
ON POLY(ANA)LOGS IPHILIPPE ELBAZ-VINCENT AND HERBERT GANGLAbstrat. We investigate a onnetion between the di�erential of polylogarithms (as on-sidered by Cathelineau) and a �nite variant of them. This allows to answer a question raisedby Kontsevih onerning the onstrution of funtional equations for the �nite analogs, us-ing in part the p-adi version of polylogarithms and reent work of Besser. Kontsevih'soriginal unpublished note is supplied (with his kind permission) in an "Appendix" at theend of the paper. ContentsIntrodution and Motivation 1Part I. Preliminary Bakground 41. De�nitions of polylogarithms and their analogues (in harateristi 0) 42. Groups related to polylogarithms 63. Funtional equations 11Part II. The Results 184. Finite versions of polylogarithms and their funtional equations 185. Deriving funtional equations : onstrution of the derivation map 256. Redution of funtional equations mod p via the p-adi realm 28Part III. The Main Proofs 327. Proofs of funtional equations over �elds of harateristi p. 32Referenes 39The 11
2 -logarithm : Appendix by Maxim Kontsevih 41Introdution and MotivationIn an unpublished note [22℄ (inluded as an Appendix) Kontsevih de�ned the �11

2 -logarithm�,assoiated to a prime p, as the trunated power series of − log(1 − x) (for whih we proposethe �trunated� letter £, pronouned �sterling�) as a funtion from Z/p to Z/p:
£1(x) = £

(p)
1 (x) =

p−1∑

k=1

xk

k
(mod p).The �rst author was partly supported by a Marie Curie fellowship of the EU.The seond author is supported by a Habilitationsstipendium der Deutshen Forshungsgemeinshaft.1



2 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLFor reasons whih beome apparent below we refer to it as the �nite 1-logarithm. Kontsevihobserved that it satis�es a funtional equation whih is known in the literature as the funda-mental equation of information theory (see [1℄), and provided a ohomologial interpretationof the equation.Cathelineau [8℄ was led to the same equation by onsidering an �in�nitesimal� version of aone-valued ousin of the dilogarithm funtion whih is de�ned over C. He had enounteredthe fundamental equation of information theory already in [6℄ where, motivated by questionsarising from Hilbert's third problem, he dedued an in�nitesimal version of the famous Bloh�Suslin omplex (whih alulates ertain algebrai K-groups of a �eld). Furthermore, heprovided a homologial interpretation of the equation. Cathelineau extended his results toin�nitesimal versions of higher polylogarithms, and in partiular�by mimiking Gonharov'ssetup [19℄ whih generalizes the Bloh�Suslin omplex�dedued an in�nitesimal analogue ofGonharov's omplexes. In the proess, he produed the generi funtional equation for thein�nitesimal trilogarithm whih ontains 22 terms in 3 variables.Kontsevih had asked expliitly in [22℄ for funtional equations similar to the fundamentalequation of information theory for the next ase, i.e. for the ase of the �nite dilogarithm
£2(x) =

∑p−1
k=1 x

k/k2. Guided by the analogy between �nite 1-logarithm and the in�nitesimaldilogarithm, it was found that Cathelineau's equation for the in�nitesimal trilogarithm is alsosatis�ed by £2 and provides an answer to Kontsevih's question. Furthermore, £2 is hara-terized by the latter equation (atually, it is already haraterized by ertain speializations).In fat we get a stronger statement: eah of the funtional equations for the in�nitesimal
n-logarithm in this paper�and this inludes the distribution formulas for any n�has beenproved for the �nite (n− 1)-logarithm (whose de�nition should be lear by the above).What is more, there is a whole mahinery to obtain this type of funtional equations: onthe one hand, Cathelineau had given a tangential proedure for elements in Z[F ] (for ertain�elds F ) whih is ompatible with the passage from funtional equations for the dilogarithm toequations for the in�nitesimal dilogarithm. It turns out (see �5) that the same is true for higherpolylogarithms, and we will show how we an get a funtional equation for an in�nitesimal
n-logarithm by �taking the derivative� of a funtional equation for the lassial n-logarithmrelatively to an absolute derivation over F . On the other hand, sine p-adi polylogarithms inthe sense of Coleman [10℄ satisfy the same funtional equations as the lassial ones by work ofWojtkowiak [34℄ (for a more preise statement f. �6), one arrives via Cathelineau's tangentialproedure (proved by him in harateristi 0) at its p-adi equivalent and one ould hope thatthere is a version of p-adi polylogarithms whose appropriate di�erential redues to the �nitepolylogarithms. This hope (vaguely antiipated in [14℄) has been made preise by Kontsevih(private ommuniation) and was subsequently proved (in a slightly modi�ed form) by Besser[2℄. Combining the above, we obtain a reipe for deduing funtional equations for £n−1 fromfuntional equations for the n-logarithm, and thus we get analogues of distribution relationsfor eah n and further �non-trivial� ones at least up to n = 7 (f. [37℄, [17℄). The propertiesstated motivate the terminology of �poly(ana)logs� for the di�erent analogues of polylogs. Tohelp the reader to understand the interdependenies between the notions already disussed,we give the following piture, whih an serve as a guideline for the paper:



ON POLY(ANA)LOGS I 3The oneptual relationship between the di�erent Poly(ana)logsClassial Polylogs p-adi Polylogs
Finite Polylogs

In�nitesimal Polylogs p-adiIn�nitesimal Polylogs

Standard Ditionary
Di�erentialproess p-adidi�erentialproessRedutionmod p

Standard DitionaryThe present paper investigates the basi properties of the in�nitesimal version of polylog-arithms, inluding the p-adi ones, and their relationship with the �nite polylogarithms andalso with the lassial polylogarithms via the �derivation map� (setion 5). In partiular, theanswer to Kontsevih's question an be found in setion 4 (Theorem 4.12), together with aproof of the uniity of £2 (Theorem 4.23). The sequel paper [15℄ exhibits interrelationshipsamong the polylogarithmi groups and also among their in�nitesimal versions, introdues �niteversions of the so-alled �multiple polylogarithms� (f. e.g. [21℄) and in partiular some multi-pliative struture related to them: it turns out that the proofs of the identities for the �nite�eld ase are far from trivial, and espeially the most oneptual one found for Cathelineau's22-term equation involves an identity expressing £1(a)£1(b) in terms of £2 only. The speialase of a = b in the latter produt is an identity found by Mirimano� whih is ruial forproving his riteria for Fermat's last theorem�the �nite polylogarithms have appeared in theliterature prominently in the guise of �Mirimano� polynomials� (f. Ribenboim's 13 Letures[27℄). Others of Mirimano�'s identities an be reinterpreted in terms of funtional equationsof �nite polylogarithms (atually, �multiple polylogarithms�) whih might nurture the hopethat further knowledge onerning the latter ould provide more obstales for a solution ofFLT to exist (but this may well turn out to be a too pollyanna1 attitude)...The organisation of the present work is as follows:Part I is dediated to the introdution of lassial and in�nitesimal polylogarithms (in hara-teristi 0) and their assoiated funtional equations and groups. In partiular we re-introdueseveral notions of Cathelineau [6, 8℄ and give omplementary properties.Part II introdues the �nite polylogs, the funtional equations that they satisfy and give1Pollyanna. The name of the heroine of stories written by Eleanor Hodgman Porter (1868-1920), Amerianhildren's author, used with allusion to her skill at the `glad game' of �nding ause for happiness in the mostdisastrous situations; one who is unduly optimisti or ahieves happiness through self-delusion.[Oxford English Ditionary 2℄



