:

COROLLARY 5.73. For positive integers n,a,b with n = a + b+ 1, the
following equalities hold:

(1) @ant1(¢P(21M)) = ¢ ¢™(2n + 1),
(2) w2n+1(Cm(2{b}32{a})) = Coppygta) (™ (2n + 1).

Moreover,

n—1
Cio{n} = —2 Z Co{i}go{n—i—1}- (574)
i=0

Recall that, given a prime number p, the p-adic valuation of a non-zero
rational number z is the only integer v,(x) such that z can be written in
the form z = p”P(’”)% with a and b relatively prime to p. We set v,(0) = oc.

As a consequence of Theorem 5.67, the coefficients ¢,, have the following
2-adic properties.

LEMMA 5.75. Let w a word of the form w = 2183219} and denote by w*
the word written in reverse order, i.e. w* = 21933210} Then

(1) cw € Z[5],
(2) cw — cy+ 1S an even integer,
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(3) va(Cyin-1y5) = V2(C39tn-1y) < V2(Cyw) < 0.

4

PRrROOF. Set n = a + b+ 1. Recall the formula from Theorem 5.67:
cw = (=1)"2 (A5, — Byy) -

Since Ay, is an integer and By, belongs to Z[%], the first claim follows.

Property (2) is obtained from the symmetry By, = By',. Indeed,
cw — cyr = (—1)"2[Ay, — Ay, € 2Z.

To prove (3), we first observe that va((2n)!) < 2n, hence

(277 (21?11) ) <O0.

Using the triangle inequality, it follows that

valew) = v2(2- 272 (,71) = 1+ 0272 (,77)) < 0.

For the remaining inequality, we write

2n _
(2511) = 26+ 1 (QT;b 1)'

Therefore,
va(cw) =2 — 2n + va(n) + v2( (7% 1)).

Since vg((%égl)) > 0, the right-hand side attains its minimum for b=n —1

and b = 0, which correspond to the cases w = 2{"" 13 and w = 32{»~1}. O

* K Kk

EXERCISE 5.76. Show that one may replace ((2{"~"}) by either ¢(2n—2r)
or ((2)™ " in the right-hand side of Zagier’s theorem 5.64 without losing the
rationality of the coefficients o ;.

EXERCISE 5.77. Prove equation (5.54).

5.4. The subspaces #?3.

DEFINITION 5.78. We denote by H23 < O(II) the subspace generated
by the functions I(1; a;0), where « is the binary sequence associated to an
admissible multi-index containing only 2 and 3 as entries, and by HZ3 CH
the image of %23 under the restriction map

res: O(I) — H.
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Clearly, 1?3 is the Q-vector space spanned by the motivic multiple zeta
values (™(s1,...,s,) with s; € {2,3}.

From now on, we identify the set of words in the alphabet {2,3} with
the set of admissible multi-indices with only 2 and 3 as entries.

We filter H23 by the number of entries equal to 3 in the admissible
multi-index. Precisely, for each integer £ > 0, consider

FyH> = (I(1;bs(s); 0) | s contains < £ entries equal to 3)Q-
This defines an increasing level filtration

0C F0ﬁ273 C F17-[2’3 C---

By restriction, we deduce an increasing filtration on H>? with
F/H?3 = ((™(s1,...,5,) € %3 | number of s; = 3 < £)q.

The associated graded pieces grgF H23 are the Q-linear spans of motivic mul-
tiple zeta values with exactly ¢ entries equal to 3. In particular,

grg 1P = (("(21) | n > 1)q,
grf H2% = (("(211321) | 0.b > 0)q.
Note that these are precisely the two families of motivic multiple zeta values

that we studied in the previous section.

REMARK 5.79. The Q-vector space gréF 7'712\73 is non-empty if and only if
the weight N and the level ¢ have the same parity. When this is the case,
writing N = 2m + 3¢, the dimensions are given by

dimg gry’ 7—712\,3 = (mz— g) .

