
ON POLY(ANA)LOGS IPHILIPPE ELBAZ-VINCENT AND HERBERT GANGLAbstra
t. We investigate a 
onne
tion between the di�erential of polylogarithms (as 
on-sidered by Cathelineau) and a �nite variant of them. This allows to answer a question raisedby Kontsevi
h 
on
erning the 
onstru
tion of fun
tional equations for the �nite analogs, us-ing in part the p-adi
 version of polylogarithms and re
ent work of Besser. Kontsevi
h'soriginal unpublished note is supplied (with his kind permission) in an "Appendix" at theend of the paper. ContentsIntrodu
tion and Motivation 1Part I. Preliminary Ba
kground 41. De�nitions of polylogarithms and their analogues (in 
hara
teristi
 0) 42. Groups related to polylogarithms 63. Fun
tional equations 11Part II. The Results 184. Finite versions of polylogarithms and their fun
tional equations 185. Deriving fun
tional equations : 
onstru
tion of the derivation map 256. Redu
tion of fun
tional equations mod p via the p-adi
 realm 28Part III. The Main Proofs 327. Proofs of fun
tional equations over �elds of 
hara
teristi
 p. 32Referen
es 39The 11
2 -logarithm : Appendix by Maxim Kontsevi
h 41Introdu
tion and MotivationIn an unpublished note [22℄ (in
luded as an Appendix) Kontsevi
h de�ned the �11

2 -logarithm�,asso
iated to a prime p, as the trun
ated power series of − log(1 − x) (for whi
h we proposethe �trun
ated� letter £, pronoun
ed �sterling�) as a fun
tion from Z/p to Z/p:
£1(x) = £

(p)
1 (x) =

p−1∑

k=1

xk

k
(mod p).The �rst author was partly supported by a Marie Curie fellowship of the EU.The se
ond author is supported by a Habilitationsstipendium der Deuts
hen Fors
hungsgemeins
haft.1



2 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLFor reasons whi
h be
ome apparent below we refer to it as the �nite 1-logarithm. Kontsevi
hobserved that it satis�es a fun
tional equation whi
h is known in the literature as the funda-mental equation of information theory (see [1℄), and provided a 
ohomologi
al interpretationof the equation.Cathelineau [8℄ was led to the same equation by 
onsidering an �in�nitesimal� version of aone-valued 
ousin of the dilogarithm fun
tion whi
h is de�ned over C. He had en
ounteredthe fundamental equation of information theory already in [6℄ where, motivated by questionsarising from Hilbert's third problem, he dedu
ed an in�nitesimal version of the famous Blo
h�Suslin 
omplex (whi
h 
al
ulates 
ertain algebrai
 K-groups of a �eld). Furthermore, heprovided a homologi
al interpretation of the equation. Cathelineau extended his results toin�nitesimal versions of higher polylogarithms, and in parti
ular�by mimi
king Gon
harov'ssetup [19℄ whi
h generalizes the Blo
h�Suslin 
omplex�dedu
ed an in�nitesimal analogue ofGon
harov's 
omplexes. In the pro
ess, he produ
ed the generi
 fun
tional equation for thein�nitesimal trilogarithm whi
h 
ontains 22 terms in 3 variables.Kontsevi
h had asked expli
itly in [22℄ for fun
tional equations similar to the fundamentalequation of information theory for the next 
ase, i.e. for the 
ase of the �nite dilogarithm
£2(x) =

∑p−1
k=1 x

k/k2. Guided by the analogy between �nite 1-logarithm and the in�nitesimaldilogarithm, it was found that Cathelineau's equation for the in�nitesimal trilogarithm is alsosatis�ed by £2 and provides an answer to Kontsevi
h's question. Furthermore, £2 is 
hara
-terized by the latter equation (a
tually, it is already 
hara
terized by 
ertain spe
ializations).In fa
t we get a stronger statement: ea
h of the fun
tional equations for the in�nitesimal
n-logarithm in this paper�and this in
ludes the distribution formulas for any n�has beenproved for the �nite (n− 1)-logarithm (whose de�nition should be 
lear by the above).What is more, there is a whole ma
hinery to obtain this type of fun
tional equations: onthe one hand, Cathelineau had given a tangential pro
edure for elements in Z[F ] (for 
ertain�elds F ) whi
h is 
ompatible with the passage from fun
tional equations for the dilogarithm toequations for the in�nitesimal dilogarithm. It turns out (see �5) that the same is true for higherpolylogarithms, and we will show how we 
an get a fun
tional equation for an in�nitesimal
n-logarithm by �taking the derivative� of a fun
tional equation for the 
lassi
al n-logarithmrelatively to an absolute derivation over F . On the other hand, sin
e p-adi
 polylogarithms inthe sense of Coleman [10℄ satisfy the same fun
tional equations as the 
lassi
al ones by work ofWojtkowiak [34℄ (for a more pre
ise statement 
f. �6), one arrives via Cathelineau's tangentialpro
edure (proved by him in 
hara
teristi
 0) at its p-adi
 equivalent and one 
ould hope thatthere is a version of p-adi
 polylogarithms whose appropriate di�erential redu
es to the �nitepolylogarithms. This hope (vaguely anti
ipated in [14℄) has been made pre
ise by Kontsevi
h(private 
ommuni
ation) and was subsequently proved (in a slightly modi�ed form) by Besser[2℄. Combining the above, we obtain a re
ipe for dedu
ing fun
tional equations for £n−1 fromfun
tional equations for the n-logarithm, and thus we get analogues of distribution relationsfor ea
h n and further �non-trivial� ones at least up to n = 7 (
f. [37℄, [17℄). The propertiesstated motivate the terminology of �poly(ana)logs� for the di�erent analogues of polylogs. Tohelp the reader to understand the interdependen
ies between the notions already dis
ussed,we give the following pi
ture, whi
h 
an serve as a guideline for the paper:



ON POLY(ANA)LOGS I 3The 
on
eptual relationship between the di�erent Poly(ana)logsClassi
al Polylogs p-adi
 Polylogs
Finite Polylogs

In�nitesimal Polylogs p-adi
In�nitesimal Polylogs

Standard Di
tionary
Di�erentialpro
ess p-adi
di�erentialpro
essRedu
tionmod p

Standard Di
tionaryThe present paper investigates the basi
 properties of the in�nitesimal version of polylog-arithms, in
luding the p-adi
 ones, and their relationship with the �nite polylogarithms andalso with the 
lassi
al polylogarithms via the �derivation map� (se
tion 5). In parti
ular, theanswer to Kontsevi
h's question 
an be found in se
tion 4 (Theorem 4.12), together with aproof of the uni
ity of £2 (Theorem 4.23). The sequel paper [15℄ exhibits interrelationshipsamong the polylogarithmi
 groups and also among their in�nitesimal versions, introdu
es �niteversions of the so-
alled �multiple polylogarithms� (
f. e.g. [21℄) and in parti
ular some multi-pli
ative stru
ture related to them: it turns out that the proofs of the identities for the �nite�eld 
ase are far from trivial, and espe
ially the most 
on
eptual one found for Cathelineau's22-term equation involves an identity expressing £1(a)£1(b) in terms of £2 only. The spe
ial
ase of a = b in the latter produ
t is an identity found by Mirimano� whi
h is 
ru
ial forproving his 
riteria for Fermat's last theorem�the �nite polylogarithms have appeared in theliterature prominently in the guise of �Mirimano� polynomials� (
f. Ribenboim's 13 Le
tures[27℄). Others of Mirimano�'s identities 
an be reinterpreted in terms of fun
tional equationsof �nite polylogarithms (a
tually, �multiple polylogarithms�) whi
h might nurture the hopethat further knowledge 
on
erning the latter 
ould provide more obsta
les for a solution ofFLT to exist (but this may well turn out to be a too pollyanna1 attitude)...The organisation of the present work is as follows:Part I is dedi
ated to the introdu
tion of 
lassi
al and in�nitesimal polylogarithms (in 
hara
-teristi
 0) and their asso
iated fun
tional equations and groups. In parti
ular we re-introdu
eseveral notions of Cathelineau [6, 8℄ and give 
omplementary properties.Part II introdu
es the �nite polylogs, the fun
tional equations that they satisfy and give1Pollyanna. The name of the heroine of stories written by Eleanor Hodgman Porter (1868-1920), Ameri
an
hildren's author, used with allusion to her skill at the `glad game' of �nding 
ause for happiness in the mostdisastrous situations; one who is unduly optimisti
 or a
hieves happiness through self-delusion.[Oxford English Di
tionary 2℄



4 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLtheir 
hara
terizations (se
tion 4). We also introdu
e in the se
tion 5 the 
onstru
tion of the�derivation map� and show that fun
tional equations for 
lassi
al polylogs give rise to fun
-tional equations for in�nitesimal polylogs. The last se
tion of this part (se
tion 6) introdu
esthe p-adi
 methods, and shows (Corollary 6.12), via Besser's result, that fun
tional equationsfor in�nitesimal p-adi
 polylogs produ
e fun
tional equations for �nite polylogs (under mildassumptions).Finally, the main proofs of Part II are given in Part III.The paper ends with a reprodu
tion of the note of Kontsevi
h [22℄, originally written for aprivate booklet dedi
ated to Friedri
h Hirzebru
h on the o

asion of his �Emeritierung� (re-tirement). We are grateful to him for letting us in
lude it as an appendix.A
knowledgements : We would like to express our sin
ere gratitude for �nan
ial support to DFG, EU (MarieCurie fellowship program), and to the following institutions for their hospitality: the Laboratoire DieudonnéUMR CNRS 6601 of the University of Ni
e�Sophia Antipolis where the whole proje
t started out (and wherethe se
ond author made several visits working on this proje
t), the Institut für Experimentelle Mathematik(Essen), the FB6 Mathematik of the Universität-GH Essen, the I.H.É.S. and the MPI für Mathematik Bonn.We want to give our �Herzli
hes Dankes
hön� to G. Faltings and G. Harder for their invitation to the MPIConferen
e on Polylogarithms at S
hloss Ringberg. The �rst author wants to thank the Mathemati
al Instituteof the University of Lausanne (and espe
ially D. Arlettaz) where he was working on the subje
t. The se
ondauthor wants to thank the Laboratoire G.T.A. UMR CNRS 5030 of the University Montpellier II for itshospitality while he was visiting. During the long period of gestation of this work we had the opportunity todis
uss it with several people. It is a pleasure to thank them here: we are grateful to H. Esnault, G. Frey,A. Gon
harov, G. Mersmann, J. Nekova° and Z. Wojtkowiak (and also to D. Grayson for pointing out theorigin of Pollyanna). We parti
ularly want to thank A. Besser for sending us a preliminary version of his noteand for helpful remarks, P. Colmez for his patien
e explaining to us several p-adi
 features, C. Soulé for his
onstant interest and questions in our work, as well as D. Zagier for enlightening and stimulating 
omments.Last but not least, we want to express our warmest thanks to the (inadvertent) initiators of the story: J.-L.Cathelineau and M. Kontsevi
h, for their sustained en
ouragement and propulsive dis
ussions, and withoutwhom this work would not exist.Part I. Preliminary Ba
kground1. Definitions of polylogarithms and their analogues (in 
hara
teristi
 0)In the following we will re
all some standard, and some less standard, fa
ts about polyloga-rithms and their fun
tional equations. The main referen
es will be Zagier [36℄ and Gon
harov[20℄ (for the 
lassi
al 
ase) as well as Cathelineau [8℄ (for the in�nitesimal 
ase).1.1. Classi
al and one-valued Polylogarithms. Let n > 1 , and Dn : C → R(n − 1)be the Blo
h/Wigner/Ramakrishnan/Zagier/Wojtkowiak fun
tion [36, 20, 8, 33℄, or modi�ed
nth polylogarithm, de�ned by

Dn(z) = ℜn

(
n−1∑

k=0

2kBk

k!
logk|z|Lin−k(z)

)
,where ℜn denotes Re or iIm, and R(n) = R or iR , depending on whether n is even or odd.The Bk are the Bernoulli numbers (B0 = 1 , B1 = −1

2 , B2 = 1
6 , B3 = 0 , . . . ), and Lim



ON POLY(ANA)LOGS I 5denotes the 
lassi
al m-logarithm
Lim(z) =

∞∑

n=1

zn

nm
, |z| < 1,whi
h 
an be analyti
ally 
ontinued to the 
ut plane C − [1,∞) [36℄. For example, we have,

D1(z) = − log |1 − z|,

D2(z) = i Im

(
Li2(z) + log(1 − z) log |z|

)
,

D3(z) = Re
(
Li3(z) − log |z|Li2(z) −

1

3
log2 |z| log(1 − z)

)
.Remark 1.1. (1) The virtue of these modi�
ations of 
lassi
al polylogarithms lies in thefa
t that they are one-valued fun
tions on the whole 
omplex plane (at the points 0and 1 they are de�ned by 
ontinuity)�as opposed to the multi-valued 
lassi
al poly-logarithm fun
tions�and that they satisfy �
lean� fun
tional equations (i.e. withoutlower order terms su
h as produ
ts of polylogarithms of lower degrees).(2) Instead of the above Dn there is also the 
losely related real-valued fun
tion Pn (orig-inally introdu
ed by Zagier [36℄) widely used, and also denoted Ln, e.g. [19℄. It di�ersfrom Dn only by a possible fa
tor of i.(3) Polylogarithms of a real variable. In a similar manner one 
an de�ne real valuedfun
tions as given by Zagier [36℄ (eq. (31), p.412), 
f. also Lewin [25℄ (eq.(16), p.7),whi
h 
ould be 
alled Rogers polylogarithms in view of Rogers's investigations in the
ase n = 2 [28℄:

Ln(x) =

n−1∑

j=0

(− log |x|)j

j!
Lin−j(x) +

(− log |x|)n−1

n!
log |1 − x| , |x| 6 1,and for |x| > 1 via the inversion relation

Ln

( 1

x

)
= (−1)n−1Ln(x) .1.2. In�nitesimal polylogarithms. We mainly follow the presentation in Cathelineau [8℄.Di�erentiating the fun
tions Dn gives (see [8℄, p. 1328)

∂

∂z
Dn(z) = −

n−1∑

k=1

2k−1Bk

k!

logk−1|z|

z
Dn−k(z) +

2n−2Bn−1

(n− 1)!

logn−1|z|

1 − z
,and

∂

∂z̄
Dn(z) = (−1)n−1 ∂

∂z
Dn(z).