4 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLtheir haraterizations (setion 4). We also introdue in the setion 5 the onstrution of the�derivation map� and show that funtional equations for lassial polylogs give rise to fun-tional equations for in�nitesimal polylogs. The last setion of this part (setion 6) introduesthe p-adi methods, and shows (Corollary 6.12), via Besser's result, that funtional equationsfor in�nitesimal p-adi polylogs produe funtional equations for �nite polylogs (under mildassumptions).Finally, the main proofs of Part II are given in Part III.The paper ends with a reprodution of the note of Kontsevih [22℄, originally written for aprivate booklet dediated to Friedrih Hirzebruh on the oasion of his �Emeritierung� (re-tirement). We are grateful to him for letting us inlude it as an appendix.Aknowledgements : We would like to express our sinere gratitude for �nanial support to DFG, EU (MarieCurie fellowship program), and to the following institutions for their hospitality: the Laboratoire DieudonnéUMR CNRS 6601 of the University of Nie�Sophia Antipolis where the whole projet started out (and wherethe seond author made several visits working on this projet), the Institut für Experimentelle Mathematik(Essen), the FB6 Mathematik of the Universität-GH Essen, the I.H.É.S. and the MPI für Mathematik Bonn.We want to give our �Herzlihes Dankeshön� to G. Faltings and G. Harder for their invitation to the MPIConferene on Polylogarithms at Shloss Ringberg. The �rst author wants to thank the Mathematial Instituteof the University of Lausanne (and espeially D. Arlettaz) where he was working on the subjet. The seondauthor wants to thank the Laboratoire G.T.A. UMR CNRS 5030 of the University Montpellier II for itshospitality while he was visiting. During the long period of gestation of this work we had the opportunity todisuss it with several people. It is a pleasure to thank them here: we are grateful to H. Esnault, G. Frey,A. Gonharov, G. Mersmann, J. Nekova° and Z. Wojtkowiak (and also to D. Grayson for pointing out theorigin of Pollyanna). We partiularly want to thank A. Besser for sending us a preliminary version of his noteand for helpful remarks, P. Colmez for his patiene explaining to us several p-adi features, C. Soulé for hisonstant interest and questions in our work, as well as D. Zagier for enlightening and stimulating omments.Last but not least, we want to express our warmest thanks to the (inadvertent) initiators of the story: J.-L.Cathelineau and M. Kontsevih, for their sustained enouragement and propulsive disussions, and withoutwhom this work would not exist.Part I. Preliminary Bakground1. Definitions of polylogarithms and their analogues (in harateristi 0)In the following we will reall some standard, and some less standard, fats about polyloga-rithms and their funtional equations. The main referenes will be Zagier [36℄ and Gonharov[20℄ (for the lassial ase) as well as Cathelineau [8℄ (for the in�nitesimal ase).1.1. Classial and one-valued Polylogarithms. Let n > 1 , and Dn : C → R(n − 1)be the Bloh/Wigner/Ramakrishnan/Zagier/Wojtkowiak funtion [36, 20, 8, 33℄, or modi�ed
nth polylogarithm, de�ned by

Dn(z) = ℜn

(
n−1∑

k=0

2kBk

k!
logk|z|Lin−k(z)

)
,where ℜn denotes Re or iIm, and R(n) = R or iR , depending on whether n is even or odd.The Bk are the Bernoulli numbers (B0 = 1 , B1 = −1

2 , B2 = 1
6 , B3 = 0 , . . . ), and Lim



ON POLY(ANA)LOGS I 5denotes the lassial m-logarithm
Lim(z) =

∞∑

n=1

zn

nm
, |z| < 1,whih an be analytially ontinued to the ut plane C − [1,∞) [36℄. For example, we have,

D1(z) = − log |1 − z|,

D2(z) = i Im

(
Li2(z) + log(1 − z) log |z|

)
,

D3(z) = Re
(
Li3(z) − log |z|Li2(z) −

1

3
log2 |z| log(1 − z)

)
.Remark 1.1. (1) The virtue of these modi�ations of lassial polylogarithms lies in thefat that they are one-valued funtions on the whole omplex plane (at the points 0and 1 they are de�ned by ontinuity)�as opposed to the multi-valued lassial poly-logarithm funtions�and that they satisfy �lean� funtional equations (i.e. withoutlower order terms suh as produts of polylogarithms of lower degrees).(2) Instead of the above Dn there is also the losely related real-valued funtion Pn (orig-inally introdued by Zagier [36℄) widely used, and also denoted Ln, e.g. [19℄. It di�ersfrom Dn only by a possible fator of i.(3) Polylogarithms of a real variable. In a similar manner one an de�ne real valuedfuntions as given by Zagier [36℄ (eq. (31), p.412), f. also Lewin [25℄ (eq.(16), p.7),whih ould be alled Rogers polylogarithms in view of Rogers's investigations in thease n = 2 [28℄:

Ln(x) =

n−1∑

j=0

(− log |x|)j

j!
Lin−j(x) +

(− log |x|)n−1

n!
log |1 − x| , |x| 6 1,and for |x| > 1 via the inversion relation

Ln

( 1

x

)
= (−1)n−1Ln(x) .1.2. In�nitesimal polylogarithms. We mainly follow the presentation in Cathelineau [8℄.Di�erentiating the funtions Dn gives (see [8℄, p. 1328)

∂

∂z
Dn(z) = −

n−1∑

k=1

2k−1Bk

k!

logk−1|z|

z
Dn−k(z) +

2n−2Bn−1

(n− 1)!

logn−1|z|

1 − z
,and

∂

∂z̄
Dn(z) = (−1)n−1 ∂

∂z
Dn(z).



6 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLFinally we an dedue the expression for dDn(z)

dDn(z) =
∂

∂z
Dn(z)dz +

∂

∂z̄
Dn(z)dz̄

= −

n−1∑

k=1

(
2kBk

k!
logk−1|z|Dn−k(z)Υk(z)

)
−

2n−1Bn−1

(n− 1)!
logn−1|z|Υn−1(1 − z).If k is even : Υk(z) = d log|z| , and if k is odd : Υk(z) = diarg(z) . The main examples are

dD1(z) = −d log |1 − z|,

dD2(z) = − log |1 − z| diarg(z) + log |z| diarg(1 − z),

dD3(z) = D2(z)diarg(z) +
1

3
log |z|

(
log |1 − z| d log |z| − log |z| d log |1 − z|

)
.Remark 1.2. Gonharov [19℄(Prop. 1.18) had dedued a slightly di�erent, but equivalent, for-mula earlier (the terms whih seem a priori di�erent�he wrote d log|z| instead of d arg(z)�turn out to be multiplied by a Bernoulli number Bk whih is zero sine k is odd).2. Groups related to polylogarithmsIn the following, F will denote a �eld, and we abbreviate F •• = F − {0, 1}. We an thinkof it as a doubly puntured a�ne line over F .2.1. The sissors ongruene group. We de�ne the sissors ongruene group p(F ) as thequotient of Z[F ••] by the subgroup generated by the elements

[a] − [b] +

[
b

a

]
−

[
1 − b

1 − a

]
+

[
1 − b−1

1 − a−1

]
,whenever suh an expression makes sense. The relation is the famous �ve term equation forthe dilogarithm (�rst stated by Abel, f. [23℄). This group, whih has a geometri origin (seefor instane [11℄), aptures the algebrai properties of the dilogarithm, more preisely one hasProposition 2.1. If F ⊂ C, then the dilogarithm D2 is de�ned on p(F ).Suslin's de�nition of the Bloh group of a �eld is given by the following exat sequene (see[30℄),(2.1) 0 → B(F ) → p(F )

λ
→ (F× ⊗Z F

×)s → KM
2 (F ) → 0,where KM

2 (F ) is the Milnor K2 of the �eld F (see [29℄, hapter 4), (F×⊗ZF
×)s is the quotientof F× ⊗Z F

× by the subgroup generated by the elements of the kind x⊗ y + y ⊗ x. The map
λ is then de�ned by λ([a]) = a⊗ (1 − a) and the Bloh group of F is de�ned as the kernel ofthis map.Remark 2.2. (1) In [11℄, Dupont and Sah have studied in detail the sissors ongruenegroup and also its onnetion to the dilogarithm.(2) If F is an in�nite �eld, the preise relationship between K3(F ) and B(F ) is desribedby Suslin in [30℄, and rationally we have K3(F )Q

∼= B(F )Q whih gives a desriptionof K3(F )Q in terms of generators and relations.