5.4.1. The level lowering operator. Recall that in Section 3.9.6 we intro-
duced Goncharov’s coproduct as a morphism

A O(IT) — O(IT) @g O(I0). (5.80)
From this we obtained the motivic coaction (5.32)
A:H— AxqH

that we have been using in the last pages. In what follows, we will also use
an intermediate version

A: O(T) — A® O(II)

which is simply obtained from (5.80) via the projection O(II) — A (recall
that this corresponds to restricting a function on II to the subvariety X of
Remark 5.30). This is nothing else but the coaction associated to the action
of I(Ugr) on II. As in Definition 5.35, there are maps

Doryq: O(H) — £2r+]_ X O(H)
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Following the proof of Proposition 5.42 we see that, for all odd integers
n < N, the analogue of (5.43) also holds:

DypI(eo;e1--EN;ENF1) =
N—n
Z @ (1™ (€p; Ept1 - Eptni Eptnt1))
p=0
® I(€0;€1 " Epy Eptntls-- -, EN;EN41)- (D5.81)

We now study how the filtered subspace H23 C O(II) behaves with
respect to the coproduct and the infinitesimal coaction.

LEMMA 5.82. The subspace H23 is stable under the coaction:
AL TS s A g 24,

PROOF. Let I(1;; 0) be an element of H23. Then a is a binary sequence
obtained by successive concatenation of the subsequences 01 and 001. From
the explicit formula for the coproduct (5.33) and the fact that the iterated
integrals I(g;a/;¢’) vanish when ¢ = &’ and o # 0, we deduce that each
non-trivial term appearing in AI(1;a;0) has, in the right hand side of the
coaction, a factor of the form I(1;3;0), where (3 is again a concatenation of
the subsequences 01 and 001. O

REMARK 5.83. In [Dell3, §6.3], the above result is rephrased by saying
that the subspace H?3 is “motivic”, thus invariant under the action of Ugg.

From this we immediately deduce:

COROLLARY 5.84. For each r > 1, the derivation Dao.y1 Testricts to a
map N N
Doy H>? — Lopi1 @g H>.

In fact, more is true:

LEMMA 5.85. The derivations Da,11 are compatible with the level filtra-
tion, in the sense that:

Doyyq: Fﬂtp"g — £2T+1 0¥0) F£71ﬁ2,3.

PROOF. Given a word s in the alphabet {2,3} of level ¢, then bs(s)
contains exactly ¢ subsequences 00. Any subsequence of odd length of
(1;bs(s); 0) that begins and ends with the same symbol will be killed by
I™ and will not contribute to Da,41. Otherwise it must contain at least a
subsequence 00. Thus the complementary quotient sequence will contain at
most £ — 1 subsequences 00. Hence will have level at most ¢ — 1. U

The above lemma yields a map

grngrH: grfﬁz’g — Lop1 ® gr{_l’gz’?’. (5.86)
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LEMMA 5.87. For all r,£ > 1, one has
grf Dary1(grf H®) € Quogr1(C™(2r + 1)) ®g gry H>®.

PROOF. Let s be a word in the alphabet {2,3} of level ¢, and let
I™(1;bs(s);0) be the corresponding motivic iterated integral. From the
definition of Dag,11, we have

grf Dar1(C™(s)) = D wari1(I™(7)) @ ("(s5), (5.88)

where the sum runs over all subsequences v of (1;bs(s);0) of length 2r + 1,
and s, is obtained by removing the internal part of +.

If v contains more than one subsequence 00, then s, has level < ¢ —1,
hence does not contribute. If v begins and ends in the same symbol, then
I™(7y) is zero. One checks that I™(y) can be of four remaining types:

(1) I™(1;01...01001...01;0) = ¢™(2{8}32{ad),
(2) I™(0;10...10010...10;1) = —¢™ (218t 32{ed),
(3) I™(1;01...10;0) = ¢™(2i}),
(4) I™(0;01...10;1) = —¢(2{h.
By Corollary 5.73, in all cases one has wa,+1(I™(7)) € Q¢™(2r 4+ 1). O

REMARK 5.89. Lemma 5.87 says that the map (5.86) factors through
the one-dimensional subspace [(uar)32, ] of Loyt1.

The above lemma justifies the following definition:

DEFINITION 5.90. For all N,¢ > 1, the level lowering operator 5]\[7[ is
the Q-linear map

3 F172,3 Fo1723
One: gty Hy — @ 8o HN 91 (5.91)
3<2r+1<N
obtained by first applying
F
@ 8ry D2T+1|grf7-£i}3
3<2r+1<N

and then sending wa,r4+1(¢™(2r + 1)) to 1.