6 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLFinally we 
an dedu
e the expression for dDn(z)

dDn(z) =
∂

∂z
Dn(z)dz +

∂

∂z̄
Dn(z)dz̄

= −

n−1∑

k=1

(
2kBk

k!
logk−1|z|Dn−k(z)Υk(z)

)
−

2n−1Bn−1

(n− 1)!
logn−1|z|Υn−1(1 − z).If k is even : Υk(z) = d log|z| , and if k is odd : Υk(z) = diarg(z) . The main examples are

dD1(z) = −d log |1 − z|,

dD2(z) = − log |1 − z| diarg(z) + log |z| diarg(1 − z),

dD3(z) = D2(z)diarg(z) +
1

3
log |z|

(
log |1 − z| d log |z| − log |z| d log |1 − z|

)
.Remark 1.2. Gon
harov [19℄(Prop. 1.18) had dedu
ed a slightly di�erent, but equivalent, for-mula earlier (the terms whi
h seem a priori di�erent�he wrote d log|z| instead of d arg(z)�turn out to be multiplied by a Bernoulli number Bk whi
h is zero sin
e k is odd).2. Groups related to polylogarithmsIn the following, F will denote a �eld, and we abbreviate F •• = F − {0, 1}. We 
an thinkof it as a doubly pun
tured a�ne line over F .2.1. The s
issors 
ongruen
e group. We de�ne the s
issors 
ongruen
e group p(F ) as thequotient of Z[F ••] by the subgroup generated by the elements

[a] − [b] +

[
b

a

]
−

[
1 − b

1 − a

]
+

[
1 − b−1

1 − a−1

]
,whenever su
h an expression makes sense. The relation is the famous �ve term equation forthe dilogarithm (�rst stated by Abel, 
f. [23℄). This group, whi
h has a geometri
 origin (seefor instan
e [11℄), 
aptures the algebrai
 properties of the dilogarithm, more pre
isely one hasProposition 2.1. If F ⊂ C, then the dilogarithm D2 is de�ned on p(F ).Suslin's de�nition of the Blo
h group of a �eld is given by the following exa
t sequen
e (see[30℄),(2.1) 0 → B(F ) → p(F )

λ
→ (F× ⊗Z F

×)s → KM
2 (F ) → 0,where KM

2 (F ) is the Milnor K2 of the �eld F (see [29℄, 
hapter 4), (F×⊗ZF
×)s is the quotientof F× ⊗Z F

× by the subgroup generated by the elements of the kind x⊗ y + y ⊗ x. The map
λ is then de�ned by λ([a]) = a⊗ (1 − a) and the Blo
h group of F is de�ned as the kernel ofthis map.Remark 2.2. (1) In [11℄, Dupont and Sah have studied in detail the s
issors 
ongruen
egroup and also its 
onne
tion to the dilogarithm.(2) If F is an in�nite �eld, the pre
ise relationship between K3(F ) and B(F ) is des
ribedby Suslin in [30℄, and rationally we have K3(F )Q

∼= B(F )Q whi
h gives a des
riptionof K3(F )Q in terms of generators and relations.



ON POLY(ANA)LOGS I 7(3) Weibel [32℄ has 
omputed the group B(F ) if F is a �nite �eld and has shown that ithas the same relationship to K3 as in the 
ase of in�nite �elds.(4) The original de�nition of Blo
h [4℄(Le
ture 6, p.59) is given by the following exa
tsequen
e
0 → B(F ) → A(F )

λ
→ F× ⊗Z F

× → K2(F ) → 0,where A(F ) is just the group Z[F ••]. Noti
e that he also generalized the de�nition torings in order to prove some rigidity property [4℄(pp.62-68). Moreover, he obtained amap between B(F ) and Kind
3 (F )/TorZ

1 (F×, F×) for any algebrai
ally 
losed �eld F[4℄(pp.71-72). (Here, Kind
3 (F ) denotes the quotient of K3(F ) by the image of KM

3 (F )in K3(F ).) Later, Suslin [30℄ showed that we have an analogous map with B(F ) andthat, modulo 2-torsion, this map is an isomorphism.(5) In fa
t the exa
t sequen
e (2.1) holds also for �rings with many units�, su
h as semilo
alrings with in�nite residue �elds (this is a 
onsequen
e of results in [12℄).2.2. Polylogarithmi
 groups and Gon
harov 
omplexes. Zagier has generalized in [36℄(se
tion 8) the 
onstru
tion of the Blo
h group to higher n and de�ned higher Blo
h groups,on whi
h the 
orresponding polylogarithm fun
tions Dn are de�ned. They are 
onstru
ted byan indu
tive pro
edure whi
h has been made more 
on
eptual by Gon
harov whose frameworkwe adopt here. Let P1(F ) be the proje
tive line over F . The 
onstru
tion of an intermediategroup Bn(F ), des
riptively 
alled polylogarithmi
 group in [7℄, pro
eeds by indu
tion on n > 2.We �rst need to 
onstru
t 
ertain subgroups An(F ) and Rn(F ) of Z[P1(F )]. Suppose that
Rn(F ) is de�ned, then we set

Bn(F ) = Z[P1(F )]/Rn(F ).De�ne the morphisms
δ2 = δ2,F : Z[P1(F )] →

∧2
Z F

×

(2 − torsion)
,

[x] 7→

{ 0 if x = 0, 1,∞,
(1 − x) ∧ x otherwise,and for n > 3

δn = δn,F : Z[P1(F )] → (Bn−1(F ) ⊗ F×),

[x] 7→

{ 0 if x = 0, 1,∞,
{x}n−1 ⊗ x otherwise,where {x}n denotes the 
lass of x in Bn(F ).Although it is not used in the indu
tive de�nition, let us de�ne R1(F ) to be the group generatedby [∞] and [x+ y − xy] − [x] − [y], where x, y ∈ F\{1}. Then B1(F ) ∼= F×.For n > 2, we de�ne An(F ) as the kernel of δn and Rn(F ) as the subgroup of Z[P1(F )] spannedby [0], [∞] and the elements ∑ni([fi(0)] − [fi(1)]), where the fi are rational fra
tions in theindeterminate T , su
h that ∑ni[fi] ∈ An(F (T )). Gon
harov proved the following basi
Lemma 2.3. For all n > 2, the group Rn(F ) is 
ontained in the kernel of δn.Proof. See [19℄(Lemma 1.16, p.221) and also [8℄(Proposition 1, p.1330). �



8 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLWe then have a (
o
hain) 
omplex, due to Gon
harov [19, 20℄, with the group Bn(F ) putin degree 1,
Bn(F )

δ
→ Bn−1(F ) ⊗ F× δ

→ Bn−2(F ) ⊗
∧2F× δ

→ · · ·
δ
→ B2(F ) ⊗

∧n−2 F× δ
→

Vn F×

(2−torsion) ,with
δ({x}n−i ⊗ y1 ∧ ... ∧ yi) = {x}n−i−1 ⊗ x ∧ y1 ∧ ... ∧ yi , i = 0, . . . , n− 3,and

δ({x}2 ⊗ y1 ∧ ... ∧ yn−2) = (1 − x) ∧ x ∧ y1 ∧ ... ∧ yn−2.Zagier's higher Blo
h groups [36℄ arise in this 
ontext as the �rst 
ohomology group of theabove 
omplex, namely
Bn(F ) =

An(F )

Rn(F )
.Note the typographi
al di�eren
e: one has Bn(F ) ⊂ Bn(F ). (There are in the literatureseveral similar de�nitions of the �set of relations� Rn(F ), denoted also Cn(F ) in [36℄.)Remark 2.4. (1) A

ording to Zagier's main 
onje
ture, the groups Bn(F ) in the 
aseof a number �eld F are presumably rationally isomorphi
 to K2n−1(F )Q. Using his
omplex, Gon
harov was able to formulate a 
orresponding 
onje
ture for any �eldand involving the γ-�ltration of the K-theory of F .(2) One of the major a
hievements 
on
erning the above 
omplexes was Gon
harov's proof[19℄ of Zagier's 
onje
ture for n = 3 in the 
ourse of whi
h he has given an expli
it setof relations for (some version of) R3(F ) whi
h enabled him to relate B3(F ) to (somegraded pie
e of) the algebrai
 K-group K5(F ) . It is not known, however, whether hisrelations generate all fun
tional equations for the 3-logarithm.2.2.1. Fun
tions on the polylogarithmi
 groups. The following proposition relates fun
-tional equations for polylogarithms and relations in Bn(F ). (It is essentially the 
ontent of[36℄, Prop.3, in the form given in [19℄.)Criterion 2.5. The fun
tion Dn vanishes on Rn(F ), assuming that F ⊂ C.Let us end this se
tion with a 
hara
terization of fun
tions whi
h a
tually 
an be de�nedon the 
orresponding Bn(F ). For n 6 3 one knows from work of Blo
h and Gon
harov,respe
tively, a 
hara
terization of the measurable fun
tions whi
h are de�ned on Bn(C) :Proposition 2.6. (Chara
terization of D1 , D2 and D3 )(1) The fun
tion D1(z) = − log |1 − z| is (up to a 
onstant fa
tor) the only measurablefun
tion de�ned on B1(C) .(2) The fun
tion D2 is (up to a 
onstant fa
tor) the only measurable fun
tion : C → Rwhi
h vanishes on R2(C) and thus de�nes a morphism on B2(C) .(3) The spa
e of measurable fun
tions : C → R whi
h vanish on R3(C) and thus de�ne amorphism on B3(C) , is two-dimensional, spanned by D3 and z 7→ log |z|D2(z).



ON POLY(ANA)LOGS I 9Proof. 1. is 
lassi
al, 2. has been proved by Blo
h [4℄, and 3. was given by Gon
harov[19℄. �2.3. The in�nitesimal polylogarithmi
 groups. Cathelineau [8℄ has given analogues ofthe Gon
harov 
omplexes for in�nitesimal polylogarithms whose 
ohomology is expe
ted tobe 
omputed by some graded pie
e of Ho
hs
hild homology (the latter 
an be viewed in asense as arising from applying a 
ertain tangent fun
tor to algebrai
 K-theory).One de�nes the group β2(F ) , for F any in�nite �eld, as follows
β2(F ) =

F [F ••]

r2(F )
,where r2(F ) is the kernel of the map

F [F ••] −→ F+ ⊗ F×, [a] 7→ a⊗ a+ (1 − a) ⊗ (1 − a).If D2 denotes the Blo
h-Wigner dilogarithm fun
tion, as de�ned in (1.1), and if F ⊂ C , then
d̃D2 , a somewhat modi�ed di�erential de�ned below, is zero on r2(F ) .For n > 3 , one de�nes indu
tively

βn(F ) =
F [F ••]

rn(F )
,where rn(F ) is the kernel of the map

∂n = ∂n,F : F [F ••] → (βn−1(F ) ⊗ F×) ⊕ (Bn−1(F ) ⊗ F ),

[a] 7→ 〈a〉n−1 ⊗ a+ {a}n−1 ⊗ (1 − a),and where 〈a〉k and {a}k denotes the 
lass of [a] in βk(F ) and Bk(F ), respe
tively.The F -ve
tor spa
es βn(F ) 
an be viewed as in�nitesimal analogues of the groups Bn(F ) .The previous de�nition still makes sense in the 
ase of a �nite �eld F , but it would give
β2(F ) = 0. But there is also a presentation of β2(F ) in terms of generators and relationsgiven in [6℄(se
tion 1, pp.52-53). As we are mainly interested by the stru
tural properties ofin�nitesimal polylogarithms, we introdu
e the following groupDe�nition 2.7. Let F be an arbitrary �eld. The group b2(F ) is de�ned as the F -ve
tor spa
egenerated by symbols 〈a〉, a ∈ F ••, subje
t to the relation

〈a〉 − 〈b〉 + a
〈 b
a

〉
+ (1 − a)

〈 1 − b

1 − a

〉
= 0,for a 6= b.We should noti
e that we always have a natural map b2(F ) → β2(F ). In 
hara
teristi
 0,using [8℄(se
tion 4.2, pp. 1336-1337), we haveProposition 2.8. If F is a �eld of 
hara
teristi
 0 then the groups b2(F ) and β2(F ) areisomorphi
.Remark 2.9. (1) De�nition 2.7 makes sense for any �eld.



10 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGL(2) It is not obvious that for a �nite �eld F of 
hara
teristi
 p we have b2(F) 6= 0. It willbe proven later that this is a
tually the 
ase. As a 
ounterpoint, if F is a �nite �eldor, more generally, a perfe
t �eld of 
hara
teristi
 p 6= 2, we then have β2(F ) = 0 (see[6℄(Théorème 1, p.57)).(3) The in�nitesimal analogue (in the sense of Cathelineau) of the above higher Blo
hgroup Bn(F ) would be ker ∂n/rn(F ) whi
h turns out to be 0 for n = 2, 3 if F is any�eld of 
hara
teristi
 0. In fa
t we 
an show that the analogue of the Blo
h group
B2(F ) is given by the se
ond Harrison homology group [13℄, proving that it is zerofor any smooth Q-algebra. The results and problems des
ribed in [13, 9℄, illustratethe (presumably) 
lose 
onne
tion between in�nitesimal Blo
h groups and smoothnessproperties.Observation 2.10. (Possible extension of generators in 
hara
teristi
 0)(1) If we allow the symbols 〈1〉n and 〈0〉n in βn(F ) then, using the distribution relation(3.10) below, we ne
essarily have 〈1〉n = 〈0〉n = 0 if n = 2, 3.(2) We have 〈−1〉2k+1 = 0 by the inversion relation.2.3.1. Fun
tions on in�nitesimal polylogarithmi
 groups. The following propositionfrom [8℄ relates, for F = C , fun
tional equations for the in�nitesimal polylogarithms andrelations in the 
orresponding groups.Proposition 2.11. [8℄ For n > 2 , the morphism of R-ve
tor spa
es

d̂Dn : C[C••] −→ R(n− 1)
b[a] 7→ dDn(a)(a(1 − a)b),is zero on rn(C) , hen
e we get a morphism

d̃Dn : βn(C) −→ R(n− 1).Remark 2.12. The de�nition is to be understood as follows: 
onsider C as a 2-dimensional
R-ve
tor spa
e with basis (1, i) and with multipli
ation indu
ed by the one in C. Then Dn isseen as a map from R2 → R, dDn(a) is given by the Ja
obian matrix in a (i.e. a row matrix oflength 2). Identifying a(1 − a)b as a 
olumn ve
tor relative to the basis (1, i), the expression
dDn(a)(a(1−a)b) is just the evaluation of the linear map dDn(a) in a(1−a)b (i.e. the produ
tof a row matrix of length 2 by a 
olumn ve
tor of same size).Proposition 2.13. (Chara
terization of dD2 )The fun
tion dD2, restri
ted to R, is (up to a 
onstant fa
tor) the only 
ontinuous fun
tion
G : R•• → R whi
h satis�es the equation

a(1 − a)G(a) − b(1 − b)G(b) +
b(a− b)

a
G

(
b

a

)
+

(1 − b)(a− b)

1 − a
G

(
1 − b

1 − a

)
= 0 .whenever the terms are de�ned.Proof. De�ne H(a) = a(1−a)G(a), a ∈ R••, and H(0) = H(1) = 0, then the above fun
tionalequation is redu
ed to the equation from 2.7, for whi
h it is well-known (
f. e.g. [22℄) that thereis only the di�erentiable fun
tion H(x) = −x log |x|− (1−x) log |1−x| (up to a multipli
ative
onstant) whi
h satis�es the latter equation. �



ON POLY(ANA)LOGS I 11Remark 2.14. A
zel and Dhombres [1℄(se
tion 5.4, pp.66-69) have shown that if g is a realfun
tion lo
ally integrable on ]0, 1[ and if, moreover, g ful�lls the Fundamental Equation ofInformation Theory, namely
g(x) + (1 − x)g

(
y

1 − x

)
− g(y) − (1 − y)g

(
x

1 − y

)
= 0,then there exists c ∈ R su
h that g = cH, where H :]0, 1[→ R, is the fun
tion H(x) =