ON POLY(ANA)LOGS I 7(3) Weibel [32℄ has omputed the group B(F ) if F is a �nite �eld and has shown that ithas the same relationship to K3 as in the ase of in�nite �elds.(4) The original de�nition of Bloh [4℄(Leture 6, p.59) is given by the following exatsequene
0 → B(F ) → A(F )

λ
→ F× ⊗Z F

× → K2(F ) → 0,where A(F ) is just the group Z[F ••]. Notie that he also generalized the de�nition torings in order to prove some rigidity property [4℄(pp.62-68). Moreover, he obtained amap between B(F ) and Kind
3 (F )/TorZ

1 (F×, F×) for any algebraially losed �eld F[4℄(pp.71-72). (Here, Kind
3 (F ) denotes the quotient of K3(F ) by the image of KM

3 (F )in K3(F ).) Later, Suslin [30℄ showed that we have an analogous map with B(F ) andthat, modulo 2-torsion, this map is an isomorphism.(5) In fat the exat sequene (2.1) holds also for �rings with many units�, suh as semiloalrings with in�nite residue �elds (this is a onsequene of results in [12℄).2.2. Polylogarithmi groups and Gonharov omplexes. Zagier has generalized in [36℄(setion 8) the onstrution of the Bloh group to higher n and de�ned higher Bloh groups,on whih the orresponding polylogarithm funtions Dn are de�ned. They are onstruted byan indutive proedure whih has been made more oneptual by Gonharov whose frameworkwe adopt here. Let P1(F ) be the projetive line over F . The onstrution of an intermediategroup Bn(F ), desriptively alled polylogarithmi group in [7℄, proeeds by indution on n > 2.We �rst need to onstrut ertain subgroups An(F ) and Rn(F ) of Z[P1(F )]. Suppose that
Rn(F ) is de�ned, then we set

Bn(F ) = Z[P1(F )]/Rn(F ).De�ne the morphisms
δ2 = δ2,F : Z[P1(F )] →

∧2
Z F

×

(2 − torsion)
,

[x] 7→

{ 0 if x = 0, 1,∞,
(1 − x) ∧ x otherwise,and for n > 3

δn = δn,F : Z[P1(F )] → (Bn−1(F ) ⊗ F×),

[x] 7→

{ 0 if x = 0, 1,∞,
{x}n−1 ⊗ x otherwise,where {x}n denotes the lass of x in Bn(F ).Although it is not used in the indutive de�nition, let us de�ne R1(F ) to be the group generatedby [∞] and [x+ y − xy] − [x] − [y], where x, y ∈ F\{1}. Then B1(F ) ∼= F×.For n > 2, we de�ne An(F ) as the kernel of δn and Rn(F ) as the subgroup of Z[P1(F )] spannedby [0], [∞] and the elements ∑ni([fi(0)] − [fi(1)]), where the fi are rational frations in theindeterminate T , suh that ∑ni[fi] ∈ An(F (T )). Gonharov proved the following basiLemma 2.3. For all n > 2, the group Rn(F ) is ontained in the kernel of δn.Proof. See [19℄(Lemma 1.16, p.221) and also [8℄(Proposition 1, p.1330). �



8 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLWe then have a (ohain) omplex, due to Gonharov [19, 20℄, with the group Bn(F ) putin degree 1,
Bn(F )

δ
→ Bn−1(F ) ⊗ F× δ

→ Bn−2(F ) ⊗
∧2F× δ

→ · · ·
δ
→ B2(F ) ⊗

∧n−2 F× δ
→

Vn F×

(2−torsion) ,with
δ({x}n−i ⊗ y1 ∧ ... ∧ yi) = {x}n−i−1 ⊗ x ∧ y1 ∧ ... ∧ yi , i = 0, . . . , n− 3,and

δ({x}2 ⊗ y1 ∧ ... ∧ yn−2) = (1 − x) ∧ x ∧ y1 ∧ ... ∧ yn−2.Zagier's higher Bloh groups [36℄ arise in this ontext as the �rst ohomology group of theabove omplex, namely
Bn(F ) =

An(F )

Rn(F )
.Note the typographial di�erene: one has Bn(F ) ⊂ Bn(F ). (There are in the literatureseveral similar de�nitions of the �set of relations� Rn(F ), denoted also Cn(F ) in [36℄.)Remark 2.4. (1) Aording to Zagier's main onjeture, the groups Bn(F ) in the aseof a number �eld F are presumably rationally isomorphi to K2n−1(F )Q. Using hisomplex, Gonharov was able to formulate a orresponding onjeture for any �eldand involving the γ-�ltration of the K-theory of F .(2) One of the major ahievements onerning the above omplexes was Gonharov's proof[19℄ of Zagier's onjeture for n = 3 in the ourse of whih he has given an expliit setof relations for (some version of) R3(F ) whih enabled him to relate B3(F ) to (somegraded piee of) the algebrai K-group K5(F ) . It is not known, however, whether hisrelations generate all funtional equations for the 3-logarithm.2.2.1. Funtions on the polylogarithmi groups. The following proposition relates fun-tional equations for polylogarithms and relations in Bn(F ). (It is essentially the ontent of[36℄, Prop.3, in the form given in [19℄.)Criterion 2.5. The funtion Dn vanishes on Rn(F ), assuming that F ⊂ C.Let us end this setion with a haraterization of funtions whih atually an be de�nedon the orresponding Bn(F ). For n 6 3 one knows from work of Bloh and Gonharov,respetively, a haraterization of the measurable funtions whih are de�ned on Bn(C) :Proposition 2.6. (Charaterization of D1 , D2 and D3 )(1) The funtion D1(z) = − log |1 − z| is (up to a onstant fator) the only measurablefuntion de�ned on B1(C) .(2) The funtion D2 is (up to a onstant fator) the only measurable funtion : C → Rwhih vanishes on R2(C) and thus de�nes a morphism on B2(C) .(3) The spae of measurable funtions : C → R whih vanish on R3(C) and thus de�ne amorphism on B3(C) , is two-dimensional, spanned by D3 and z 7→ log |z|D2(z).