5.4.2. A pair of bases. We next describe bases of the source and the
target of the map (5.91). For £ > 1 and N > 3, we define

By ¢ =set of words in the alphabet {2,3} of weight N and level ¢.
Bl , =set of words in the alphabet {2,3} of weight < N — 3 and level £ — 1
(this includes the empty word if £ = 1).
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Clearly, By gives a basis By ¢ of gr{ 7?[?\’,3, while Bl , determines a basis

B§V7é of @3§2T+1SN grf_lﬁ?\}izrﬂ. Write N = 3¢+ 2m, so m is the number
of 2s in an element of By . Then

{+m =1+ m ,
= (") = X () — i
m’=0

We provide By ¢ with the lexicographic order for the ordering 2 < 3 and
Bl , with the order s < " if and only if wt(s) < wt(s') or wt(s) = wt(s’)

and s is smaller than or equal to s’ in the lexicographic order.
LEMMA 5.92. The map BE\,’Z — Bpy that sends an element s € ij to
olr—113g5 ¢ By, where 2r = N —1 —wt(s) is an order preserving bijection.

PROOF. Denote by v the map in the statement. If wt(s) < wt(s’), then
r > 7/, hence v(s) = 20"113s < 20""1U3s" = u(s). If wt(s) = wt(s')
but s is smaller than s’ in the lexicographic order, then v(s) = 2U"~1}3s <
2{r=1}3s’ = v(s’). Therefore, v is injective and order preserving. Since the
sets BEV,K and By have the same cardinality, v is a bijection. O

5.5. Brown’s theorem.

5.5.1. Statement. The goal of this section is to prove the following result,
which directly implies Theorem B:

THEOREM 5.93 (Brown). The set of elements

{C™(s1,---,8) | ss €1{2,3}}

forms a basis of the Q-vector space of motivic multiple zeta values.

Before going into the proof, let us mention the immediate corollary:

COROLLARY 5.94 (Theorem B). Every multiple zeta value is a Q-linear
combination of MZVs with only 2 and 3 as entries.

PROOF. Apply the period map (5.9). O
REMARKS 5.95.
(1) Unfortunately, the proof does not give an algorithm to compute
such a linear combination.

(2) The missing information to deduce that such multiple zeta values
furnish a basis, as it is conjectured, is to know that all relations
among multiple zeta values have motivic origin.
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5.5.2. Strategy of the proof. The key point to prove Theorem 5.93 is the
following lemma.

LEMMA 5.96. For all N, > 1, the level lowering operator 5N74 s an
isomorphism of Q-vector spaces.

‘We show how to deduce Theorem 5.93 from Lemma 5.96. This amounts
to proving the following:

LEMMA 5.97. The map H23 5 H23 is an isomorphism.

PROOF. We first prove by induction on the level that for every weight
N and level ¢, the restriction map gry Py N — gry Fa2 N is an 1som0rphlsm

The initial step is £ = 0. If N = 2r is even, the space grj 7—[
one-dimensional generated by the symbol I (1,bs(2{’”}), 0) while the space
gry Fay N is generated by ¢™(2{"}) # 0. Thus the restriction map

gry HN — 8T 0 7‘[ (598)
is an isomorphism. If N is odd, then both spaces are zero and therefore the
map (5.98) is also an isomorphism.

We now consider the commutative diagram

O, ~2.3

~93 2
gry My 4>®3<2r+1<Ngr€ 1 HN2r—1 (5.99)

| |

ON,e
Fq2.3
gry H*" —= Ds<ory1<n gry_ 1HN 2r—1°
By definition, the left vertical arrow is an epimorphism. By the induction
hypothesis, the right vertical map is an isomorphism and by Lemma 5.96
the upper horizontal map is injective. We conclude that the left vertical
arrow is an isomorphism.

Once we now that all the restriction maps gry 7—[ L gre Fa2 N are iso-

morphisms, we deduce that the restriction map ’H R N is an isomor-
phism by using the fact that the filtration F' is bounded below and the five
lemma. Finally, since the weight is a grading in both H23 and H23 we
obtain that the map H23 — H23 is an isomorphism. O

5.5.3. Proof of Lemma 5.96. The proof is based on the study of the 2-
adic valuation of the coefficients of the matrix of Oy, with respect to the
bases introduced in Section 5.4.2. We shall use the following lemma:

LEMMA 5.100. Let A = (a;j)i; be a square matriz of size n with ratio-
nal coefficients. Assume that there exists a prime number p such that the
following conditions hold:

(a) vp(aij) > 1 for alli> j,
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(b) vp(as) = minj{vy(ai;)} <0 for all i.
Then A 1is invertible.