−x log(x) − (1 − x) log(1 − x). For more detail on this topi
 see [16℄.3. Fun
tional equationsDe�nition 3.1. A fun
tional equation of the n-logarithm resp. in�nitesimal n-logarithm overthe �eld F is an element in Rn(F ) resp. in rn(F ) (
f. s.2.2).Let F = K(t1, . . . , tr) and K ′ be an extension of K. We will say that t1 = z1,. . . , tr = zr,with zi ∈ K ′, is an admissible K ′-spe
ialisation for a fun
tional equation ξ(t1, . . . , tr) ∈ Rn(F )(resp. rn(F )), if ξ(z1, . . . , zr) is well de�ned as an element of ker(δn,K ′) (resp. ker(∂n,K ′)).Remark 3.2. The restri
tion in the de�nition of a fun
tional equation for the n-logarithmto rational arguments (in the de�nition of Rn(F )), as opposed to algebrai
 arguments, isprobably not a serious one, sin
e the 
orresponding polylogarithmi
 groups are expe
ted tobe rationally isomorphi
 (
f. e.g. [19℄, pp.225, Conje
ture 1.20). The above de�nition has theadvantage of being more dire
tly a

essible to 
al
ulations.3.1. Fun
tional equations for 
lassi
al polylogarithms. We �rst list the equations whi
hare true for general n: the inversion and distribution relations.Proposition 3.3. (Fun
tional equations for Dn , any n )(1) The inversion formula:
{1

a

}
n

= (−1)n−1{a}n .(2) The distribution formula
{am}n = mn−1

∑

ζm=1

{ζa}nholds in Bn(C) for m ∈ Z and redu
es to the inversion relation for m = −1.Remark 3.4. There is another symmetry 
oming from the 
omplex 
onjugation:
Dn(z) = (−1)n−1

Dn(z) .Note that this does not 
ome from a fun
tional equation in the above sense, sin
e the 
orre-sponding relation {z}n + (−1)n{z}n is not zero in Bn(C).3.1.1. The 
ase n = 2. The following fun
tional equations are well-known for the diloga-rithm: apart from the distribution relations above it satis�es a 2-term relation relating thearguments x and 1 − x, while the most important relation (whi
h a
tually 
hara
terizes D2)is the �ve term relation whi
h allows a formulation as a 3-
o
y
le relation.Proposition 3.5. (Fun
tional equations for D2 )



12 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGL(1) A two term relation.(3.1) {x}2 = −{1 − x}2 .(2) The �ve term relation. We give two di�erent formulations:(a) (as a 
o
y
le relation in �ve variables): denote cr(a, b, c, d) = a−c
a−d

b−d
b−c . Then(3.2) 5∑

i=1

(−1)i
{
cr(x1, . . . , x̂i, . . . , x5)

}
2

= 0 .(b) in two variables (using the arguments as in Suslin's de�nition of the Blo
h group;this equation is a spe
ialization of (a), putting (x1, . . . , x5) = (∞, 0, 1, a, b)):(3.3) {a}2 − {b}2 +

{
b

a

}

2

−

{
1 − b

1 − a

}

2

+

{
1 − b−1

1 − a−1

}

2

= 0 .3.1.2. The 
ase n = 3. For the trilogarithm one has, in addition to the inversion and distribu-tion relations, an equation with 3(+1) terms (in one variable), the well-known Kummer-Spen
eequation with 9(+1) terms (in two variables) and, most important, Gon
harov's equation with22(+1) terms (in three variables, the �+1� referring to some 
onstant term).Proposition 3.6. (Fun
tional equations for D3)(1) There is a 3-term relation(3.4) {1 − x}3 + {x}3 +

{
1 −

1

x

}

3

= {1}3 .(2) The Kummer-Spen
e equation:(3.5) {
a (1 − b)

b (1 − a)

}

3

+

{
(1 − a) a

b (1 − b)

}

3

+

{
a b

(1 − b) (1 − a)

}

3

− 2

{
1 − a

1 − b

}

3

− 2

{
b

b− 1

}

3

− 2

{
a

a− 1

}

3

− 2

{
b

a

}

3

− 2

{
a

1 − b

}

3

− 2

{
1 − a

b

}

3

+ 2 {1}3 = 0 .An equivalent version is given by(3.6) {
x(1 − y)2

y(1 − x)2

}

3

+ {xy}3 +

{
x

y

}

3

− 2

{
y(1 − x)

y − 1

}

3

− 2

{
1 − x

1 − y

}

3

− 2

{
y(1 − x)

x(1 − y)

}

3

− 2

{
x− 1

x(1 − y)

}

3

− 2 {x}3 − 2 {y}3 + 2 {1}3 = 0 .(3) Gon
harov's equation: Set
f(a, b, c) ={a}3 +

{
b(1 − a)

b− 1

}

3

+

{
a(1 − b)

a− 1

}

3

+

{
1 − a

1 − abc

}

3

+

{
cb(1 − a)

1 − abc

}

3

(3.7)
− {ab}3 −

{
−
a(1 − c)(1 − c)

(1 − a)(1 − abc)

}

3

.(3.8)



ON POLY(ANA)LOGS I 13Then
f(a, b, c) + f(b, c, a) + f(c, a, b) + {abc}3 = 3{1}3 .3.1.3. The 
ase n > 3. For general n , there are only the inversion relation and the distri-bution relations known (they are the so-
alled trivial ones), while the existen
e of non-trivialequations has only been established up to n 6 7 (
f. [17℄).3.2. Fun
tional equations for in�nitesimal polylogarithms. Most of the fun
tionalequations for dDn stated in this se
tion 
an be viewed as analogues of equations for the
orresponding Dn. The main example whi
h 
annot be interpreted in this way (so far) isCathelineau's equation for dD3.We �rst list the equations whi
h are true for general n: the analogues of the inversion anddistribution relations.Proposition 3.7. (Fun
tional equations for dDn , any n )(1) The inversion formula(3.9) a

〈1

a

〉
n

= (−1)n−1〈a〉n .(2) The distribution formula(3.10) 〈am〉n = mn−2
∑

ζm=1

1 − am

1 − ζa
〈ζa〉nholds in βn(C) for m ∈ Z and redu
es to the inversion relation for m = −1. When

m = 2, we 
all this equation the dupli
ation formula.3.2.1. The 
ase n = 2. The following fun
tional equations are true for the in�nitesimaldilogarithm:Proposition 3.8. (Fun
tional equations for dD2 )(1) The 2-term relation.(3.11) 〈x〉2 = 〈1 − x〉2 .(2) A six term relation. Let s ∈ F . Then(3.12) (1 − y)
〈x− s

1 − y

〉
2
+ y
〈s
y

〉
2
+ 〈y〉2is symmetri
 in x and y . Spe
i�
ally, we have for s = 0 thefundamental equation of information theory(3.13) (1 − y)

〈 x

1 − y

〉
2
− 〈x〉2 = (1 − x)

〈 y

1 − x

〉
2
− 〈y〉2whi
h is equivalent to Cathelineau's version(3.14) 〈a〉2 − 〈b〉2 + a

〈 b
a

〉
2

+ (1 − a)
〈 1 − b

1 − a

〉
2

= 0 .(3) A family of �ve term relations is given by taking linear 
ombinations of the followingtwo equations in �ve variables: denote cr(a, b, c, d) = a−c
a−d

b−d
b−c and denom(a, b, c, d) =

(a− d)(b − c) . Then one has(3.15) 5∑

i=1

(−1)i denom(x1, . . . , x̂i, . . . , x5)
〈
cr(x1, . . . , x̂i, . . . , x5)

〉
2

= 0 ,



14 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLand(3.16) 5∑

i=1

(−1)i xi denom(x1, . . . , x̂i, . . . , x5)
〈
cr(x1, . . . , x̂i, . . . , x5)

〉
2

= 0 .(4) The same family of �ve term relations 
an be stated with less parameters in the argu-ments:(3.17) (b+ t)〈a〉2 − (a+ t)〈b〉2 + (1 + t)a
〈 b
a

〉
2

+ t(1− a)
〈 1 − b

1 − a

〉
2

+ b(1− a)
〈a(1 − b)

b(1 − a)

〉
2
.Proof. It is a straightforward matter to 
he
k that the above elements lie in the kernel of ∂2.Nevertheless, we give some interrelationships between the various equations.(1) The symmetry of equation (3.12) is equivalent to (3.14):We have to write the following relation

(1 − y)
〈x− s

1 − y

〉
2
+ y
〈s
y

〉
2
+ 〈y〉2 = (1 − x)

〈y − s

1 − x

〉
2
+ x
〈 s
x

〉
2
+ 〈x〉2as a sum of 4-term relations.On the left hand side of the equation we add the 4-term relation in the following form

−y

〈
s

y

〉

2

− 〈y〉2 + 〈s〉2 + (1 − s)

〈
1 − y

1 − s

〉

2

= 0 ,and we do the same on the right hand side with y repla
ed by x. This leaves us withanother form of the 4-term relation
(1 − y)

〈
x− s

1 − y

〉

2

+ (1 − s)

〈
1 − y

1 − s

〉

2

= (1 − x)

〈
y − s

1 − x

〉

2

+ (1 − s)

〈
1 − x

1 − s

〉

2(to see this we should repla
e, in (3.14), x by x−s
1−s and y by y−s

1−s and use (3.11)), therebyproving the �rst 
laim.The equivalen
e of (3.14) and (3.13) is easily shown using the inversion and the 2-termrelation.(2) The se
ond family of �ve term relations is almost dire
t to dedu
e: the 
ombinationgiven is the sum of t times the 4-term relation (3.14) and its following equivalentformulation(3.18) b〈a〉2 − a〈b〉2 + a
〈 b
a

〉
2

+ b(1 − a)
〈a(1 − b)

b(1 − a)

〉
2
.(repla
e in (3.14) a and b by their inverses, respe
tively, then multiply the result by

−ab and �nally use the inversion relation on three of the ensuing terms).From this, we get a very simple proof of the �ve term relations in 
o
y
le form, i.e.(3.15) and (3.16): in ea
h of the two versions (3.14) and (3.18) of the 4-term relationwe put a = cr(x1, x2, x3, x4) and b = cr(x1, x2, x3, x5). Introdu
ing for the momentthe notation (ijkl) := cr(xi, xj , xk, xl), we 
an rewrite the two equations in a 
on
iseway:
〈
(1234)

〉
−
〈
(1235)

〉
+(1234)

〈
(1245)

〉
+ (1324)

〈
(1345)

〉
,

(1235)
〈
(1234)

〉
− (1234)

〈
(1235)

〉
+(1234)

〈
(1245)

〉
+ (1235)(1324)

〈
(2345)

〉
.



ON POLY(ANA)LOGS I 15Given λ ∈ Z, there is a linear 
ombination of the two equations su
h that the
oe�
ient of 〈cr(x1, x3, x4, x5)
〉 (whi
h only o

urs in the �rst equation) and of

〈
cr(x2, x3, x4, x5)

〉 (only o

urring in the se
ond equation) is −xλ
2(x1 − x5)(x3 − x4)and xλ

1 (x2 − x5)(x3 − x4), respe
tively. If, for λ = 0 and λ = 1, we 
ompute the
oe�
ients of the other three arguments, we obtain exa
tly the expressions given inthe 
laim.For example, let us 
ompute the 
oe�
ient of the �rst argument in the 
ase λ = 1:the �rst equation is multiplied by
−x2(x1 − x5)(x3 − x4)

(x1 − x4)(x3 − x2)

(x1 − x2)(x3 − x4)
,the se
ond by

x1(x2 − x5)(x3 − x4)
(x1 − x5)(x2 − x3)

(x1 − x3)(x2 − x5)

(x1 − x4)(x3 − x2)

(x1 − x2)(x3 − x4)
,so the 
oe�
ient be
omes

−x2(x1 − x5)
(x1 − x4)

(x1 − x2)
(x3 − x2) + x1(x2 − x5)

(x1 − x4)

(x1 − x2)
(x3 − x2) ,whi
h is equal to x5(x1 − x4)(x2 − x3) .

�Remark 3.9. The generalized version of the fundamental equation of information theory,namely (3.12), is equivalent to the one given by both Kontsevi
h and Cathelineau (referringto A
zél-Dhombres), as was shown in the proof (part 1.) above. At �rst glan
e, it is somewhatsurprising that we do not get anything new although we 
an a
hieve to insert a third (non-homogenizing) parameter�but there are related phenomena known for the �ve term relation.In parti
ular, we do not gain new information for information theory.3.2.2. The 
ase n = 3. For the in�nitesimal trilogarithm one has an equation with threeterms (in one variable), a �derived version� of the Kummer-Spen
e equation with eight terms(in two variables) and, most important, Cathelineau's equation with 22 terms (in three vari-ables).The proposition below gives 
omplementary information on β3(F ).Proposition 3.10. (Fun
tional equations for dD3)(1) There is a 3-term relation(3.19) 〈1 − x〉3 − 〈x〉3 + x

〈
1 −

1

x

〉

3

= 0 .



16 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGL(2) The Kummer-Spen
e analogue: the F -linear 
ombination(3.20) (1 − b) b

1 − b− a

〈
(1 − a) a

b (1 − b)

〉

3

+
(1 − b) (1 − a)

1 − b− a

〈
a b

(1 − b) (1 − a)

〉

3

+ (1 − b)

〈
1 − a

1 − b

〉

3

− (1 − b)

〈
b

b− 1

〉

3

− (1 − a)

〈
a

a− 1

〉

3

− a

〈
b

a

〉

3

+
(a− b− 1) (1 − b)

1 − b− a

〈
a

1 − b

〉

3

−
(a− b+ 1) b

1 − b− a

〈
1 − a

b

〉

3vanishes in β3(F ) . An equivalent version, denoted KS(x, y), is given by(3.21) 〈xy〉3 + y

〈
x

y

〉

3

− (1 − y)

〈
y(1 − x)

y − 1

〉

3

+ (1 − y)

〈
1 − x

1 − y

〉

3

− x(1 − y)

〈
y(1 − x)

x(1 − y)

〉

3

+ x(1 − y)

〈
x− 1

x(1 − y)

〉

3

− (1 + y) 〈x〉3 − (1 + x) 〈y〉3Proof. The 3-term equation and (3.6) will follow dire
tly from the equation in the next propo-sition. The equivalen
e of the two Kummer-Spen
e analogues be
omes evident after applyingthe 
hange of variables x = a
1−b , y = 1−a

b , and multiplying the result by b(1−b)
1−a−b . �We 
an also noti
e the following formal property, that we will give asLemma 3.11. In β3(F ), the inversion formula is a 
onsequen
e of the 3-term equation.Proof. Add the 3-term equation to its variant where x is repla
ed by 1− x. Four of the terms
an
el and the remaining two give the inversion relation. �Cathelineau has given a 22-term equation whi
h 
ompletely des
ribes the set of relationsfor the in�nitesimal polylogarithmi
 group β3(F ) : In order to state it 
onveniently, we usehis notation for a distinguished linear 
ombination of seven terms(3.22) [[a, b]] = (b− a)τ(a, b) +

1 − b

1 − a
σ(a) +

1 − a

1 − b
σ(b) ,where we have set

τ(a, b) =
[a]

1 − a
−

[b]

1 − b
+

a

a− b

[ b
a

]
−

1 − a

b− a

[ 1 − b

1 − a

]
+
b(1 − a)

b− a

[a(1 − b)

b(1 − a)

]
,(τ arises by taking the �ve term relation (3.3) and multiplying ea
h [zi] with the 
oe�
ient

1
1−zi

) and
σ(a) = a[a] + (1 − a)[1 − a] .Then we 
an state the 22-term relation as followsDe�nition 3.12. We de�ne the formal expression J(a, b, c) in the indeterminates a, b, c as

J(a, b, c) = [[a, c]] − [[b, c]] + a
[[ b
a
, c
]]

+ (1 − a)
[[ 1 − b

1 − a
, c
]]
.