ON POLY(ANA)LOGS I 9Proof. 1. is lassial, 2. has been proved by Bloh [4℄, and 3. was given by Gonharov[19℄. �2.3. The in�nitesimal polylogarithmi groups. Cathelineau [8℄ has given analogues ofthe Gonharov omplexes for in�nitesimal polylogarithms whose ohomology is expeted tobe omputed by some graded piee of Hohshild homology (the latter an be viewed in asense as arising from applying a ertain tangent funtor to algebrai K-theory).One de�nes the group β2(F ) , for F any in�nite �eld, as follows
β2(F ) =

F [F ••]

r2(F )
,where r2(F ) is the kernel of the map

F [F ••] −→ F+ ⊗ F×, [a] 7→ a⊗ a+ (1 − a) ⊗ (1 − a).If D2 denotes the Bloh-Wigner dilogarithm funtion, as de�ned in (1.1), and if F ⊂ C , then
d̃D2 , a somewhat modi�ed di�erential de�ned below, is zero on r2(F ) .For n > 3 , one de�nes indutively

βn(F ) =
F [F ••]

rn(F )
,where rn(F ) is the kernel of the map

∂n = ∂n,F : F [F ••] → (βn−1(F ) ⊗ F×) ⊕ (Bn−1(F ) ⊗ F ),

[a] 7→ 〈a〉n−1 ⊗ a+ {a}n−1 ⊗ (1 − a),and where 〈a〉k and {a}k denotes the lass of [a] in βk(F ) and Bk(F ), respetively.The F -vetor spaes βn(F ) an be viewed as in�nitesimal analogues of the groups Bn(F ) .The previous de�nition still makes sense in the ase of a �nite �eld F , but it would give
β2(F ) = 0. But there is also a presentation of β2(F ) in terms of generators and relationsgiven in [6℄(setion 1, pp.52-53). As we are mainly interested by the strutural properties ofin�nitesimal polylogarithms, we introdue the following groupDe�nition 2.7. Let F be an arbitrary �eld. The group b2(F ) is de�ned as the F -vetor spaegenerated by symbols 〈a〉, a ∈ F ••, subjet to the relation

〈a〉 − 〈b〉 + a
〈 b
a

〉
+ (1 − a)

〈 1 − b

1 − a

〉
= 0,for a 6= b.We should notie that we always have a natural map b2(F ) → β2(F ). In harateristi 0,using [8℄(setion 4.2, pp. 1336-1337), we haveProposition 2.8. If F is a �eld of harateristi 0 then the groups b2(F ) and β2(F ) areisomorphi.Remark 2.9. (1) De�nition 2.7 makes sense for any �eld.



10 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGL(2) It is not obvious that for a �nite �eld F of harateristi p we have b2(F) 6= 0. It willbe proven later that this is atually the ase. As a ounterpoint, if F is a �nite �eldor, more generally, a perfet �eld of harateristi p 6= 2, we then have β2(F ) = 0 (see[6℄(Théorème 1, p.57)).(3) The in�nitesimal analogue (in the sense of Cathelineau) of the above higher Blohgroup Bn(F ) would be ker ∂n/rn(F ) whih turns out to be 0 for n = 2, 3 if F is any�eld of harateristi 0. In fat we an show that the analogue of the Bloh group
B2(F ) is given by the seond Harrison homology group [13℄, proving that it is zerofor any smooth Q-algebra. The results and problems desribed in [13, 9℄, illustratethe (presumably) lose onnetion between in�nitesimal Bloh groups and smoothnessproperties.Observation 2.10. (Possible extension of generators in harateristi 0)(1) If we allow the symbols 〈1〉n and 〈0〉n in βn(F ) then, using the distribution relation(3.10) below, we neessarily have 〈1〉n = 〈0〉n = 0 if n = 2, 3.(2) We have 〈−1〉2k+1 = 0 by the inversion relation.2.3.1. Funtions on in�nitesimal polylogarithmi groups. The following propositionfrom [8℄ relates, for F = C , funtional equations for the in�nitesimal polylogarithms andrelations in the orresponding groups.Proposition 2.11. [8℄ For n > 2 , the morphism of R-vetor spaes

d̂Dn : C[C••] −→ R(n− 1)
b[a] 7→ dDn(a)(a(1 − a)b),is zero on rn(C) , hene we get a morphism

d̃Dn : βn(C) −→ R(n− 1).Remark 2.12. The de�nition is to be understood as follows: onsider C as a 2-dimensional
R-vetor spae with basis (1, i) and with multipliation indued by the one in C. Then Dn isseen as a map from R2 → R, dDn(a) is given by the Jaobian matrix in a (i.e. a row matrix oflength 2). Identifying a(1 − a)b as a olumn vetor relative to the basis (1, i), the expression
dDn(a)(a(1−a)b) is just the evaluation of the linear map dDn(a) in a(1−a)b (i.e. the produtof a row matrix of length 2 by a olumn vetor of same size).Proposition 2.13. (Charaterization of dD2 )The funtion dD2, restrited to R, is (up to a onstant fator) the only ontinuous funtion
G : R•• → R whih satis�es the equation

a(1 − a)G(a) − b(1 − b)G(b) +
b(a− b)

a
G

(
b

a

)
+

(1 − b)(a− b)

1 − a
G

(
1 − b

1 − a

)
= 0 .whenever the terms are de�ned.Proof. De�ne H(a) = a(1−a)G(a), a ∈ R••, and H(0) = H(1) = 0, then the above funtionalequation is redued to the equation from 2.7, for whih it is well-known (f. e.g. [22℄) that thereis only the di�erentiable funtion H(x) = −x log |x|− (1−x) log |1−x| (up to a multipliativeonstant) whih satis�es the latter equation. �



ON POLY(ANA)LOGS I 11Remark 2.14. Azel and Dhombres [1℄(setion 5.4, pp.66-69) have shown that if g is a realfuntion loally integrable on ]0, 1[ and if, moreover, g ful�lls the Fundamental Equation ofInformation Theory, namely
g(x) + (1 − x)g

(
y

1 − x

)
− g(y) − (1 − y)g

(
x

1 − y

)
= 0,then there exists c ∈ R suh that g = cH, where H :]0, 1[→ R, is the funtion H(x) =

−x log(x) − (1 − x) log(1 − x). For more detail on this topi see [16℄.3. Funtional equationsDe�nition 3.1. A funtional equation of the n-logarithm resp. in�nitesimal n-logarithm overthe �eld F is an element in Rn(F ) resp. in rn(F ) (f. s.2.2).Let F = K(t1, . . . , tr) and K ′ be an extension of K. We will say that t1 = z1,. . . , tr = zr,with zi ∈ K ′, is an admissible K ′-speialisation for a funtional equation ξ(t1, . . . , tr) ∈ Rn(F )(resp. rn(F )), if ξ(z1, . . . , zr) is well de�ned as an element of ker(δn,K ′) (resp. ker(∂n,K ′)).Remark 3.2. The restrition in the de�nition of a funtional equation for the n-logarithmto rational arguments (in the de�nition of Rn(F )), as opposed to algebrai arguments, isprobably not a serious one, sine the orresponding polylogarithmi groups are expeted tobe rationally isomorphi (f. e.g. [19℄, pp.225, Conjeture 1.20). The above de�nition has theadvantage of being more diretly aessible to alulations.3.1. Funtional equations for lassial polylogarithms. We �rst list the equations whihare true for general n: the inversion and distribution relations.Proposition 3.3. (Funtional equations for Dn , any n )(1) The inversion formula:
{1

a

}
n

= (−1)n−1{a}n .(2) The distribution formula
{am}n = mn−1

∑

ζm=1

{ζa}nholds in Bn(C) for m ∈ Z and redues to the inversion relation for m = −1.Remark 3.4. There is another symmetry oming from the omplex onjugation:
Dn(z) = (−1)n−1

Dn(z) .Note that this does not ome from a funtional equation in the above sense, sine the orre-sponding relation {z}n + (−1)n{z}n is not zero in Bn(C).3.1.1. The ase n = 2. The following funtional equations are well-known for the diloga-rithm: apart from the distribution relations above it satis�es a 2-term relation relating thearguments x and 1 − x, while the most important relation (whih atually haraterizes D2)is the �ve term relation whih allows a formulation as a 3-oyle relation.Proposition 3.5. (Funtional equations for D2 )