Proor. Consider the matrix A’ obtained by multiplying the i-th row
of A by p~?r(@i) By condition (b), the coefficients of A’ are p-integral, so
we can reduce modulo p. Since we still have vy(a;;) > 1 for i > j but now
vp(a};) = 0, the reduction is upper triangular with non-zero elements in the
diagonal. It follows that the determinant of A’ and hence the determinant
of A, is non-zero. O

We next see that, up to terms with even coefficients, the map 5]\[75 acts
by deconcatenation.

THEOREM 5.101. Let s be a word in the alphabet {2,3} of weight N and
level €. Then

5N,gI(1;bs(s);0)): Z culI(1;bs(v);0)
dogs uel

+ terms with 27 coefficients,

where degs u is the numbers of 3 in the word u.

_PROOF. Following the proof of Lemma 5.87, there are four types of terms
in On eI (1;bs(s);0)). We start with (3) and (4). Since ¢;9(ny = 2(—1)", these
terms contribute with even coefficients. Besides, almost all terms of types
(1) and (2) can be grouped in pairs. Choose four positions as follows

I(...010...01001...010..),

that is, a and b (resp. c and d) are consecutive, a (resp. d) contains a 0 and b
(resp. c¢) contains a 1. Combining Lemma 5.27 (2) Lemma 5.75 (2), the sum
of the contributions of the subsequences ac and bd has again coefficients
in 27Z. The only terms that cannot be paired this way are the leftmost
subsequences appearing in the sum of the statement. O

COROLLARY 5.102. With respect to the bases By, and By ,, ordered

as in paragraph 5.4.2, the matrizx My, of the operator Ony satisfies the
assumptions of Lemma 5.100 for the prime p = 2.

PRrROOF. Let v be an admissible multi-index with only 2 and 3 as entries,
of weight < N —3 and level £—1. Put 2r = N —1—wt(v) and s = 2{7" 1} 3.
Then s is the multi-index corresponding to v under the order-preserving
bijection from Lemma 5.92. Consider any admissible multi-index with only
2 and 3 as entries, of weight N and level ¢ that can be written as uv with
degsu = 1. If s # wwv, then the number on 2s before the first 3 in u is
smaller than » — 1. Hence uwv > s. By Theorem 5.101, this implies that any
term in My, that is not an even integer is above the diagonal. Moreover,
by the same theorem and the statement (3) of Lemma 5.75, the coefficient
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of v in 5]\77@3 sitting at the diagonal of My, has 2-adic valuation smaller
than or equal to zero and it realizes the minimum of this valuation within
its row. Therefore, the assumptions of Lemma 5.100 are satisfied. O

Clearly, Lemma 5.96 is a consequence of Corollary 5.102 and Lemma
5.100, thus finishing the proof of Theorem 5.93.

5.5.4. Some consequences of Brown’s theorem. We conclude these notes
with some corollaries of Brown’s theorem:

COROLLARY 5.103. The map Ugr — I(Uqr) is a group isomorphism.

PROOF. Recall from (5.5) that AM7 = O(Ugr) and A = O(I(Ugr)). We
want to show that the injective map A < AM7 induced by Ugr — I(Ugg) is
surjective. In Corollary 5.18 we proved that this map extends to an injection
H — HMT compatible with the gradings on both sides. Brown’s theorem
implies that the dimension of the graded pieces of H agree with those of
HMT | hence the algebras are isomorphic. O

Let MT’(Z) be the full Tannakian subcategory of MT(Z) generated by

the objects ngl,vIOt’N for N > 0 and z,y € {0,1} and let w)y be the fibre
functor wqg restricted to MT'(Z).

COROLLARY 5.104. The quotient

Autirp gy (War) — Auty o (War)

is an isomorphism of affine group schemes. It follows that the inclusion
MT'(Z) — MT(Z)

is an equivalence of Tannakian categories, so that every mized Tate mo-
tive over Z 1is a subquotient of a tensor construction on one of the finite-
dimensional pieces of the motivic fundamental groupoid of P*\ {0, 1, c0}.