ON POLY(ANA)LOGS I 17Remark 3.13. (1) Writing out all the terms, we obtain 22 di�erent arguments:
J(a, b, c) = c [a] − c [b] + (a− b+ 1) [c]

+ (1 − c) [1 − a] − (1 − c) [1 − b] + (b− a) [1 − c]

− a
[ c
a

]
+ b

[c
b

]
+ ca

[
b

a

]

− (1 − a)

[
1 − c

1 − a

]
+ (1 − b)

[
1 − c

1 − b

]
+ c(1 − a)

[
1 − b

1 − a

]

+ c(1 − a)

[
a(1 − c)

c(1 − a)

]
− c(1 − b)

[
b(1 − c)

c(1 − b)

]

− b
[ca
b

]
− (1 − b)

[
c(1 − a)

1 − b

]

+ (1 − c)a

[
a− b

a

]
+ (1 − c)(1 − a)

[
b− a

1 − a

]

− (a− b)

[
(1 − c)a

a− b

]
− (b− a)

[
(1 − c)(1 − a)

b− a

]

+ c(a− b)

[
(1 − c)b

c(a− b)

]
+ c(b− a)

[
(1 − c)(1 − b)

c(b− a)

]
.(2) When a, b, c are elements of an arbitrary �eld F , we will still use the notation J(a, b, c)for the evaluation of J in the spe
i�ed values.Theorem 3.14. (Cathelineau, [8℄, Corollaire 1, p.1345) Let F be a �eld of 
hara
teristi
 zero.(1) The image of J(a, b, c) under the proje
tion F [F ••] → β3(F ) is zero.(2) Furthermore, J(a, b, c) , together with its spe
ializations to c = a, b, a

b or 1−a
1−b , re-spe
tively, and the inversion relation generate the set of relations whi
h de�ne β3(F ) .Here we understand 〈1〉3 = 0.Remark 3.15. (1) In the presentation of [8℄, Corollaire 1, one 
an repla
e his equation1) 
oming from [[a, b]] − [[b, a]] by the shorter inversion relation (3.9). (Proof: add hisequation 1) to the same relation where a and b are repla
ed by 1

a and 1
b and where theresult is multiplied by ab.)(2) The 
ombinations [[a, c]]+a[[1/a, c]] and [[a, c]]−[[1−a, c]] give versions of the Kummer-Spen
e analogue. Sin
e, e.g., 〈a〉2 − 〈1 − a〉2 = 0 results formally from the four termrelation (at least up to 2-torsion), we get the Kummer-Spen
e analogue dire
tly from

J(a, b, c).(3) By Observation 2.10, one 
an introdu
e elements [a] for a = 0, 1 and set their imagein β3(F ) equal to zero. What is more, one 
an add a formal generator [∞] as well,for whi
h we only require 0[∞] = 0. One 
an then formally dedu
e the 3-term equa-tion (3.19) by spe
ializing a = 1 in 1
b−1J(a, b, c) and one obtains the Kummer-Spen
e



18 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLanalogue (3.6) by spe
ializing a = 0 in (1− x)(1− y)J(a, (1 − x)−1, (1− y)−1), (thesespe
ializations are not allowed in Cathelineau's 
ontext, but will make sense in the��nite polylog� 
ase below).(4) A di�erent way to obtain the Kummer-Spen
e analogue is to symmetrize, i.e. to form
J(a, b, c) + J(b, a, c) + c

(
J(a, b,

1

c
) + J(b, a,

1

c
)
)
,and then to 
he
k that one obtains the di�eren
e of two Kummer-Spen
e analogues

KS(c, b
a) −KS(c, 1−b

1−a).(5) Alternatively, one 
an dedu
e the Kummer-Spen
e analogue or the 3-term relation(non-expli
itly) from J(a, b, c) by simply 
he
king that the 
orresponding linear 
om-binations lie in the kernel of ∂3 , and then use Cathelineau's theorem to dedu
e thatea
h su
h 
ombination must be a 
onsequen
e of J(a, b, c) .(6) In the 
ase of the 
lassi
al trilogarithm, Gon
harov has given a new fun
tional equationin 22(+1) terms whi
h presumably generates all fun
tional equations for D3, i.e. thekernel of δ3, but there are (in�nitely many) fun
tional equations (
f. [35℄, [18℄) whi
hare not known to be formal 
onsequen
es of it. Cathelineau's result in the in�nitesimalsetting is stronger in the sense that it a
tually generates the kernel of ∂3.One of the major 
onsequen
es of Theorem 3.14 is that it allows us to give a generalde�nition for b3.De�nition 3.16. Let F be an arbitrary �eld. The group b3(F ) is de�ned as the F -ve
torspa
e generated by symbols [a], a ∈ F , subje
t to the relations J(a, b, c) , together with itsspe
ializations to c = a, b, a
b or 1−a

1−b , respe
tively, the inversion relation and [1] = [0] = 0.If in β3(F ) we introdu
e elements [a] for a = 0, 1, we then have, in virtue of (2.10), asurje
tive map of F -ve
tor spa
es b3(F ) → β3(F ), whi
h is an isomorphism in 
hara
teristi
0. As in the 
ase n = 2, if F is a �nite �eld of 
hara
teristi
 p, β3(F ) = 0 but it will beshown in part III that b3(F ) 6= 0. The groups bn(F ), for n = 2, 3, measure how mu
h thegroup βn(F ) deviates from being generated by the main fun
tional equations of in�nitesimalpolylogarithms.3.2.3. The 
ase n > 3. For general n , there are only the inversion relation and the distri-bution relations, as seen in (3.10), known. For ea
h fun
tional equation of the 
orresponding
lassi
al polylog, using the �derivation map� des
ribed in the se
tion 5, there is asso
iated afun
tional equation (a
tually many) for the in�nitesimal polylogarithm. From what has beenstated above for the 
lassi
al 
ase, this means that at least up to n = 7 there are non-trivialones.Part II. The Results4. Finite versions of polylogarithms and their fun
tional equationsIn this se
tion we will study what we 
an 
all �nite analogs of the polylogarithms and alsothe groups bn(F ) for n = 2, 3 in the 
ase where F is a �eld of 
hara
teristi
 p 6= 2 (eventually�nite). We will show that for n = 2, 3 the �nite analogs of the polylogarithms de�ne fun
tions



ON POLY(ANA)LOGS I 19on bn(F ), showing that surprisingly they behave like the in�nitesimal polylogarithms. Asfor the previous 
ases, we will show, at least in low dimension, that these �nite polylogs areuniquely 
hara
terized by their fun
tional equations.For the remainder of the paper, let us �x an odd prime p . We shall work over an arbitrary�eld F of 
hara
teristi
 p.4.1. De�nition and �rst properties of �nite polylogarithms.De�nition 4.1. For any �eld F of 
hara
teristi
 p, the nth �nite polylogarithm or �nite
n-logarithm is given by the following polynomial in F[T ] :

£n(T ) =

p−1∑

k=1

T k

kn
.Notation 4.2. For the remainder of this paper, we will denote P̃ the fun
tion asso
iated tothe polynomial P .Remark 4.3. (1) �Extension by periodi
ity�If F is of 
hara
teristi
 p, it has Fp as prime sub�eld, whi
h is �xed by the Frobeniusmorphism x 7→ xp. As a result we have the (p− 1)−periodi
ity £n+p−1 = £n, and weneed only 
onsider n < p.(2) It is important to noti
e that the fun
tions £̃n are not identi
ally zero on F.The following di�erential equation relates the �nite polylogarithms of di�erent orders (justlike in the 
lassi
al 
ase)

d£n(U) = £n−1(U) d log(U),where we denoted dU
U by d log(U). Extending this formally, it is 
onvenient to introdu
e thefollowing notation:De�nition 4.4. Let F be a �eld of 
hara
teristi
 p. De�ne the following �Frobeniizing� map

£̂m : F [F ••] → F ,

c[f ] 7→ cp£m(f) .One observes that, for any c and f in F , the di�erential operator ∂
∂x a
ts linearly on the
oe�
ient c of £̂m

(
c[f ]

) and, as above, like d log on the generator [f ]:
∂

∂x
£̂m

(
c[f ]

)
= £̂m−1

(
c[f ]

) ∂
∂x

log(f) .Observation 4.5. 0. For n = 0 we have
£0(T ) =

T − T p

1 − T
,and therefore(4.1) T£0(1 − T ) = −(1 − T )£0(T ).1. For n = 1, by expanding (1 − T )p and noti
ing that 1

p

(
p
k

)
= 1

k

(
p−1
k−1

)
= (−1)k−1

k , we geta simple (and well-known) formula
£1(T ) ≡

1 − T p − (1 − T )p

p
(mod p) .



20 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLNote that the term on the right hand side o

urs in the polynomials whi
h de�ne thesum of the two Witt ve
tors (1, 0, . . . , 0, . . . ) and (−T, 0, . . . , 0, . . . ).4.2. Fun
tional equations for �nite polylogarithms. A priori, there seems to be at leasttwo natural 
andidates for fun
tional equations for the �nite n-logarithm: we 
ould ask forlinear 
ombinations ∑i ci[xi] su
h that £̃n vanishes for all spe
ializations of the parameterswhi
h �make sense� (i.e. no term � 0
0 � o

urs); we will 
all those 
ombinations weak fun
tionalequations. But this de�nition has the disadvantage that there are too many ambiguitiesinvolved (just think of a 
oe�
ient that is divisible by xp − x). Instead, we will impose thestronger property that∑i ci£n(xi) vanishes as a rational expression, and by multiplying withthe 
ommon denominator, we 
an even assume it to vanish as a polynomial.De�nition 4.6. A fun
tional equation in the strong sense for the �nite n-logarithm overa �eld F of 
hara
teristi
 p is a �nite linear 
ombination ∑i ci£n(xi) ∈ F (t)[F (t)] whi
hvanishes identi
ally as a polynomial.A fun
tional equation in the weak sense is a �nite linear 
ombination∑i ci£n(xi) ∈ F (t)[F (t)]whi
h vanishes for ea
h spe
ialization of parameters whi
h makes sense.In the following we list a number of equations whi
h are identi
al to the ones for thein�nitesimal polylogarithms, apart from �Frobeniizing� the 
oe�
ients (i.e. raising them tothe pth power). The proofs will be postponed to �7.4.2.1. General fun
tional equations for £n.Proposition 4.7. Let n ∈ Z be arbitrary. We have the following identities(1) Inversion formula: £n(T ) = (−1)nT p

£n

(
1

T

).It 
an be viewed as a spe
ial 
ase (m = −1) of the following(2) Distribution formulae: assume F 
ontains a primitive mth root of unity. Then
£n(Tm) = mn−1

∑

ζm=1

1 − T pm

1 − ζpT p
£n(ζT ) .(3) Spe
ial values: £̃n(1) = 0 if (p−1)6 |n and = −1 else, while £̃2n(−1) = 0 for any n. Let

Bj = be the jth Bernoulli number and set Gj = 2(1−2j)Bj . Then for 0 < m < (p−1)we have that £̃p−m(−1) =
Gm

m
.Remark 4.8. Noti
e that the numbers Gm are integers by virtue of 
lassi
al results (forinstan
e it is a 
onsequen
e of the Theorem of von Staudt-Clausen[31℄(Theorem 5.10, p.56)).These numbers are 
alled the Geno

hi numbers and we have mGp−1+m = (m− 1)Gm mod pwhi
h is nothing else than the famous Kummer 
ongruen
e for Bernoulli numbers.Still mirroring the set-up in the in�nitesimal 
ase, we now state several fun
tional equationsspe
i�
 to n = 1, 2 .4.2.2. Equations for £1.Proposition 4.9. (1) The 2-term relation: £1(T ) = £1(1 − T ).



ON POLY(ANA)LOGS I 21(2) The generalized fundamental equation of information theory: let s , x and y be inde-terminates. The expression
H(x, y, s) = (1 − y)p£1

(
x− s

1 − y

)
+ yp

£1

(
s

y

)
+ £1(y)in F[x, y, s] is symmetri
 in x and y . Spe
i�
ally, we have(4.2) £1(a) − £1(b) + ap

£1

(
b

a

)
+ (1 − a)p £1

(
1 − b

1 − a

)
= 0 .(3) The �ve term relations.Denote cr(a, b, c, d) = a−c

a−d
b−d
b−c and denom(a, b, c, d) = (a− d)(b− c) . Then we havethe polynomial identities in F[x1, . . . , x5]

5∑

i=1

(−1)i
(
denom(x1, . . . , x̂i, . . . , x5)

)p
£1

(
cr(x1, . . . , x̂i, . . . , x5)

)
= 0 ,and

5∑

i=1

(−1)i xp
i

(
denom(x1, . . . , x̂i, . . . , x5)

)p
£1

(
cr(x1, . . . , x̂i, . . . , x5)

)
= 0 .Corollary 4.10. The F-ve
tor spa
e b2(F), as de�ned in (2.7), is of dimension at least 1. If,moreover, F is a perfe
t �eld, then b2(F) = F.Proof. A

ording to Proposition 4.9, the fun
tion £̃1 is a well-de�ned fun
tion on b2(F), andas it is not identi
ally zero on F, the dimension of b2(F) is non-zero. By [6℄(Théorème 1, p.57),we know that β2(F) = 0. But as the relations in β2(F) are given by the 4-term equation (i.e.the Fundamental Equation of Information Theory) and the relation ∑p−1

k=2[k1F], (see se
tion1.1 and also Sah's Lemma in [6℄(pp.52-53)), and as we further know, again by Sah (see theremark on p.53 in op. 
it.), that these two relations are independent, we 
an 
on
lude thatthe kernel of the map b2(F) → β2(F) is generated by the element ∑p−1
k=2[k1F]. Evaluating £̃1on this element shows that it is non-zero, whi
h ends the proof. �4.2.3. Equations for £2. In this subse
tion we will give answers to the question raised byKontsevi
h in [22℄. Noti
e that we need to assume p > 3 throughout.Proposition 4.11. The 3-term relation and the Kummer-Spen
e analogue are fun
tionalequations for £2.Proof. This is a 
onsequen
e of the following theorem, together with remark (3.15). �Theorem 4.12. The image of J(a, b, c) under the map £̂2 is a polynomial whi
h is identi
allyzero in F[a, b, c].Remark 4.13. (1) By �6, there is a better answer to Kontsevi
h's question, at least�quantitatively�: ea
h fun
tional equation for dD3 indu
es a fun
tional equation (inthe weak sense) for £2. This is true in parti
ular for the 3-term equation and theKummer-Spen
e analog.(2) One 
an �nd further equations (in the strong sense) for £2 and in general for £n with

n > 3 in [16℄.