12 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGL(1) A two term relation.(3.1) {x}2 = −{1 − x}2 .(2) The �ve term relation. We give two di�erent formulations:(a) (as a oyle relation in �ve variables): denote cr(a, b, c, d) = a−c
a−d

b−d
b−c . Then(3.2) 5∑

i=1

(−1)i
{
cr(x1, . . . , x̂i, . . . , x5)

}
2

= 0 .(b) in two variables (using the arguments as in Suslin's de�nition of the Bloh group;this equation is a speialization of (a), putting (x1, . . . , x5) = (∞, 0, 1, a, b)):(3.3) {a}2 − {b}2 +

{
b

a

}

2

−

{
1 − b

1 − a

}

2

+

{
1 − b−1

1 − a−1

}

2

= 0 .3.1.2. The ase n = 3. For the trilogarithm one has, in addition to the inversion and distribu-tion relations, an equation with 3(+1) terms (in one variable), the well-known Kummer-Speneequation with 9(+1) terms (in two variables) and, most important, Gonharov's equation with22(+1) terms (in three variables, the �+1� referring to some onstant term).Proposition 3.6. (Funtional equations for D3)(1) There is a 3-term relation(3.4) {1 − x}3 + {x}3 +

{
1 −

1

x

}

3

= {1}3 .(2) The Kummer-Spene equation:(3.5) {
a (1 − b)

b (1 − a)

}

3

+

{
(1 − a) a

b (1 − b)

}

3

+

{
a b

(1 − b) (1 − a)

}

3

− 2

{
1 − a

1 − b

}

3

− 2

{
b

b− 1

}

3

− 2

{
a

a− 1

}

3

− 2

{
b

a

}

3

− 2

{
a

1 − b

}

3

− 2

{
1 − a

b

}

3

+ 2 {1}3 = 0 .An equivalent version is given by(3.6) {
x(1 − y)2

y(1 − x)2

}

3

+ {xy}3 +

{
x

y

}

3

− 2

{
y(1 − x)

y − 1

}

3

− 2

{
1 − x

1 − y

}

3

− 2

{
y(1 − x)

x(1 − y)

}

3

− 2

{
x− 1

x(1 − y)

}

3

− 2 {x}3 − 2 {y}3 + 2 {1}3 = 0 .(3) Gonharov's equation: Set
f(a, b, c) ={a}3 +

{
b(1 − a)

b− 1

}

3

+

{
a(1 − b)

a− 1

}

3

+

{
1 − a

1 − abc

}

3

+

{
cb(1 − a)

1 − abc

}

3

(3.7)
− {ab}3 −

{
−
a(1 − c)(1 − c)

(1 − a)(1 − abc)

}

3

.(3.8)



ON POLY(ANA)LOGS I 13Then
f(a, b, c) + f(b, c, a) + f(c, a, b) + {abc}3 = 3{1}3 .3.1.3. The ase n > 3. For general n , there are only the inversion relation and the distri-bution relations known (they are the so-alled trivial ones), while the existene of non-trivialequations has only been established up to n 6 7 (f. [17℄).3.2. Funtional equations for in�nitesimal polylogarithms. Most of the funtionalequations for dDn stated in this setion an be viewed as analogues of equations for theorresponding Dn. The main example whih annot be interpreted in this way (so far) isCathelineau's equation for dD3.We �rst list the equations whih are true for general n: the analogues of the inversion anddistribution relations.Proposition 3.7. (Funtional equations for dDn , any n )(1) The inversion formula(3.9) a

〈1

a

〉
n

= (−1)n−1〈a〉n .(2) The distribution formula(3.10) 〈am〉n = mn−2
∑

ζm=1

1 − am

1 − ζa
〈ζa〉nholds in βn(C) for m ∈ Z and redues to the inversion relation for m = −1. When

m = 2, we all this equation the dupliation formula.3.2.1. The ase n = 2. The following funtional equations are true for the in�nitesimaldilogarithm:Proposition 3.8. (Funtional equations for dD2 )(1) The 2-term relation.(3.11) 〈x〉2 = 〈1 − x〉2 .(2) A six term relation. Let s ∈ F . Then(3.12) (1 − y)
〈x− s

1 − y

〉
2
+ y
〈s
y

〉
2
+ 〈y〉2is symmetri in x and y . Spei�ally, we have for s = 0 thefundamental equation of information theory(3.13) (1 − y)

〈 x

1 − y

〉
2
− 〈x〉2 = (1 − x)

〈 y

1 − x

〉
2
− 〈y〉2whih is equivalent to Cathelineau's version(3.14) 〈a〉2 − 〈b〉2 + a

〈 b
a

〉
2

+ (1 − a)
〈 1 − b

1 − a

〉
2

= 0 .(3) A family of �ve term relations is given by taking linear ombinations of the followingtwo equations in �ve variables: denote cr(a, b, c, d) = a−c
a−d

b−d
b−c and denom(a, b, c, d) =

(a− d)(b − c) . Then one has(3.15) 5∑

i=1

(−1)i denom(x1, . . . , x̂i, . . . , x5)
〈
cr(x1, . . . , x̂i, . . . , x5)

〉
2

= 0 ,



14 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLand(3.16) 5∑

i=1

(−1)i xi denom(x1, . . . , x̂i, . . . , x5)
〈
cr(x1, . . . , x̂i, . . . , x5)

〉
2

= 0 .(4) The same family of �ve term relations an be stated with less parameters in the argu-ments:(3.17) (b+ t)〈a〉2 − (a+ t)〈b〉2 + (1 + t)a
〈 b
a

〉
2

+ t(1− a)
〈 1 − b

1 − a

〉
2

+ b(1− a)
〈a(1 − b)

b(1 − a)

〉
2
.Proof. It is a straightforward matter to hek that the above elements lie in the kernel of ∂2.Nevertheless, we give some interrelationships between the various equations.(1) The symmetry of equation (3.12) is equivalent to (3.14):We have to write the following relation

(1 − y)
〈x− s

1 − y

〉
2
+ y
〈s
y

〉
2
+ 〈y〉2 = (1 − x)

〈y − s

1 − x

〉
2
+ x
〈 s
x

〉
2
+ 〈x〉2as a sum of 4-term relations.On the left hand side of the equation we add the 4-term relation in the following form

−y

〈
s

y

〉

2

− 〈y〉2 + 〈s〉2 + (1 − s)

〈
1 − y

1 − s

〉

2

= 0 ,and we do the same on the right hand side with y replaed by x. This leaves us withanother form of the 4-term relation
(1 − y)

〈
x− s

1 − y

〉

2

+ (1 − s)

〈
1 − y

1 − s

〉

2

= (1 − x)

〈
y − s

1 − x

〉

2

+ (1 − s)

〈
1 − x

1 − s

〉

2(to see this we should replae, in (3.14), x by x−s
1−s and y by y−s

1−s and use (3.11)), therebyproving the �rst laim.The equivalene of (3.14) and (3.13) is easily shown using the inversion and the 2-termrelation.(2) The seond family of �ve term relations is almost diret to dedue: the ombinationgiven is the sum of t times the 4-term relation (3.14) and its following equivalentformulation(3.18) b〈a〉2 − a〈b〉2 + a
〈 b
a

〉
2

+ b(1 − a)
〈a(1 − b)

b(1 − a)

〉
2
.(replae in (3.14) a and b by their inverses, respetively, then multiply the result by

−ab and �nally use the inversion relation on three of the ensuing terms).From this, we get a very simple proof of the �ve term relations in oyle form, i.e.(3.15) and (3.16): in eah of the two versions (3.14) and (3.18) of the 4-term relationwe put a = cr(x1, x2, x3, x4) and b = cr(x1, x2, x3, x5). Introduing for the momentthe notation (ijkl) := cr(xi, xj , xk, xl), we an rewrite the two equations in a oniseway:
〈
(1234)

〉
−
〈
(1235)

〉
+(1234)

〈
(1245)

〉
+ (1324)

〈
(1345)

〉
,

(1235)
〈
(1234)

〉
− (1234)

〈
(1235)

〉
+(1234)

〈
(1245)

〉
+ (1235)(1324)

〈
(2345)

〉
.