PROOF. The Tannaka group Aut®(w/g) is I(Udqr) ¥ Gy,. Thus the fact
that the morphism of Tannaka groups is an isomorphism follows from Corol-
lary 5.103. As a consequence, both MT(Z) and MT'(Z) are equivalent to
the category of finite dimensional representations of Ggg. U

COROLLARY 5.105. The periods of every mized Tate motive over Z are
linear combinations with Q[ﬁ] coefficients of multiple zeta values. In other
words, the ring of periods of mixed Tate motives over Z is Z[ﬁ]

Proor. Consider the commutative diagram

f f:
UdRXGm; Gar ——> Pirp

.l o

UdR X Al = y
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where
filu,s) =u-7(s),  gi(u,s) = (u,5?)
f2(g) = g-a™" - compgg g
92(p) = p - dch, fa(u,t) = ¥(u,t)(11o),
where a is defined in Proposition 4.115. The commutativity of the above
diagram follows from the definition of ¢ in Theorem 5.17. The upper hori-

zontal arrows are clearly isomorphisms and the lower horizontal arrow is an
isomorphism by Corollary 5.103.

By (5.13), fi(uo,2mi) = a. Clearly
f2(a) = compgr g, g2(compgg p) = dch®®, ¢ (ug, 2m1) = (uo, (2m’)2).

By the commutativity of the diagram f3(ug, (27i)?) = dch®®. All the mor-
phisms on the diagram are defined over Q.

The algebra of periods of MT(Z) is
CVcompgg 5 (O(PdR,B)) = €V (ug,27i) (O(UdR X Gm))
The algebra of multiple zeta values is
Vaendr (OY)) = vy, 2ri)2) (O(Uar x A1)

Since O(Ugr X Gp,) = O(Ugr x A)[s71] and s(ug, 27i) = 27 we deduce the
result. O

COROLLARY 5.106. Zagier’s conjecture 1.71 implies that the numbers
m,¢(3),C(5),... are algebraically independent.

ProOF. The key ingredient is a structure theorem for Hopf algebras due
to Milnor and Moore [MMG65]:

THEOREM 5.107 (Milnor-Moore). Let k be a field of characteristic zero
and A = @, An a graded connected commutative Hopf algebra over k with
dim A,, < oo for all n. Then A is the symmetric algebra

A= Sym[A>0/(A>0)2].

We will use it through the following straightforward corollary: if x1, xo, . ..
are elements of A~y whose classes on the quotient A~q/(Axg)? are linearly

independent, then x1,x2,... are algebraically independent.
We apply this to the Hopf algebra A = O(Ugr) and the elements
¢™(3),¢™(5), ... These elements lie in different degrees and are not zero in

the Lie coalgebra of indecomposable elements £ = A~q/(A>0)?. Hence, they
are linearly independendent in £. By the corollary of the Milnor-Moore The-
orem, they are algebraically independent in A. Since H is equal to A[¢™(2)],
we deduce that (™(2),¢™(3),(™(5) ... are algebraically independent in H.

Now Zagier’s conjecture implies that the period map per: H — Z is an
2
i

isomorphism. Since per(¢™(n)) = ¢(n) and ((2) = %, it follows from the
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previous discussion that Zagier’s conjecture implies that 7, {(3),((5), ... are
algebraically independent. O

COROLLARY 5.108. Zagier’s conjecture 1.71 is equivalent to Grothen-
dieck’s period conjecture for mized Tate motives /.122.

PROOF. Zagier’s conjecture is equivalent to the map per: H — C being
injective. Since O(Parp) = H[s~!] with s* = —24¢™(2), this is equivalent
to the injectivity of the period map per: O(Pygr ) — C which is the content
of Conjecture 4.122. O
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Thara bracket, 219, 220
iterated integral, 125

Lie algebra, 144

local system, 228

local system(, 233, 234
Lyndon words, 33

Milnor-Moore theorem, 311
moduli spaces Mo, 12, 8889,
105-106, 212
moduli spaces Mo, (, 257
moduli spaces My ), 258
motivic cohomology, 249
multi-index, 15
admissible, 15
positive, 15
MZV, 3

normal crossings divisor, 75

Poincaré-Birkhoff-Witt theorem, 146
polylogarithm, 40

sheaf, 66
sheaf cohomology, 67
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shuffle product, 23, 38, 42
simplicial object, 183
strict transform, 85
stuffle product, 19

t-structure, 239
total transform, 86
transcendence conjecture, 3

universal envelopping algebra, 145
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