22 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLBy similar arguments as in the proof for £1, we getCorollary 4.14. The F-ve
tor spa
e b3(F) is of dimension at least 1.4.3. Chara
terization of �nite polylogarithms. We 
an 
hara
terize £1 and £2 by thefun
tional equations they satisfy.Proposition 4.15. The spa
e (over F) of solutions of the �fundamental equation of informa-tion theory� is of dimension 1 generated by £1.Proof. Set f(T ) =
∑p−1

i=0 aiT
i ∈ Fq[T ] , and suppose that f veri�es f(0) = 0 and thefollowing identity in Fq[x, y]

f(x) + (1 − x)pf

(
y

1 − x

)
− f(y) − (1 − y)pf

(
x

1 − y

)
= 0 .Di�erentiating the previous equation with respe
t to x gives,

df(x) +
y(1 − x)p

(1 − x)2
df

(
y

1 − x

)
−

(1 − y)p

1 − y
df

(
x

1 − y

)
= 0,with df(T ) = a1 +

∑p−1
i=2 iaiT

i−1 and thus df(0) = a1 . Setting x = 0 in the previous identitygives
a1 + y df(y) −

1 − yp

1 − y
a1 = 0.But as 1−yp

1−y =
∑p−1

i=0 y
i , the previous equality implies ai = a1

i . In other words, sin
e f(0) = 0we have f = a1£1 , whi
h proves the 
laim. �In fa
t we have a stronger statementProposition 4.16. The 2-term equation, the inversion and the dupli
ation formulae 
hara
-terize altogether £1.Proof. It is a 
onsequen
e of the following lemmaLemma 4.17. Suppose that ak is a sequen
e of integers with k = 1, . . . , p−1 (p an odd prime�xed), whi
h ful�lls the following rules
ak =

{
−1

2

∑p−1
i=k+1 ai

(i
k

)
, if k is odd,

1
2a k

2

otherwise,and ap−k = −ak for all k = 1, . . . , p− 1. Then ak = a1

k ∈ Fp for all k = 1, . . . , p− 1.Proof of the lemma. The proof goes by des
ending indu
tion starting from p − 1. First wenoti
e that by the third rule, we have ap−1 = −a1 = a1

p−1 modulo p. Suppose that ai = a1

imodulo p for all i > k. Now 
ompute ak modulo p. Observe that we 
an assume k 6 p − 3,sin
e we 
an 
ompute from the rules ap−1 and ap−2. If k is odd then by the �rst rule wededu
e dire
tly ak, but we still have to show that ak = a1

k modulo p. This is done via theSub-Lemma 4.18. If k is odd and ai = a1

i modulo p for all i > k. Then ak = a1

k modulo p.Proof of the sub-lemma. We have to show that, modulo p,
a1

k
= −

1

2

p−1∑

i=k+1

a1

i

(
i

k

)
,



ON POLY(ANA)LOGS I 23or equivalently, assuming a1 6= 0, that
−2 =

p−1∑

i=k+1

k

i

(
i

k

)
.But

k

i

(
i

k

)
=

(
i− 1

k − 1

)
.Using the usual rule (mn) = 0 if n > m, we have

p−1∑

i=k+1

k

i

(
i

k

)
=

p−2∑

i=0

(
i

k − 1

)
− 1.But ∑p−2

i=0

( i
k−1

)
=
(p−1

k

), and as, modulo p, we have (p−1
k

)
= (−1)k, we �nally get, using thefa
t that k is odd, the desired identity. �Now return to the proof of the lemma and suppose that k is even. If k = 2 then the pro
essends, so we 
an suppose that k > 3. The idea is to show that we 
an 
ompute dire
tly ak−1and to dedu
e ak from the �rst rule (we will still need to show the desired property). As k iseven, k− 1 is odd and thus p− k+ 1 is even. Thus by the third rule we have ak−1 = −ap−k+1and by the se
ond rule we have

ap−k+1 =
1

2
a p−k+1

2

.But there exists j ∈ N su
h that p = k + j with 3 6 j < p (be
ause k 6 p − 3). Hen
e,applying on
e again the third rule gives
a p−k+1

2

= −a
p− p−k+1

2

.But
p−

p− k + 1

2
=
p+ k − 1

2
= k +

j − 1

2
.And as j > 3, we have j−1

2 > 1, whi
h means, applying the indu
tion, that a
p− p−k+1

2

is alreadyknown. We then get the value of ak−1 and by applying the �rst rule to it we dedu
e the valueof ak. Now to �nish the proof we need to show that, in this 
ase ak = a1

k modulo p. Noti
ethat we 
an also assume by the indu
tion that ai = a1

i modulo p for all i > k. First we showthat in the previous pro
ess, we get ak−1 = a1

k−1 modulo p. Indeed, by the indu
tion we have
a

p− p−k+1

2

=
a1

p− p−k+1
2

.Thus
a p−k+1

2

= −
a1

p− p−k+1
2

.And �nally
ak−1 = −ap−k+1,

=
1

2

(
a1

p− p−k+1
2

)
,

=
a1

k − 1
.



24 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLTo 
on
lude we need to prove a variant of Sub-Lemma 4.18.Sub-Lemma 4.19. Suppose that k is even, ai = a1

i modulo p for all i > k and ak−1 = a1

k−1modulo p. Then ak = a1

k modulo p.Proof of Sub-Lemma 4.19. We have the equality
a1

k − 1
= −

1

2
akk −

1

2

p−1∑

i=k+1

a1

i

(
i

k − 1

)
.Using the same arguments than in the proof of Sub-Lemma 4.18, we get the following identities,

p−1∑

i=k+1

k − 1

i

(
i

k − 1

)
=

p−2∑

i=0

(
i

k − 2

)
−

(
k − 1

k − 2

)
−

(
k − 2

k − 2

)
,

= (−1)k−1 − (k − 1) − 1,

= −1 − k, as k is even.And we �nally have
a1

k − 1
= −

1

2
akk +

(1 + k)a1

2(k − 1)
,from whi
h we dedu
e ak = a1

k . �Hen
e the proof of Lemma 4.17 is 
omplete. �Ba
k to the proof of Proposition 4.16. Suppose that P (T ) =
∑p−1

i=0 aiT
i ∈ Fp[T ] veri�es the
onditions of the proposition. Then applying the three equations to P gives a0 = 0, and theother 
oe�
ients ai ful�ll the rules des
ribed in the Lemma 4.17. �Remark 4.20. �Cohomologi
al 
hara
terization of £1�Kontsevi
h showed that £1 gives a non-zero 2-
o
y
le in H2(Z/p,Z/p). Sin
e the latter groupis isomorphi
 to Z/p, this 
hara
terizes £1 up to a s
alar.4.4. Spa
e of solutions for equations asso
iated to £2. As J(a, b, c) is the main relationfor b3 , we 
an expe
t that it 
hara
terizes £2 . In fa
t, we 
an �rst give a family of polynomials(whi
h form a spa
e of dimension growing linearly with p) and then 
hara
terize £2 byimposing also the dupli
ation relation (i.e. the distribution relation for £2 with m = 2). Sin
ethese two equations are 
onsequen
es of the Kummer-Spen
e analogue, and the latter in turnis a 
onsequen
e of J(a, b, c), we are done.Proposition 4.21. The dimension of the Fp-spa
e of solutions asso
iated to the equation(4.3) T pP

(
1 −

1

T

)
− P (T ) + P (1 − T ) = 0grows with p and is at least of dimension p−1
3 + 1. The family of polynomials

τi,p(T ) = T i(1 − T )i(T p−3i + (−1)i),with i ∈ N su
h that the valuation of τi,p is > 0 (for instan
e if i 6
⌊p

2

⌋), is a solution of(4.3). Moreover, for i = 0, . . . , p−1
3 , this family is free.Proof. The fa
t that τi,p ful�lls (4.3) is a dire
t 
omputation. For i = 1, . . . , p−1

3 , the familyis free for degree reasons, sin
e deg(τi,p) = p − i. Furthermore τ0,p does not belong to thisfamily for valuation reasons. �



ON POLY(ANA)LOGS I 25Remark 4.22. (1) We already know, by Lemma 3.11, that the inversion formula is a
onsequen
e of the 3-term equation. But a straightforward 
omputation shows thatthe polynomials τi,p ful�ll the inversion formula for £2.(2) In fa
t the rank of the family τi,p is greater than p−1
3 , but the proof is a little bit moreinvolved. We 
an also noti
e that £2 is never expressible in terms of τi,p if i runs onlythrough 0, . . . , p−1

3 − 1.Thus the 3-term equation is insu�
ient for the 
hara
terization of £2. Nevertheless, we havethe following main resultTheorem 4.23. Let P be a polynomial of F[T ] of degree less than or equal to p − 1. Set
h = TP ′. Then if P ful�lls the dupli
ation relation and the 3-term equation, and if moreover
h ful�lls the 2-term equation then P is equal, up to a multipli
ative 
onstant, to £2.Proof. Let P be a polynomial of degree 6 p− 1, and suppose that P ful�lls the following twoequations

T pP

(
1 −

1

T

)
− P (T ) + P (1 − T ) = 0,(4.4)

2(1 + T p)P (T ) + 2(1 − T p)P (−T ) − P (T 2) = 0.(4.5)Then observing that we 
an dedu
e the inversion formula as a 
onsequen
e of the 3-term,and taking the derivative with respe
t to these equations shows that h ful�lls the inversionformula and the dupli
ation formula. As, by hypothesis, h ful�lls also the 2-term equation,we 
on
lude from Proposition 4.16 that h is £1 up to a 
onstant, whi
h implies that P is £2up to a 
onstant. �Remark 4.24. We a
tually expe
t a slightly stronger result to be true, inasmu
h as alreadythe dupli
ation and 3-term relation 
hara
terize £2; this 
laim has been veri�ed for all primes
3 < p < 200.As we 
an formally dedu
e the two equations in the proposition from the Kummer-Spen
eanalogue and the Kummer-Spen
e analogue in turn from the Cathelineau equation J(a, b, c)(be
ause in this 
ase the spe
ialisation mentioned in (3.15) is allowed), we getCorollary 4.25. The spa
e of solutions of the Kummer-Spen
e analogue and the spa
e ofsolutions of the Cathelineau equation are both of dimension 1 generated by £2.Proof. We only need to show that if P ∈ F[T ], assumed to be of degree less than or equalto p − 1, setting h = TP ′, h ful�lls the 2-term equation. In order to do that let KS(a, b)denote the formal Kummer-Spen
e analogue, then taking the derivative with respe
t to a, andrewriting the equation with h and �nally spe
ializing to a = 0, we 
an see that, modulo theinversion formula for h (whi
h we 
an get dire
tly by deriving the inversion formula for P ),we have the identity h(b) = h(1 − b). �5. Deriving fun
tional equations : 
onstru
tion of the derivation mapThe main goal of this se
tion is to prove that one 
an pass from fun
tional equationsfor polylogarithms to fun
tional equations for the 
orresponding in�nitesimal polylogarithms.For this purpose we will 
onstru
t a family of maps, parametrized by a given derivation, from
Bn(F ) to βn(F ). The origin of su
h maps 
omes from the 
ategori
al setting whi
h is behindthe �tangential pro
essing� involved in the 
onstru
tion of the in�nitesimal polylogarithmi




26 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLgroups, whi
h is to some extent dis
ussed in [3, 6, 9℄, and will be treated in more detail in[15℄.In subse
tion 5.1, we present the �derivation map� from polylogarithmi
 groups to in�n-itesimal polylogarithmi
 groups. In subse
tion 5.2, we prove, as an appli
ation, that thederivation of a fun
tional equation for any polylogarithm gives rise to a fun
tional equationfor the 
orresponding in�nitesimal polylogarithm, and we will show several examples.5.1. From 
lassi
al polylogarithmi
 groups to in�nitesimal polylogarithmi
 groups.For the 
onstru
tion of the polylogarithmi
 groups (see se
tion 2 on page 6), we gave aninitial pro
edure for n = 2 and an indu
tive pro
edure for higher n. The 
onstru
tion of the�derivation map� follows this prin
iple.5.1.1. The 
ase n = 2.Lemma 5.1. Let F be a �eld and D ∈ DerZ(F ) be an absolute derivation. Consider thewell-de�ned maps fD : Z[F ••] → F [F ••], [a] 7→ D(a)[a] and gD :
∧2(F×) → F× ⊗Z F ,

x ∧ y 7→ −x⊗ D(y)
y + y ⊗ D(x)

x . Then the following diagram
Z[F ••]

fD−−−−→ F [F ••]

δ2

y
y∂̄2

∧2(F×) −−−−→
gD

F× ⊗Z F,is 
ommutative, where ∂̄2([a]) = 1
a ⊗ 1

1−a + 1
1−a ⊗ 1

a .Proof. First we observe that the map gD is well de�ned. Indeed this is a 
onsequen
e of the
d log property of the map y 7→ D(y)

y de�ned on the units and of the fa
t that gD(x ⊗ x) = 0whi
h implies that gD(x ∧ x) = 0. Then, the 
ommutativity of the diagram is a dire
t
he
k. �As a dire
t 
onsequen
e we get a map from ker(δ2) to ker(∂̄2). Similarly, we 
an obtaina map ker(δ2) to ker(∂2) by repla
ing fD by f̃D : [a] 7→ D(a)
a(1−a) [a] whi
h indu
es a map

τ2,D : B2(F ) → β2(F ).5.1.2. The 
ase n > 2. Suppose we have de�ned the �derivation map� τn−1,D : Bn−1(F ) →
βn−1(F ) (with respe
t to a derivation D) for the level n− 1. Then we 
an 
onstru
t τn,D byindu
tion as follows.Proposition 5.2. Let D ∈ DerZ(F ) be an absolute derivation for the �eld F . Then we havethe following 
ommutative diagram:

Z[F ••]
f̃D−−−−→ F [F ••]

δn

y
y∂n

Bn−1(F ) ⊗ F× −−−−→
gn,D

βn−1(F ) ⊗Z F
× ⊕ Bn−1(F ) ⊗Z Fwhere f̃D is de�ned on generators as [a] 7→ D(a)

a(1−a) [a], while gn,D is given by
gn,D : {x}n−1 ⊗ y 7→ τn−1,D

(
{x}n−1

)
⊗ y + {x}n−1 ⊗

D(y)

y
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∂n([a]) = 〈a〉n−1 ⊗ a + {a}n−1 ⊗ (1 − a) .Remark 5.3. We want to point out that despite their apparent simpli
ity, these 
ru
ial
ommutative diagrams do not show up at �rst sight.This indu
es a map from ker(δn) to ker(∂n) whi
h in turn indu
es the desired �derivationmap� τn,D : Bn(F ) → βn(F ).De�nition 5.4. Let F be a �eld and D ∈ DerZ(F ) be an absolute derivation for the �eld F .We will 
all the map τn,D : Bn(F ) → βn(F ) the derivation map from Bn(F ) to βn(F ), withrespe
t to D. If x is an element of Bn(F ), the element τn,D(x) ∈ βn(F ) will be 
alled thederivative of x with respe
t to D.As usual, if D is 
lear from the 
ontext we will omit it.Remark 5.5. We 
an noti
e that all the τn,D, and also all the maps involved in the previouspropositions, give rise to an F -linear map τn : DerZ(F ) → HomZ(Bn(F ), βn(F )) for all n > 2.5.2. Expli
it derivation of fun
tional equations. As a 
onsequen
e of the previous settingwe getCorollary 5.6. Ea
h element in ker δn indu
es (many) elements in ker ∂n.The 
ru
ial main 
onsequen
e is the following result.Corollary 5.7. Let K be an arbitrary �eld and set F = K(t1, . . . , tr), with (t1, . . . , tr) a tran-s
enden
e basis over K. Let D ∈ DerZ(F ). Then any fun
tional equation of the n-logarithmover K indu
es, via the derivation map τn,D, a fun
tional equation of the in�nitesimal n-logarithm over K.Proof. It is a dire
t 
onsequen
e of the de�nition 3.1 and of the 
onstru
tion of τn,D. �Remark 5.8. Noti
e that, in the above 
orollary, DerZ(F ) 6= 0 sin
e DerK(F ) 6= 0, at leastif r > 1. In pra
ti
e it 
ould be interesting to have a di�erential basis, and thus we 
an assumethat if K is of 
hara
teristi
 p then (t1, . . . , tr) is a p-basis over K.It is a priori not 
lear that the pro
edure gives non-trivial equations, but the followingexamples show that it is a
tually the 
ase:Example 5.9. The �rst example is taken from [8℄ and it retrieves the 4-term relation fromthe 5-term relation (3.3) by applying the above pro
edure with

D = a(1 − a)
∂

∂a
+ b(1 − b)

∂

∂b
,assuming that F = K(a, b) with a, b indeterminates over the �eld K, and that ∂