ON POLY(ANA)LOGS I 15Given λ ∈ Z, there is a linear ombination of the two equations suh that theoe�ient of 〈cr(x1, x3, x4, x5)
〉 (whih only ours in the �rst equation) and of

〈
cr(x2, x3, x4, x5)

〉 (only ourring in the seond equation) is −xλ
2(x1 − x5)(x3 − x4)and xλ

1 (x2 − x5)(x3 − x4), respetively. If, for λ = 0 and λ = 1, we ompute theoe�ients of the other three arguments, we obtain exatly the expressions given inthe laim.For example, let us ompute the oe�ient of the �rst argument in the ase λ = 1:the �rst equation is multiplied by
−x2(x1 − x5)(x3 − x4)

(x1 − x4)(x3 − x2)

(x1 − x2)(x3 − x4)
,the seond by

x1(x2 − x5)(x3 − x4)
(x1 − x5)(x2 − x3)

(x1 − x3)(x2 − x5)

(x1 − x4)(x3 − x2)

(x1 − x2)(x3 − x4)
,so the oe�ient beomes

−x2(x1 − x5)
(x1 − x4)

(x1 − x2)
(x3 − x2) + x1(x2 − x5)

(x1 − x4)

(x1 − x2)
(x3 − x2) ,whih is equal to x5(x1 − x4)(x2 − x3) .

�Remark 3.9. The generalized version of the fundamental equation of information theory,namely (3.12), is equivalent to the one given by both Kontsevih and Cathelineau (referringto Azél-Dhombres), as was shown in the proof (part 1.) above. At �rst glane, it is somewhatsurprising that we do not get anything new although we an ahieve to insert a third (non-homogenizing) parameter�but there are related phenomena known for the �ve term relation.In partiular, we do not gain new information for information theory.3.2.2. The ase n = 3. For the in�nitesimal trilogarithm one has an equation with threeterms (in one variable), a �derived version� of the Kummer-Spene equation with eight terms(in two variables) and, most important, Cathelineau's equation with 22 terms (in three vari-ables).The proposition below gives omplementary information on β3(F ).Proposition 3.10. (Funtional equations for dD3)(1) There is a 3-term relation(3.19) 〈1 − x〉3 − 〈x〉3 + x

〈
1 −

1

x

〉

3

= 0 .



16 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGL(2) The Kummer-Spene analogue: the F -linear ombination(3.20) (1 − b) b

1 − b− a

〈
(1 − a) a

b (1 − b)

〉

3

+
(1 − b) (1 − a)

1 − b− a

〈
a b

(1 − b) (1 − a)

〉

3

+ (1 − b)

〈
1 − a

1 − b

〉

3

− (1 − b)

〈
b

b− 1

〉

3

− (1 − a)

〈
a

a− 1

〉

3

− a

〈
b

a

〉

3

+
(a− b− 1) (1 − b)

1 − b− a

〈
a

1 − b

〉

3

−
(a− b+ 1) b

1 − b− a

〈
1 − a

b

〉

3vanishes in β3(F ) . An equivalent version, denoted KS(x, y), is given by(3.21) 〈xy〉3 + y

〈
x

y

〉

3

− (1 − y)

〈
y(1 − x)

y − 1

〉

3

+ (1 − y)

〈
1 − x

1 − y

〉

3

− x(1 − y)

〈
y(1 − x)

x(1 − y)

〉

3

+ x(1 − y)

〈
x− 1

x(1 − y)

〉

3

− (1 + y) 〈x〉3 − (1 + x) 〈y〉3Proof. The 3-term equation and (3.6) will follow diretly from the equation in the next propo-sition. The equivalene of the two Kummer-Spene analogues beomes evident after applyingthe hange of variables x = a
1−b , y = 1−a

b , and multiplying the result by b(1−b)
1−a−b . �We an also notie the following formal property, that we will give asLemma 3.11. In β3(F ), the inversion formula is a onsequene of the 3-term equation.Proof. Add the 3-term equation to its variant where x is replaed by 1− x. Four of the termsanel and the remaining two give the inversion relation. �Cathelineau has given a 22-term equation whih ompletely desribes the set of relationsfor the in�nitesimal polylogarithmi group β3(F ) : In order to state it onveniently, we usehis notation for a distinguished linear ombination of seven terms(3.22) [[a, b]] = (b− a)τ(a, b) +

1 − b

1 − a
σ(a) +

1 − a

1 − b
σ(b) ,where we have set

τ(a, b) =
[a]

1 − a
−

[b]

1 − b
+

a

a− b

[ b
a

]
−

1 − a

b− a

[ 1 − b

1 − a

]
+
b(1 − a)

b− a

[a(1 − b)

b(1 − a)

]
,(τ arises by taking the �ve term relation (3.3) and multiplying eah [zi] with the oe�ient

1
1−zi

) and
σ(a) = a[a] + (1 − a)[1 − a] .Then we an state the 22-term relation as followsDe�nition 3.12. We de�ne the formal expression J(a, b, c) in the indeterminates a, b, c as

J(a, b, c) = [[a, c]] − [[b, c]] + a
[[ b
a
, c
]]

+ (1 − a)
[[ 1 − b

1 − a
, c
]]
.



ON POLY(ANA)LOGS I 17Remark 3.13. (1) Writing out all the terms, we obtain 22 di�erent arguments:
J(a, b, c) = c [a] − c [b] + (a− b+ 1) [c]

+ (1 − c) [1 − a] − (1 − c) [1 − b] + (b− a) [1 − c]

− a
[ c
a

]
+ b

[c
b

]
+ ca

[
b

a

]

− (1 − a)

[
1 − c

1 − a

]
+ (1 − b)

[
1 − c

1 − b

]
+ c(1 − a)

[
1 − b

1 − a

]

+ c(1 − a)

[
a(1 − c)

c(1 − a)

]
− c(1 − b)

[
b(1 − c)

c(1 − b)

]

− b
[ca
b

]
− (1 − b)

[
c(1 − a)

1 − b

]

+ (1 − c)a

[
a− b

a

]
+ (1 − c)(1 − a)

[
b− a

1 − a

]

− (a− b)

[
(1 − c)a

a− b

]
− (b− a)

[
(1 − c)(1 − a)

b− a

]

+ c(a− b)

[
(1 − c)b

c(a− b)

]
+ c(b− a)

[
(1 − c)(1 − b)

c(b− a)

]
.(2) When a, b, c are elements of an arbitrary �eld F , we will still use the notation J(a, b, c)for the evaluation of J in the spei�ed values.Theorem 3.14. (Cathelineau, [8℄, Corollaire 1, p.1345) Let F be a �eld of harateristi zero.(1) The image of J(a, b, c) under the projetion F [F ••] → β3(F ) is zero.(2) Furthermore, J(a, b, c) , together with its speializations to c = a, b, a

b or 1−a
1−b , re-spetively, and the inversion relation generate the set of relations whih de�ne β3(F ) .Here we understand 〈1〉3 = 0.Remark 3.15. (1) In the presentation of [8℄, Corollaire 1, one an replae his equation1) oming from [[a, b]] − [[b, a]] by the shorter inversion relation (3.9). (Proof: add hisequation 1) to the same relation where a and b are replaed by 1

a and 1
b and where theresult is multiplied by ab.)(2) The ombinations [[a, c]]+a[[1/a, c]] and [[a, c]]−[[1−a, c]] give versions of the Kummer-Spene analogue. Sine, e.g., 〈a〉2 − 〈1 − a〉2 = 0 results formally from the four termrelation (at least up to 2-torsion), we get the Kummer-Spene analogue diretly from

J(a, b, c).(3) By Observation 2.10, one an introdue elements [a] for a = 0, 1 and set their imagein β3(F ) equal to zero. What is more, one an add a formal generator [∞] as well,for whih we only require 0[∞] = 0. One an then formally dedue the 3-term equa-tion (3.19) by speializing a = 1 in 1
b−1J(a, b, c) and one obtains the Kummer-Spene



18 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLanalogue (3.6) by speializing a = 0 in (1− x)(1− y)J(a, (1 − x)−1, (1− y)−1), (thesespeializations are not allowed in Cathelineau's ontext, but will make sense in the��nite polylog� ase below).(4) A di�erent way to obtain the Kummer-Spene analogue is to symmetrize, i.e. to form
J(a, b, c) + J(b, a, c) + c

(
J(a, b,

1

c
) + J(b, a,

1

c
)
)
,and then to hek that one obtains the di�erene of two Kummer-Spene analogues

KS(c, b
a) −KS(c, 1−b

1−a).(5) Alternatively, one an dedue the Kummer-Spene analogue or the 3-term relation(non-expliitly) from J(a, b, c) by simply heking that the orresponding linear om-binations lie in the kernel of ∂3 , and then use Cathelineau's theorem to dedue thateah suh ombination must be a onsequene of J(a, b, c) .(6) In the ase of the lassial trilogarithm, Gonharov has given a new funtional equationin 22(+1) terms whih presumably generates all funtional equations for D3, i.e. thekernel of δ3, but there are (in�nitely many) funtional equations (f. [35℄, [18℄) whihare not known to be formal onsequenes of it. Cathelineau's result in the in�nitesimalsetting is stronger in the sense that it atually generates the kernel of ∂3.One of the major onsequenes of Theorem 3.14 is that it allows us to give a generalde�nition for b3.De�nition 3.16. Let F be an arbitrary �eld. The group b3(F ) is de�ned as the F -vetorspae generated by symbols [a], a ∈ F , subjet to the relations J(a, b, c) , together with itsspeializations to c = a, b, a
b or 1−a

1−b , respetively, the inversion relation and [1] = [0] = 0.If in β3(F ) we introdue elements [a] for a = 0, 1, we then have, in virtue of (2.10), asurjetive map of F -vetor spaes b3(F ) → β3(F ), whih is an isomorphism in harateristi0. As in the ase n = 2, if F is a �nite �eld of harateristi p, β3(F ) = 0 but it will beshown in part III that b3(F ) 6= 0. The groups bn(F ), for n = 2, 3, measure how muh thegroup βn(F ) deviates from being generated by the main funtional equations of in�nitesimalpolylogarithms.3.2.3. The ase n > 3. For general n , there are only the inversion relation and the distri-bution relations, as seen in (3.10), known. For eah funtional equation of the orrespondinglassial polylog, using the �derivation map� desribed in the setion 5, there is assoiated afuntional equation (atually many) for the in�nitesimal polylogarithm. From what has beenstated above for the lassial ase, this means that at least up to n = 7 there are non-trivialones.Part II. The Results4. Finite versions of polylogarithms and their funtional equationsIn this setion we will study what we an all �nite analogs of the polylogarithms and alsothe groups bn(F ) for n = 2, 3 in the ase where F is a �eld of harateristi p 6= 2 (eventually�nite). We will show that for n = 2, 3 the �nite analogs of the polylogarithms de�ne funtions



ON POLY(ANA)LOGS I 19on bn(F ), showing that surprisingly they behave like the in�nitesimal polylogarithms. Asfor the previous ases, we will show, at least in low dimension, that these �nite polylogs areuniquely haraterized by their funtional equations.For the remainder of the paper, let us �x an odd prime p . We shall work over an arbitrary�eld F of harateristi p.4.1. De�nition and �rst properties of �nite polylogarithms.De�nition 4.1. For any �eld F of harateristi p, the nth �nite polylogarithm or �nite
n-logarithm is given by the following polynomial in F[T ] :

£n(T ) =

p−1∑

k=1

T k

kn
.Notation 4.2. For the remainder of this paper, we will denote P̃ the funtion assoiated tothe polynomial P .Remark 4.3. (1) �Extension by periodiity�If F is of harateristi p, it has Fp as prime sub�eld, whih is �xed by the Frobeniusmorphism x 7→ xp. As a result we have the (p− 1)−periodiity £n+p−1 = £n, and weneed only onsider n < p.(2) It is important to notie that the funtions £̃n are not identially zero on F.The following di�erential equation relates the �nite polylogarithms of di�erent orders (justlike in the lassial ase)

d£n(U) = £n−1(U) d log(U),where we denoted dU
U by d log(U). Extending this formally, it is onvenient to introdue thefollowing notation:De�nition 4.4. Let F be a �eld of harateristi p. De�ne the following �Frobeniizing� map

£̂m : F [F ••] → F ,

c[f ] 7→ cp£m(f) .One observes that, for any c and f in F , the di�erential operator ∂
∂x ats linearly on theoe�ient c of £̂m

(
c[f ]

) and, as above, like d log on the generator [f ]:
∂

∂x
£̂m

(
c[f ]

)
= £̂m−1

(
c[f ]

) ∂
∂x

log(f) .Observation 4.5. 0. For n = 0 we have
£0(T ) =

T − T p

1 − T
,and therefore(4.1) T£0(1 − T ) = −(1 − T )£0(T ).1. For n = 1, by expanding (1 − T )p and notiing that 1

p

(
p
k

)
= 1

k

(
p−1
k−1

)
= (−1)k−1

k , we geta simple (and well-known) formula
£1(T ) ≡

1 − T p − (1 − T )p

p
(mod p) .



20 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLNote that the term on the right hand side ours in the polynomials whih de�ne thesum of the two Witt vetors (1, 0, . . . , 0, . . . ) and (−T, 0, . . . , 0, . . . ).4.2. Funtional equations for �nite polylogarithms. A priori, there seems to be at leasttwo natural andidates for funtional equations for the �nite n-logarithm: we ould ask forlinear ombinations ∑i ci[xi] suh that £̃n vanishes for all speializations of the parameterswhih �make sense� (i.e. no term � 0
0 � ours); we will all those ombinations weak funtionalequations. But this de�nition has the disadvantage that there are too many ambiguitiesinvolved (just think of a oe�ient that is divisible by xp − x). Instead, we will impose thestronger property that∑i ci£n(xi) vanishes as a rational expression, and by multiplying withthe ommon denominator, we an even assume it to vanish as a polynomial.De�nition 4.6. A funtional equation in the strong sense for the �nite n-logarithm overa �eld F of harateristi p is a �nite linear ombination ∑i ci£n(xi) ∈ F (t)[F (t)] whihvanishes identially as a polynomial.A funtional equation in the weak sense is a �nite linear ombination∑i ci£n(xi) ∈ F (t)[F (t)]whih vanishes for eah speialization of parameters whih makes sense.In the following we list a number of equations whih are idential to the ones for thein�nitesimal polylogarithms, apart from �Frobeniizing� the oe�ients (i.e. raising them tothe pth power). The proofs will be postponed to �7.4.2.1. General funtional equations for £n.Proposition 4.7. Let n ∈ Z be arbitrary. We have the following identities(1) Inversion formula: £n(T ) = (−1)nT p