∂a and ∂
∂b arethe usual partial derivatives.The following proposition gives a partial answer to Cathelineau's question 
on
erning therelationship of his 22-term equation for dD3 and Gon
harov's equation (3.7) for D3 (withthe same number of terms). It is a 
onsequen
e of the previous results but 
an also be veri�eddire
tly.Proposition 5.10. (1) The in�nitesimal fun
tional equation below, whi
h is derived fromthe Gon
harov fun
tional equation for the trilogarithm is zero in β3(F ) .
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harov equation is expressible in terms of an F -linear 
ombinationof J(a, b, c) .We give an example of su
h a derived version in the 
ase F = K(a, b, c) with a, b, c indeter-minates over the �eld K, applying the above pro
edure with
D = a(1 − a)

∂

∂a
+ b(1 − b)

∂

∂b
+ c(1 − c)

∂

∂cto the equation stated in (3.7). Let us set
ϕ(a, b, c) =[a] −

(b− 1)(a− 1)

ab− 1

([
−
b(a− 1)

b− 1

]
+

[
−
a(b− 1)

a− 1

])

+
(c2b+ cb2 − 3cb+ 1)

cb− 1

[
a− 1

abc− 1

]
−

(abc− a− b− c+ 2)

cb− 1

[
cb(a− 1)

abc− 1

]

−
(a+ b− 2)

ab− 1
[ab] −

(a2bc− 2abc+ b+ c− 1)(a − 1)

(ac− 1)(ab− 1)

[
−
a(c− 1)(b − 1)

(a− 1)(abc − 1)

]
.Then, modulo the inversion formula,

ϕ(a, b, c) + ϕ(b, c, a) + ϕ(c, a, b) −
(a+ b+ c− 3)

abc− 1
[abc]is the di�erential of the Gon
harov equation and vanishes in β3(F ) by virtue of Corollary 5.6.Observation 5.11. We should noti
e that we have not yet proved that the in�nitesimalGon
harov equation also holds in 
hara
teristi
 p and to know that this equation is expressiblein terms of an F -linear 
ombination of J(a, b, c) is not enough to ensure this (unless we knowthat this linear 
ombination is independant of F ). It will be seen in the next se
tion that itis the 
ase, at least if we see £2 as a fun
tion from Z/p to Z/p.6. Redu
tion of fun
tional equations mod p via the p-adi
 realmIn this se
tion, we want to prove the following statements (whi
h are made more pre
isebelow):

➊ Ea
h fun
tional equation for the 
lassi
al n-logarithm Dn indu
es a fun
tional equa-tion for 
ertain p-adi
 n-logarithm fun
tions (those whi
h satisfy Wojtkowiak's p-adi
version of Zagier's 
riterion).
➋ Ea
h fun
tional equation for the 
lassi
al n-logarithm indu
es a fun
tional equationfor the in�nitesimal n-logarithm (via the derivation pro
edure given in the previousse
tion). A similar statement holds for the p-adi
 
ase.
➌ Ea
h fun
tional equation for the in�nitesimal n-logarithm dDn indu
es a fun
tionalequation for the 
orresponding p-adi
 in�nitesimal n-logarithm denoted DFn (see Def-inition 6.6).
➍ Ea
h �good Qp-spe
ialization�, as de�ned in (6.10) below, of a fun
tional equationfor the p-adi
 in�nitesimal polylogarithm indu
es a fun
tional equation (in the weaksense) for the �nite (n− 1)-logarithm.



ON POLY(ANA)LOGS I 29Combining the four statements, we arrive at the somewhat more surprising statement:Surprise: Ea
h fun
tional equation for the 
lassi
al n-logarithm indu
es a fun
tional equationfor the �nite (n− 1)-logarithm.Throughout this se
tion, we denote by Lin(z) Coleman's p-adi
 n-logarithm [10℄. Letus �rst look for the p-adi
 
ombinations whi
h should play the same role as the modi�edpolylogarithms Dn.Remark 6.1. The inversion relation (in its 
lean form Pn(z) = (−1)n−1Pn(1/z)
) for a 
om-bination Pn(z) =

∑n−1
k=0 ak logk(z)Lin−k(z) is equivalent to the following 
ondition on the
oe�
ients:(6.1) n−1∑

k=0

ak

(n− k)!
= 0(
f. [34℄, Lemma 4.2). Sin
e the inversion relation is in the kernel of ∂n, we 
an restri
t ourinvestigations to 
ombinations Pn(z) satisfying those 
onditions.While one needs to work harder in the �
lassi
al� 
ase to �nd fun
tions whi
h satisfy 
leanlytheir fun
tional equations, it turns out that in the p-adi
 
ase the above 
ondition is alreadygood enough, and we 
an state the above 
laim ➊ more pre
isely asProposition 6.2. (Wojtkowiak, [34℄, Proposition 4.4)Let ξ ∈ ker δn,Qp(t1,...,tr). Then ea
h admissible Cp-spe
ialization of ξ is mapped to a 
onstantby the p-adi
 fun
tions(6.2) Pn(z) =

n−1∑

k=0

ak logk(z)Lin−k(z) ,if the 
oe�
ients satisfy 
ondition (6.1).This motivates the following de�nition:De�nition 6.3. A linear 
ombination of p-adi
 polylogarithms of the form (6.2) whose 
oef-�
ients satisfy (6.1) is 
alled a 
lean p-adi
 polylogarithm.Remark 6.4. (1) For n = 2, there is, up to a multipli
ative 
onstant, only one 
lean
p-adi
 2-logarithm P2 satisfying (6.1).(2) The original statement was a
tually somewhat stronger: Qp(t1, . . . , tr) was repla
edby Cp(t), where Cp denotes a 
ompletion of an algebrai
 
losure of Qp.The 
laim in ➋ follows immediately from the �derivation map� in �5.Before we show a more pre
ise version of ➌ by imitating Proposition 7 of [8℄, we state ourintermediate goal: We are looking for a morphism F [F ] → F0, where F = Cp(z) and F0 = Cp.More pre
isely, we want to have a family of morphisms (DPn)n>2 on βn(Cp) expressed interms of the di�erential operator D = z(1 − z) d

dz and some 
lean p-adi
 polylogarithms Pn.There are many 
andidates:Proposition 6.5. Let (Pn)n>2 be a family of 
lean p-adi
 polylogarithms su
h that for n > 3(6.3) DPn(z) = λn (1 − z)Pn−1(z) + µn log(z)DPn−1(z) ,
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p .Then, for any n, DPn de�nes a morphism on βn(Cp).Proof. Pn is de�ned on Bn(Cp) by assumption. For n = 2, we have seen that the fun
tion isessentially unique:

P2(z) = −2Li2(z) + log(z)Li1(z) ,and the resulting in�nitesimal dilogarithm
DP2(z) = (1 − z) log(1 − z) + z log(z)vanishes on r2(Cp) (due to Proposition 2.8, it is enough to 
he
k that it vanishes on the fourterm relation, whi
h is straightforward).Now suppose the 
laim is true for n − 1. The maps DPn−1 ⊗ log : βn−1(Cp) ⊗ C×

p → Cp,
x〈y〉n−1 ⊗ z 7→ xDPn−1(y) log(z) resp. Pn−1 ⊗ Id : Bn−1(Cp) ⊗ Cp → Cp, {y}n−1 ⊗ z 7→
zPn−1(y), are well-de�ned by the indu
tive assumption resp. by assumption (Pn−1 is 
lean).Furthermore, an element ξ ∈ rn(Cp) lies in the kernel of ea
h of the �
omponents� of ∂n, say
∂′n : Cp[Cp] → βn−1(Cp) ⊗ C×

p and ∂′′n : Cp[Cp] → Bn−1(Cp) ⊗ Cp, and therefore
(
µnDPn−1 ⊗ log + λn Pn−1 ⊗ Id

)(
∂nξ) =

(
µnDPn−1 ⊗ log ◦∂′n + λn Pn−1 ⊗ Id ◦ ∂′′n

)
ξ = 0 ,whi
h shows that the fun
tion de�ned by (6.3) 
an be linearly extended to a well-de�nedfun
tion on βn(Cp). �De�nition 6.6. Besser's p-adi
 n-logarithm is de�ned as(6.4) Fn(z) =

n−1∑

k=0

ak,n logk(z)Lin−k(z)with
ak,n =

(−1)k

k!
(k − n) .We will 
all DFn the distinguished in�nitesimal p-adi
 n-logarithm.Proposition 6.7 (Existen
e). There exist families of 
lean p-adi
 polylogarithms satisfying(6.3) for some λn, µn ∈ C×

p .In parti
ular, Besser's family (6.4) satis�es (6.3) with (λn, µn) = ( 1
n−1 ,−

1
n−1), n > 3.There are many other possibilities.Proof. Again, the 
ase n = 2 gives the unique 
hoi
e for P2 (up to multipli
ative 
onstant).Indu
tively, starting from Pn−1 and DPn−1, one 
an form an arbitrary linear 
ombinationof them using λn and µn whi
h gives a 
andidate for DPn, with 
oe�
ients bk,n, say; asubsequent �integration� (putting a0,n = −n and su

essively ak+1,n = −n(bkn −akn)/(k+1),

k = 0, . . . , n − 2) provides a 
andidate Pn whose 
oe�
ients akn have to satisfy the further
ondition (6.1)�this gives a linear restri
tion on the possible (λn, µn) at ea
h step. We thusobtain indu
tively an extra degree of freedom at ea
h level.For example, normalizing Pn(z) su
h that a0 − n, we obtain su

essively
λ3 − µ3 = 1 , λ4 − µ4 =

1

2 − λ3
, etc.It remains to 
he
k that Besser's 
hoi
e (6.4) does satisfy(6.5) (n− 1)DFn(z) = (1 − z)Fn−1(z) − log(z)DFn−1(z)
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h is straightforward. Also, the ak,n satisfy 
ondition (6.1) sin
e
−

n−1∑

k=0

(−1)k

k!(n − k)!
(n− k) =

1

(n− 1)!
(1 − 1)n−1 = 0 .

�Remark 6.8. (1) Writing Φn(z) = (n − 1)!Fn(z) and noti
ing that (1 − z) = D log(z),we 
an reformulate (6.5) more suggestively, using the ad-ho
 
onvention D−(a⊗ b) :=
D(a)b− aD(b), as

DΦn(z) = D−
(
log(z) ⊗ Φn−1(z)

)
.(2) We have just seen that, a priori, there are many 
hoi
es for the Pn individually, butthe 
ondition that the morphisms at level n and n − 1 be linked via the 
ondition

ρDPn(z) = (1 − z)Pn−1(z) − log(z)DPn−1(z) for some ρ ∈ Cp provides us with aunique fun
tion, up to a multipli
ative fa
tor, the 
ondition (6.1) still being truefor Pn. We have not found a �natural� justi�
ation for the 
ondition (6.5), though.A normalization 
ondition for the above Pn is then a0,n + a1,n = −1 whi
h entails
ρ = n − 1. The resulting family 
oin
ides with Besser's fun
tions (6.4)�his 
hoi
e of
oe�
ients was for
ed by two rather natural requirements: �rst, a 
ertain p-adi
 powerseries expansion be
omes independent of the �dire
tion� in whi
h to expand; se
ond,one retrieves the �nite (n− 1)-logarithm by redu
ing DFn mod pn (or, more pre
isely,redu
ing p1−nDFn mod p) on elements in Z×

p ∩ (1 − Zp)
× ⊂ Cp (for an improvedstatement of this and of the following theorem 
f. [2℄).The Fn 
an be 
hara
terized by the followingTheorem 6.9. (Besser, [2℄, Theorem 1.1)Let X = {z ∈ Zp , |z| = |1 − z| = 1}. For p > n + 1, one has DFn(Zp) ⊂ pn−1Zp, and for

z ∈ X:
p1−nDFn(z) ≡ £n−1(z) (mod p) .The 
hoi
e of 
oe�
ients (in Q) for Fn is unique for a 
lean p-adi
 polylogarithm whi
hsatis�es the above property for all p > n+ 1.In order to formulate the subsequent statements 
onveniently, we introdu
e the followingnotion:De�nition 6.10. A good Qp-spe
ialization for ∑ni[xi] ∈ F [F ], F ⊂ Qp(t1, . . . , tr), is afamily of numbers uj ∈ Qp, j = 1, . . . , r, su
h that the images of ni = ni(t1, . . . , tr), xi =

xi(t1, . . . , tr) and 1−xi = 1−xi(t1, . . . , tr) under the spe
ialization map tj 7→ uj , j = 1, . . . , r,are in Z×
p .The virtue of a good Qp-spe
ialization lies in the fa
t that we 
an redu
e it modulo pZp.As we 
an noti
e, a good Qp-spe
ialization is, in parti
ular, an admissible Qp-spe
ialization.Now, putting Proposition 6.5 and Theorem 6.9 together, we 
an make ➍ more pre
ise:Corollary 6.11. Let n > 2, p > n+ 1, and η ∈ ker ∂n,Qp(t1,...,tr). Then we havea) For ea
h admissible Cp-spe
ialization ηspec for η, DFn(ηspec) = 0.b) For ea
h good Qp-spe
ialization ηspec for η, the redu
tion mod p gives

£n−1(η
spec) ≡ 0 (mod p) .



32 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLProof. The in�nitesimal polylogarithm DFn vanishes on η by Proposition 6.5, and redu
ingmod p obviously 
onserves this vanishing property. Besser's result now says that the redu
tionof p1−nDFn(ηspec) is equal to £n−1

(
ηspec (mod p)

). �Going even one step further, we 
an state a more pre
ise version of the above �surprise�:Corollary 6.12. Let n > 2, p > n+ 1, and ξ ∈ ker δn,Q(t1,...,tr). Then we havea) For ea
h admissible C-spe
ialization resp. Cp-spe
ialization ξspec for ξ, the quantities
Dn(ξspec) resp. Fn(ξspec) are 
onstants.b) For ea
h absolute derivation ∆ ∈ DerZ(Q(t1, . . . , tr)), ξ indu
es ξ∆ ∈ ker ∂n,Q(t1,...,tr),and therefore, for ea
h admissible C-spe
ialization resp. Cp-spe
ialization,

dDn(ξ∆) = 0, resp. DFn(ξ∆) = 0 .
) For ea
h good Qp-spe
ialization ξspec
∆ for ξ∆, the redu
tion mod p gives

£n−1(ξ
spec
∆ ) ≡ 0 (mod p) .Proof. a) Follows from Zagier [36℄ and Wojtkowiak [34℄, respe
tively.b) This follows via the �derivation map� (see �5).
) 0 = p1−nDFn(ξ∆) ≡ £n−1(ξ

spec
∆ ).

�Alas, although being quite powerful, the above strategy does not give the full answer to ourproblem.Remark 6.13. (1) The virtues of the pro
edure des
ribed above lie in its generality: wedo not need to (�nd and) prove fun
tional equations for (p-adi
) in�nitesimal or �nitepolylogs, sin
e they �drop out� using the ma
hinery.(2) The drawba
ks of the ma
hinery lie in its la
k of 
ontrol:(a) We do not get the fun
tional equations as polynomial identities but only �onpoints�, i.e. in the form of (good) spe
ializations.(b) A more mundane reason for proving fun
tional equations for £n in the strongsense is the fa
t that all the ones whi
h have o

urred in our investigations arenot only true for Fp but a
tually hold more generally for any �eld of 
hara
teristi

p.(
) (a minor point, given the range in whi
h we mostly work) We need to assumethat p > n+ 1.This restri
tion is not (always) ne
essary for the polynomial identities to hold:there are examples of equations for £3 whi
h are still true in 
hara
teristi
 3.In summary, there are still plenty of reasons whi
h leave us with the task of �nding proofs offun
tional equations for the �nite polylogarithms. The �nal se
tion will therefore be dedi
atedto this issue.Part III. The Main Proofs7. Proofs of fun
tional equations over fields of 
hara
teristi
 p.7.1. Straightforward demonstrations.



ON POLY(ANA)LOGS I 33Proof. (of Proposition 4.7)(1) The inversion relation 
an be 
he
ked via a straightforward algebrai
 manipulation.(2) In order to prove the distribution relation, let us �x a primitive mth root of unity ζ .Dividing both sides by mn and developing the fra
tion into a (�nite) series leaves usto prove:
p−1∑

k=1

T km

(km)n
=

1

m

∑

ζm=1

(
1 + (ζT )p + (ζT )2p + · · · + (ζT )(m−1)p

) p−1∑

k=1

(ζT )k

kn

=
1

m

p−1∑

k=1

1

kn

∑

ζm=1

(
(ζT )k + (ζT )p+k + (ζT )2p+k + · · · + (ζT )(m−1)p+k

)

=
1

m

p−1∑

k=1

∑

ζm=1

(
(ζT )k

kn
+

(ζT )p+k

(p+ k)n
+

(ζT )2p+k

(2p + k)n
+ · · · +

(ζT )(m−1)p+k

(
(m− 1)p+ k

)n
)

=
1

m

pm−1∑

r=1
p6 |r

( ∑

ζm=1

ζr
)T r

rn
,and this is true due to the 
hara
ter relations

∑

ζm=1

ζr =

{
m, if m|r

0, otherwise.(3) (Proof of the spe
ial values) £̃n(1) = 0 if (p− 1)6 |n follows from the well-known fa
tthat∑p−1
k=0 P (k) = 0 for any polynomial P ∈ Z/pZ[x] of degree 6 p−2 (here we applyit to the monomials x, . . . , xp−2), the statement for (p− 1)|n being obvious.The assertion for £̃2n(−1) = 0 is a dire
t 
onsequen
e of the inversion relation.To prove the last formula of Proposition 4.7 we only need to take m = 2n (the oddvalues 
orrespond to the above identities). For this, one 
an use the spe
ial 
ase a = 2,in [27℄(Proposition (5B), p.108), p− 1 6 |2n:(7.1) (1 − 22n)B2n ≡ 2n 22n−1

∑

16j< p

2

1

j1−2n
(mod p)and the fa
t that £1−2n(−1) is equal to the sum in (7.1): rewriting

£̃p−2n(−1) = £̃1−2n(−1) =

(p−1)/2∑

j=1

(2j)2n−1−

(p−1)/2∑

j=1

(2j−1)2n−1 = 2

(p−1)/2∑

j=1

(2j)2n−1−

p−1∑

j=1

j2n−1 ,one sees that the �rst sum is equal to 22n times the sum in (7.1), while the se
ond oneequals −£̃1−2n(1) and therefore is zero (for 0 < n < p−1
2 ) by the above spe
ial value.

�



34 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGL7.2. A re
ipe for proving fun
tional equations. Let R be a domain of 
hara
teristi
 p.In order to show that a polynomial Q(T ) ∈ R[T ] is zero, we divide it into three parts:
Q(T ) = Q(0) +Q1(T ) +Q2(T

p) ,where Q1(T ) involves only powers of T whi
h are not divisible by p. Then we verify separatelythat Q2(T
p) and the 
onstant Q(0) vanish and that d

dTQ1(T ) is zero as well. We 
an iteratethis pro
edure in an obvious way.Proof of Proposition 4.9. (1) We will apply the re
ipe above. We have
d

dT
£1(1 − T ) = −

1

1 − T
£0(1 − T ),

=
1

T
£0(T ) by (4.1),

=
d

dT
£1(T ),and as the degree of either polynomials is less than p− 1 , we 
on
lude that £1(T ) =

£1(1 − T ) + c where c is a 
onstant.This, in turn, implies that 2c = 0 (spe
ialize T = 0 and T = 1 , respe
tively), andtherefore we get as a by-produ
t £1(1) = £1(0) = 0 (in 
hara
teristi
 6= 2).(2) The following proof is a slight variation of the re
ipe, in that it uses two iteratedderivatives.Denote by ∂x and ∂y the derivatives to respe
t to x and y . We 
an 
he
k, usingthe di�erential equation for £1 and the rational expression (..) for £0 , that
∂y∂xH(x, y, s) =

1 − yp − xp + sp

(1 − y − x+ s)2
,whi
h is an expression that is symmetri
 in x and y . Thus

∂y∂x(H(x, y, s) −H(y, x, s)) = 0.But the maximum degree for ea
h indeterminate in the polynomial H(x, y, s) is nevergreater than p− 1 , and as a 
onsequen
e the above identity implies that
H(x, y, s) −H(y, x, s) = R0(s) +R1(s)x+R2(s)y,where R0, R1, R2 ∈ F[s] . But setting x = y implies both R0 = 0 and R1 + R2 = 0,and the 
onstru
tion of R1 and R2 shows dire
tly that they are both zero (the
oe�
ients of x and y in H(x, y, s) are both equal to ∑p−2

k=0(−s)
k
).

�Proof of Proposition 4.11. (1) Set
E(T ) = £2(1 − T ) − £2(T ) + T p

£2(1 −
1

T
).We want to prove that E is 0 in F[T ] . Computing d

dTE we get
d

dT
E(T ) = −

1

1 − T
£1(1 − T ) −

1

T
£1(T ) +

T p−1

T − 1
£1(1 −

1

T
).



ON POLY(ANA)LOGS I 35But by Proposition 4.9, £1(1 − T ) = £1(T ) and £1(1 − 1
T ) = £1(

1
T ) . Moreover bythe inversion formula (see Proposition 4.7) we have £1(

1
T ) = − 1

T p £1(T ) . Hen
e,
d

dT
E(T ) = −

1

1 − T
£1(T ) −

1

T
£1(T ) −

1

(T − 1)T
£1(T ),

= 0.As E(0) = 0 and deg(E) 6 p , we know that E(T ) = cT p and therefore T pE( 1
T ) = c,but using the inversion relation one sees that T pE( 1

T ) = E(T ), whi
h implies c = 0.
�Remark 7.1. A di�erent way to prove that c = 0 : For this we look dire
tly at E(T ) andtry to 
ompute this 
oe�
ient whi
h 
an only appear in the expression

T p
£2(1 −

1

T
) =

p−1∑

i=1

T p−i(T − 1)i

i2
.But, for ea
h i , the 
oe�
ient of T p is 1

i2 , and thus c = £2(1) = 0 .Proof of Theorem 4.12. The strategy of proof 
ould be summarized as follows:(i) Prove that ∂c£̂2(J(a, b, c)) = 0 in F[a, b, c].(ii) Prove that £̂2(J(a, b, 0)) = 0 in F[a, b].(iii) Prove that the 
oe�
ient of cp in £̂2(J(a, b, c)) is 0.For the proof of this fun
tional equation we will need several preliminary formulas. First wewill use these two relations, in F[x, y], 
oming from the 4-term equation for £1

(1 − y)p£1

(
x

1 − y

)
= £1(x) + (1 − x)p£1

(
y

1 − x

)
− £1(y),(7.2)

£1(y) − £1(x) = (1 − x)p£1

(
1 − y

1 − x

)
+ xp

£1

(y
x

)
.(7.3)We use impli
itly the following formal derivation rules, where t is an indeterminate and λ a
onstant independent of t:

d

dt
£2

(
λ(1 − t)

)
= −

1

1 − t
£1(λ(1 − t)),

d

dt
£2

(
λ
(
1 −

1

t

))
= −

1

t(1 − t)
£1

(
λ
(
1 −

1

t

))
.We also point out that the following simple formula will be often used:

1

t
+

1

1 − t
=

1

t(1 − t)
.For the 
onvenien
e of the reader we will give detailled 
omputations in order to make 
he
k-ing almost straightforward.



36 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLLet's �rst split £̂2(J(a, b, c)) into six pie
es to fa
ilitate the identi�
ation of the 
an
ellationin the forth
oming 
omputations:
A1 = cp£2(a) − cp£2(b) + (a− b+ 1)p£2(c)

+ (1 − c)p£2(1 − a) − (1 − c)p£2(1 − b) + (b− a)p£2(1 − c),

A2 = −ap
£2

( c
a

)
+ bp£2

(c
b

)
+ cpap

£2

(
b

a

)

− (1 − a)p£2

(
1 − c

1 − a

)
+ (1 − b)p£2

(
1 − c

1 − b

)
+ cp(1 − a)p£2

(
1 − b

1 − a

)
,

A3 = cp(1 − a)p£2

(
a(1 − c)

c(1 − a)

)
− cp(1 − b)p£2

(
b(1 − c)

c(1 − b)

)
,

A4 = −bp£2

(ca
b

)
− (1 − b)p£2

(
c(1 − a)

1 − b

)
,

A5 = −(a− b)p£2

(
(1 − c)a

a− b

)
− (b− a)p£2

(
(1 − c)(1 − a)

b− a

)

+ cp(a− b)p£2

(
(1 − c)b

c(a− b)

)
+ cp(b− a)p£2

(
(1 − c)(1 − b)

c(b− a)

)
,

A6 = (1 − c)pap
£2

(
a− b

a

)
+ (1 − c)p(1 − a)p£2

(
b− a

1 − a

)
.Set d = ∂

∂c .First step: prove that ∑ dAi = 0.It is immediate that dA6 = 0. Using the rules des
ribed above, we get the following equalities:
dA1 =

1

c
£1(c) +

(a− b)p

c(1 − c)
£1(c),

dA2 = −
ap

c
£1

( c
a

)
+
bp

c
£1

(c
b

)

+
(1 − a)p

1 − c
£1

(
1 − c

1 − a

)
−

(1 − b)p

1 − c
£1

(
1 − c

1 − b

)
,

dA3 = −
cp(1 − a)p

c(1 − c)
£1

(
a(1 − c)

c(1 − a)

)
+
cp(1 − b)p

c(1 − c)
£1

(
b(1 − c)

c(1 − b)

)
,

dA4 = −
bp

c
£1

(ca
b

)
−

(1 − b)p

c
£1

(
c(1 − a)

1 − b

)
,

dA5 =
(a− b)p

1 − c
£1

(
(1 − c)a

a− b

)
+

(b− a)p

1 − c
£1

(
(1 − c)(1 − a)

b− a

)

−
cp(a− b)p

c(1 − c)
£1

(
(1 − c)b

c(a− b)

)
−
cp(b− a)p

c(1 − c)
£1

(
(1 − c)(1 − b)

c(b− a)

)
.Then, applying 
onse
utively (7.2) to dA5, with x = 1− c, y = b

a , with x = 1− 1
c , y = b

a , andwith x = 1− 1
c , y = 1−a

1−b , and to dA3 with x = 1− 1
c , y = 1

a , and using (7.3) for simpli�
ation
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 relations for £1, we get
dA4 + dA5 + dA3 = −

£1(b)

1 − c
+

£1(a)

1 − c

+
cp

c(1 − c)

(
£1

(
b

c

)
− £1

(a
c

))
− £1(c) +

(b− a)p

c(1 − c)
£1(c),then

dA1 + dA4 + dA5 + dA3 = −
£1(b)

1 − c
+

£1(a)

1 − c
+

cp

c(1 − c)

(
£1

(
b

c

)
− £1

(a
c

))
.It remains to transform dA2, but using (7.3), we have e.g.

(1 − b)p£1

(
1 − c

1 − b

)
= £1(c) − £1(b) − bp£1

(c
b

)
,then

dA2 =
£1(b)

1 − c
−

£1(a)

1 − c
+

bp

c(1 − c)
£1

(c
b

)
−

ap

c(1 − c)
£1

( c
a

)
.Now by invoking the inversion formula we see that

5∑

i=1

dAi = 0.Se
ond step: Prove that the relation is true for c = 0.Putting c = 0 in ∑6
i=1Ai gives
£2(1 − a) − £2(1 − b) − (1 − a)p£2

(
1

1 − a

)
+ (1 − b)p£2

(
1

1 − b

)

ap
£2

(
a− b

a

)
+ (1 − a)p£2

(
b− a

1 − a

)
− (a− b)p£2

(
a

a− b

)
− (b− a)p£2

(
1 − a

b− a

)and applying the inversion formula for £2 we get 0.Third step: Prove that the 
oe�
ient of cp is 0.Noti
e �rst that if λ is an expression independent of c, then the 
oe�
ient of cp in the sum∑p−1
i=1

λi

i2
cp−i(1 − c)i is £2(−λ). Using this fa
t, we 
an see that the 
oe�
ient of cp in theexpression ∑6

i=1Ai is given by
£2(a) − £2(1 − a) + (1 − a)p£2

(
−a

1 − a

)

− £2(b) + £2(1 − b) − (1 − b)p£2

(
−b

1 − b

)

+ ap
£2

(a
b

)
− ap

£2

(
a− b

a

)
+ (a− b)p£2

(
−b

a− b

)

+ (1 − a)p£2

(
1 − b

1 − a

)
− (1 − a)p£2

(
b− a

1 − a

)
+ (b− a)p£2

(
−

1 − b

b− a

)
.But ea
h of the previous lines are 0 by using the 3-term fun
tional equation of £2 (see Propo-sition 4.12 1. ) and this 
ompletes the proof of the 22-term fun
tional equation for £2. �



38 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLRemark 7.2. We want to stress some more stru
tural properties in the rather 
omputationalparts of the previous proof�thereby also giving an indi
ation that there should exist a 
ommonproof for both the �nite and the in�nitesimal 
ase:(i) we �rst use the (�d log-like�) behaviour (
f. the 
omment after (De�nition 4.4))
d

dc
£̂m

(
cα(1 − c)β

)
=
(α
c
−

β

1 − c

)
£̂m−1

(
cα(1 − c)β

)to group the terms of d
dc£̂2

(
J(a, b, c)

) with a 
oe�
ient 1
c (resp. 1

1−c) together�theseare exa
tly the terms with a fa
tor c (resp. 1− c). For instan
e, the terms with 1
c areas follows:

1

c
£̂1

(
(a− b+ 1)[c]

− a
[ c
a

]
+ b
[c
b

]
− b
[ca
b

]
− (1 − b)

[c(1 − a)

1 − b

]

− c(1 − a)
[ 1 − c−1

1 − a−1

]
+ c(1 − b)

[1 − c−1

1 − b−1

]

− c(a− b)
[1 − c−1

1 − a
b

]
− c(b− a)

[ 1 − c−1

1 − 1−a
1−b

])In order to verify that this expression vanishes, we rewrite it in a slightly more 
onve-nient fashion (in order to be able to apply the four term relation line by line), negle
tingthe fa
tor 1
c , we get:

£̂1

(
(a− b+ 1)[c]

− a
[ c
a

]
− c(1 − a)

[
1 − c−1

1 − a−1

]

+ b
[c
b

]
+ c(1 − b)

[
1 − c−1

1 − b−1

]

− b

[
c(
b
a

)
]
− c(a− b)

[
1 − c−1

1 −
(

b
a

)−1

]

− (1 − b)

[
c

(
1−a
1−b

)−1

]
− c(b− a)

[
1 − c−1

1 − 1−a
1−b

])

Applying the 4-term equation (3.18) �linewise� to the 2nd, 3rd, 4th and 5th line abovewith x = a, x = b, x = b
a and x = 1−b

1−a , respe
tively, this latter expression is seen to
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e to
£̂1

(
(a− b+ 1)[c]

− a[c] + c[a] + b[c] − c[b]

− a

(
b

a
[c] − c

[
b

a

])
− (1 − a)

(
1 − b

1 − a
[c] − c

[
1 − b

1 − a

]))

= £̂1

(
c

(
[a] − [b] + a

[
b

a

]
+ (1 − a)

[
1 − b

1 − a

]))whi
h vanishes, again in view of the four term equation (and be
ause the 
oe�
ientsfor [c] add up to zero). The terms with 1
1−c 
an be treated in a 
ompletely analogousway.(ii) The 
onstant term in c of the polynomial £̂2(J(a, b, c)), i.e. the polynomial £̂2(J(a, b, 0)),is zero�this 
orresponds in the in�nitesimal 
ase to the degenerate 
ase where we alsoput c = 0 but where we need to give sense to expressions like a[ b

a ] for a = 0, the
onsistant 
hoi
e being that it should be zero.(iii) Instead of 
onsidering the 
oe�
ient of cp in the polynomial £̂2(J(a, b, c)) we 
anequivalently 
he
k that the 
onstant 
oe�
ient in cp£̂2(J(a, b, 1
c )) is zero. In thein�nitesimal 
ase we 
an perform the same 
he
k using c£̂2(J(a, b, 1

c )) (so we 
an usethe analogy again). Referen
es[1℄ A
zél, J. and J. Dhombres Fun
tional equations in several variables, En
y
lopedia of Math. and itsAppli
ations, Vol 31, Cambridge Univ. Press 1989.[2℄ Besser, A. Finite and p-adi
 polylogarithms, preprint 2000.[3℄ Blo
h, S. On the tangent spa
e to Quillen K-theory, Pro
. Conf., Battelle Memorial Inst., Seattle, Wash.,1972, Springer Le
t. Notes in Math. no 341, (1973), pp. 205�210.[4℄ Blo
h, S. Higher regulators, algebrai
 K-theory, and zeta-fun
tions of ellipti
 
urves, Le
ture Notes,U.C. Irvine, 1977.[5℄ Blo
h, S. Appli
ations of the dilogarithm fun
tion in algebrai
 K-theory and algebrai
 geometry, Pro
. ofthe Int. Symp. on Alg. Geom. (Kyoto Univ., Kyoto, 1977), pp. 103�114, Kinokuniya Book Store, Tokyo,1978.[6℄ Cathelineau, J.-L. Sur l'homologie de SL2 à 
oe�
ients dans l'a
tion adjointe, Math. S
and. 63 (1988),51-86.[7℄ Cathelineau, J.-L. Homologie du groupe linéaire et polylogarithmes (d'après Gon
harov et d'autres),Séminaire Bourbaki, 772 (1992-93), Astérisque 216 (1993) 311-341.[8℄ Cathelineau, J.-L. Remarques sur les di�érentielles des polylogarithmes uniformes, Ann. Inst. Fourier,Grenoble, 46, 5(1996), 1327-1347.[9℄ Cathelineau, J.-L. In�nitesimal polylogarithms, multipli
ative presentations of Kähler di�erentials andGon
harov 
omplexes, talk at the Workshop on Polylogarithms, Essen, May 1-4. (see http://www.exp-math.uni-essen.de/∼herbert/polyloquy.html)[10℄ Coleman, R. Dilogarithms, regulators and p-adi
 L-fun
tions, Invent. Math. 69 (1982), no. 2, 171�208.[11℄ Dupont, J. L.; Sah, C.-H. S
issors 
ongruen
es. II., J. Pure Appl. Algebra 25, (1982) 159-195.[12℄ Elbaz-Vin
ent, Ph. The inde
omposable K3 of rings and homology of SL2, Jo. Pure. Appl. Alg.132,(1998) 27-71.



40 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGL[13℄ Elbaz-Vin
ent, Ph. Homology of Linear Groups with Coe�
ients in the Adjoint A
tion and K-theory,
K-Theory 16, (1999), 35-50.[14℄ Elbaz-Vin
ent, Ph. Arithmeti
 and in�nitesimal variations on a polylogarithm theme (report on a workin progress with H. Gangl), talk at the Workshop on Polylogarithms, Essen, May 1-4. (see http://www.exp-math.uni-essen.de/∼herbert/polyloquy.html)[15℄ Elbaz-Vin
ent, Ph.; Gangl, H. On Poly(ana)logs II, (in preparation).[16℄ Elbaz-Vin
ent, Ph.; Gangl, H. Arithmeti
al and In�nitesimal Variations on a Polylogarithmi
 Theme(in preparation)[17℄ Gangl, H. Funktionalglei
hungen von Polylogarithmen, (German) Dissertation, Bonn, 1995. BonnerMathematis
he S
hriften 278. Universität Bonn.[18℄ Gangl, H. Fun
tional equations for higher logarithms, in preparation.[19℄ Gon
harov, A.B. Geometry of 
on�gurations, polylogarithms and motivi
 
ohomology, Adv. Math. 114(1995) 197-318.[20℄ Gon
harov, A.B. Polylogarithms and motivi
 Galois groups, Pro
. of the Seattle 
onf. on motives,Seattle July 1991, AMS Pro
. Symp. in Pure Math. 55 (1994) 2, 43-96.[21℄ Gon
harov, A.B.Multiple polylogarithms, 
y
lotomy and modular 
omplexes, Math. Res. Lett. 5 (1998),no. 4, 497�516.[22℄ Kontsevi
h, M. The 1 1

2
-logarithm (unpublished note 1995).[23℄ Lewin, L. Polylogarithms and asso
iated fun
tions North-Holland Publishing Co., New York-Amsterdam,1981.[24℄ Lewin, L. (Ed) Stru
tural Properties of Polylogarithms, Mathemati
al Surveys and Monographs, vol 37,AMS, 1991.[25℄ Lewin, L. The order-independen
e of the polylogarithmi
 ladder stru
ture�impli
ations for a new 
ate-gory of fun
tional equations, Aequationes Math. 30 (1986), no. 1, 1�20.[26℄ Oesterlé, J. Polylogarithmes, Sém. Bourbaki, 762 (1992-93), Astérisque 216 (1993) 49-67.[27℄ Ribenboim, P. 13 Le
tures on Fermat's last theorem, New York - Heidelberg - Berlin: Springer-Verlag.(1979).[28℄ Rogers, L.J. On fun
tion sum theorems 
onne
ted with the series P

∞

1
xn/n2, Pro
 London Math. So
.4 (1907), 169�189.[29℄ Rosenberg, J. Algebrai
 K-Theory and Its Appli
ations, GTM 147, Springer-Verlag, 1994.[30℄ Suslin, A.A. K3 of a �eld, and the Blo
h group. (Russian) Galois theory, rings, algebrai
 groups andtheir appli
ations (Russian). Trudy Mat. Inst. Steklov. 183 (1990), 180�199, 229.[31℄ Washington, L.C. Introdu
tion to 
y
lotomi
 �elds, GTM 83, Springer-Verlag 1997 (2nd edition).[32℄ Weibel, C. Private e-mail 
orresponden
e, O
tober 1999.[33℄ Wojtkowiak, Z. A 
onstru
tion of analogs of the Blo
h-Wigner fun
tion, Math. S
and. 65, 1989, p.140-142.[34℄ Wojtkowiak, Z. A note on fun
tional equations of the p-adi
 polylogarithms, Bull. So
. math. Fran
e119, 1991, p.343-370.[35℄ Wojtkowiak, Z. The basi
 stru
ture of polylogarithmi
 fun
tional equations, Chapter 10 in [24℄, 205�231.[36℄ Zagier, D. Polylogarithms, Dedekind zeta fun
tions and the algebrai
 K-theory of �elds, Pro
. Texel Conf.on Arithm. Alg. Geometry 1989, Birkhäuser, Boston (1991) 391-430.[37℄ Zagier, D. Spe
ial values and fun
tional equations of polylogarithms, Appendix A in [24℄, 377�400.Laboratoire G.T.A., UMR CNRS 5030, 
ase 
ourrier 51, Université Montpellier II, 34095Montpellier Cedex 5, Fran
e.E-mail address : pev�math.univ-monpt2.frMPI Bonn, Vivatsgasse 7, D-53111 Bonn, Deuts
hland.E-mail address : herbert�mpim-bonn.mpg.deURL : www.exp-math.uni-essen.de/�herbert



ON POLY(ANA)LOGS I 41The 1
1
2-logarithm(appendix to �on poly(ana)logs i� by ph. elbaz-vin
ent and h. gangl)maxim kontsevi
hThis appendix to the paper of Elbaz-Vin
ent and Gangl is in
luded for histori
al purpose.It reprodu
es the text of [22℄, initially written for the private booklet �Friedri
h Hirzebru
hsEmeritierung�.Let p > 2 be a prime. De�ne a map from Z/pZ to itself by the formula

Hp(x) =

p−1∑

k=1

xk

k
= x+

x2

2
+ · · · +

xp−1

p− 1
(mod p) .This fun
tion appears in expli
it formulas for abelian extensions of 
y
lotomi
 �elds. It lookslike a trun
ated version of log( 1

1−x). Of 
ourse, it 
ould not be a logarithm be
ause there is nononzero homomorphism from (Z/pZ)× ≃ Z/(p− 1)Z to Z/pZ. I 
laim that Hp is analogousto another well-known fun
tion of a real variable. I will derive the analogy by writing severalfun
tional equations for Hp. These equations will be independent of p and I will suppress theindex p from the notations.(A): H(1 − x) = H(x) .Proof. we 
an 
ompute expli
itly the 
oe�
ients of the polynomial H(1 − x). First of all, itszeroth 
oe�
ient is H(1) = 1 + 1
2 + . . . 1

p−1 = 1 + 2 + · · ·+ (p− 1) = p(p−1)
2 = 0 (mod p). For

l between 1 and p− 1 the l-th 
oe�
ient of H(1 − x) is equal to
p−1∑

k=1

1

k
(−1)l

k(k − 1) . . . (k − l + 1)

l!
=

(−1)l

l!

p−1∑

k=1

(k − 1) . . . (k − l + 1) =

= −
(−1)l

l!
(0 − 1)(0 − 2) . . . (0 − l + 1) =

(l − 1)!

l!
=

1

l
.We use here the standard fa
t that

p−1∑

k=0

P (k) = 0for any polynomial P ∈ Z/pZ[x] of degree at most p− 2. �A simple generalization of the previous argument shows that(B): H(x+ y) = H(y) + (1 − y)H( x
1−y ) + y H(−x

y ) for y 6= 0, 1 .Also there is a very elementary identity(C): xH( 1
x) = −H(x) for x 6= 0.



42 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLClaim: there is only one (up to a s
alar fa
tor) nonzero 
ontinuous solution of equations(A), (B), (C) in maps from R to itself. It is
H∞(x) = − (x log |x| + (1 − x) log |1 − x|) .Also the fun
tion Hp is the unique (up to s
alar fa
tor) solution in maps from Z/pZ to itself.Cohomologi
al interpretation of fun
tional equations. Let F be a �eld and supposethat H : F → F satis�es (A) and (B). The equation (C) will be irrelevant. We asso
iate with

H a homogeneous fun
tion φ : F × F → F of degree 1:
φ(x, y) :=

{
(x+ y)H

(
x

x+y

) if x+ y 6= 0 ,

0 if x+ y = 0 .Equation (A) implies that φ(x, y) = φ(y, x). Equation (B) is equivalent to the identity
φ(x, y) − φ(x, y + z) + φ(x+ y, z) − φ(y, z) = 0 .Thus, φ is a 2-
o
y
le of the abelian group F (the additive group of the �eld) with 
oe�
ientsin itself as a trivial module. Be
ause this 
o
y
le is invariant under the usual a
tion of themultipli
ative group F× (a
ting both on the group and on the 
oe�
ients), we get a 2-
o
y
leof the group of a�ne transformations of the line over FA�(1, F ) = {t 7→ at+ b|a ∈ K×, b ∈ K}with 
oe�
ients in the non-trivial 1-dimensional representation given by the �rst 
oe�
ient.This 2-
o
y
le de�nes an extension of A�(1, F ) by F . The resulting group G 
an be identi�edas a set with F × F × F×.Now we 
onsider the 
ase of F = R and assume that H is a measurable map. There areno non-trivial measurable 
ohomology 
lasses in H2(R,R), hen
e φ should be a 
oboundary.This means that there exists a fun
tion ψ : R → R su
h that

φ(x, y) = ψ(x) + ψ(y) − ψ(x+ y) .The homogeneity of φ implies that for any λ 6= 0 the fun
tion ψλ(x) := ψ(λx) − λψ(x) isadditive in x. If we deal with measurable maps only then ψλ is a linear fun
tion. From thisone 
an easily dedu
e that
ψ(x)/x = a log |x| + bfor some a, b ∈ R. Thus we get the solution of fun
tional equations for F = R.Now we turn to the 
ase F = Z/pZ. If the 
ohomology 
lass in H2(F,F ) ≃ Z/pZ 
orre-sponding to H is zero then by arguments parallel to the previous one obtains a homomorphismfrom (Z/pZ)× to Z/pZ. This homomorphism (a �logarithm�) vanishes inevitably, thus givingthe uniqueness of H up to a s
alar fa
tor.The group G in the 
ase of F = R is a 3-dimensional solvable Lie group. The Lie algebraof G is de�ned over Z and it has a base x, y, z in whi
h the 
ommutation relations are

[x, y] = y, [x, z] = y + z, [y, z] = 0 .This Lie algebra 
annot be the Lie algebra of any algebrai
 group over Z or over Q. Never-theless, we have de�ned groups of points over R and over Z/pZ for all odd primes p.



ON POLY(ANA)LOGS I 43Entropy. The fun
tion H is the entropy of a random variable taking two values. Moregenerally, if ξ takes a �nite number of values with probabilities p1, . . . , pk, ∑ pi = 1 then theentropy of ξ is de�ned as
H(ξ) := −

k∑

i=1

pi log(pi) .We will 
onsider the entropy also as a fun
tion of the 
olle
tion of probabilities of elementaryevents, H(ξ) = H(p∗). The main property of entropy is that if one random variable (say, ξ) is afun
tion of another random variable (say, η) then the entropy of η 
an be 
omputed as follows.Let us denote probabilities of all possible values of η by p1,1, p1,2, . . . , p1,l1; p2,1, · · · : . . . pk,lk insu
h a way that p1,1 + p1,2 + · · · + p1,l1 = p1 et
. Then we have k 
onditional distributions ofprobabilities pi,∗/pi for ea
h i ≤ k. The main identity of entropies is
H(p∗,∗) = H(p∗) +

k∑

i=1

piH(
pi,∗

pi
) , H(η) = H(ξ) +Hξ(η) .The last term in the formula above is the average value of the entropies of η with given valuesof ξ and it is 
alled the relative entropy.Using the main identity one 
an redu
e by indu
tion the 
al
ulation of the entropy of anyrandom variable to the 
ase of a two-valued variable, i.e. our fun
tion H(x). One 
an 
he
keasily that the entropy of random variables 
omputed using H(x) is well-de�ned i� fun
tionalequations (A) and (B) are satis�ed.Con
lusion: If we have a random variable ξ whi
h takes �nitely many values with allprobabilities in Q then we 
an de�ne not only the trans
endental number H(ξ) but also its�residues modulo p" for almost all primes p !I propose 
alling the fun
tions Hp �11

2 -logarithms," be
ause their fun
tional equation 
on-tains 4 terms, whi
h is between 3 (the logarithm) and 5 (the dilogarithm giving an element in
H3(Sl(2,C),R)).The natural question is to �nd fun
tional equations for the map x 7→

∑p−1
k=1 x

k/k2 from
Z/pZ to itself. I don't know how to do it.Maxim Kontsevi
hInstitut des Hautes Études S
ientifiques, 35, Route de Chartres, 91440, Bures-sur-Yvette,Fran
e.E-mail address : maxim�ihes.fr