£n

(
1

T

).It an be viewed as a speial ase (m = −1) of the following(2) Distribution formulae: assume F ontains a primitive mth root of unity. Then
£n(Tm) = mn−1

∑

ζm=1

1 − T pm

1 − ζpT p
£n(ζT ) .(3) Speial values: £̃n(1) = 0 if (p−1)6 |n and = −1 else, while £̃2n(−1) = 0 for any n. Let

Bj = be the jth Bernoulli number and set Gj = 2(1−2j)Bj . Then for 0 < m < (p−1)we have that £̃p−m(−1) =
Gm

m
.Remark 4.8. Notie that the numbers Gm are integers by virtue of lassial results (forinstane it is a onsequene of the Theorem of von Staudt-Clausen[31℄(Theorem 5.10, p.56)).These numbers are alled the Genohi numbers and we have mGp−1+m = (m− 1)Gm mod pwhih is nothing else than the famous Kummer ongruene for Bernoulli numbers.Still mirroring the set-up in the in�nitesimal ase, we now state several funtional equationsspei� to n = 1, 2 .4.2.2. Equations for £1.Proposition 4.9. (1) The 2-term relation: £1(T ) = £1(1 − T ).



ON POLY(ANA)LOGS I 21(2) The generalized fundamental equation of information theory: let s , x and y be inde-terminates. The expression
H(x, y, s) = (1 − y)p£1

(
x− s

1 − y

)
+ yp

£1

(
s

y

)
+ £1(y)in F[x, y, s] is symmetri in x and y . Spei�ally, we have(4.2) £1(a) − £1(b) + ap

£1

(
b

a

)
+ (1 − a)p £1

(
1 − b

1 − a

)
= 0 .(3) The �ve term relations.Denote cr(a, b, c, d) = a−c

a−d
b−d
b−c and denom(a, b, c, d) = (a− d)(b− c) . Then we havethe polynomial identities in F[x1, . . . , x5]

5∑

i=1

(−1)i
(
denom(x1, . . . , x̂i, . . . , x5)

)p
£1

(
cr(x1, . . . , x̂i, . . . , x5)

)
= 0 ,and

5∑

i=1

(−1)i xp
i

(
denom(x1, . . . , x̂i, . . . , x5)

)p
£1

(
cr(x1, . . . , x̂i, . . . , x5)

)
= 0 .Corollary 4.10. The F-vetor spae b2(F), as de�ned in (2.7), is of dimension at least 1. If,moreover, F is a perfet �eld, then b2(F) = F.Proof. Aording to Proposition 4.9, the funtion £̃1 is a well-de�ned funtion on b2(F), andas it is not identially zero on F, the dimension of b2(F) is non-zero. By [6℄(Théorème 1, p.57),we know that β2(F) = 0. But as the relations in β2(F) are given by the 4-term equation (i.e.the Fundamental Equation of Information Theory) and the relation ∑p−1

k=2[k1F], (see setion1.1 and also Sah's Lemma in [6℄(pp.52-53)), and as we further know, again by Sah (see theremark on p.53 in op. it.), that these two relations are independent, we an onlude thatthe kernel of the map b2(F) → β2(F) is generated by the element ∑p−1
k=2[k1F]. Evaluating £̃1on this element shows that it is non-zero, whih ends the proof. �4.2.3. Equations for £2. In this subsetion we will give answers to the question raised byKontsevih in [22℄. Notie that we need to assume p > 3 throughout.Proposition 4.11. The 3-term relation and the Kummer-Spene analogue are funtionalequations for £2.Proof. This is a onsequene of the following theorem, together with remark (3.15). �Theorem 4.12. The image of J(a, b, c) under the map £̂2 is a polynomial whih is identiallyzero in F[a, b, c].Remark 4.13. (1) By �6, there is a better answer to Kontsevih's question, at least�quantitatively�: eah funtional equation for dD3 indues a funtional equation (inthe weak sense) for £2. This is true in partiular for the 3-term equation and theKummer-Spene analog.(2) One an �nd further equations (in the strong sense) for £2 and in general for £n with

n > 3 in [16℄.



22 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLBy similar arguments as in the proof for £1, we getCorollary 4.14. The F-vetor spae b3(F) is of dimension at least 1.4.3. Charaterization of �nite polylogarithms. We an haraterize £1 and £2 by thefuntional equations they satisfy.Proposition 4.15. The spae (over F) of solutions of the �fundamental equation of informa-tion theory� is of dimension 1 generated by £1.Proof. Set f(T ) =
∑p−1

i=0 aiT
i ∈ Fq[T ] , and suppose that f veri�es f(0) = 0 and thefollowing identity in Fq[x, y]

f(x) + (1 − x)pf

(
y

1 − x

)
− f(y) − (1 − y)pf

(
x

1 − y

)
= 0 .Di�erentiating the previous equation with respet to x gives,

df(x) +
y(1 − x)p

(1 − x)2
df

(
y

1 − x

)
−

(1 − y)p

1 − y
df

(
x

1 − y

)
= 0,with df(T ) = a1 +

∑p−1
i=2 iaiT

i−1 and thus df(0) = a1 . Setting x = 0 in the previous identitygives
a1 + y df(y) −

1 − yp

1 − y
a1 = 0.But as 1−yp

1−y =
∑p−1

i=0 y
i , the previous equality implies ai = a1

i . In other words, sine f(0) = 0we have f = a1£1 , whih proves the laim. �In fat we have a stronger statementProposition 4.16. The 2-term equation, the inversion and the dupliation formulae hara-terize altogether £1.Proof. It is a onsequene of the following lemmaLemma 4.17. Suppose that ak is a sequene of integers with k = 1, . . . , p−1 (p an odd prime�xed), whih ful�lls the following rules
ak =

{
−1

2

∑p−1
i=k+1 ai

(i
k

)
, if k is odd,

1
2a k

2

otherwise,and ap−k = −ak for all k = 1, . . . , p− 1. Then ak = a1

k ∈ Fp for all k = 1, . . . , p− 1.Proof of the lemma. The proof goes by desending indution starting from p − 1. First wenotie that by the third rule, we have ap−1 = −a1 = a1

p−1 modulo p. Suppose that ai = a1

imodulo p for all i > k. Now ompute ak modulo p. Observe that we an assume k 6 p − 3,sine we an ompute from the rules ap−1 and ap−2. If k is odd then by the �rst rule wededue diretly ak, but we still have to show that ak = a1

k modulo p. This is done via theSub-Lemma 4.18. If k is odd and ai = a1

i modulo p for all i > k. Then ak = a1

k modulo p.Proof of the sub-lemma. We have to show that, modulo p,
a1

k
= −

1

2

p−1∑

i=k+1

a1

i

(
i

k

)
,



ON POLY(ANA)LOGS I 23or equivalently, assuming a1 6= 0, that
−2 =

p−1∑

i=k+1

k

i

(
i

k

)
.But

k

i

(
i

k

)
=

(
i− 1

k − 1

)
.Using the usual rule (mn) = 0 if n > m, we have

p−1∑

i=k+1

k

i

(
i

k

)
=

p−2∑

i=0

(
i

k − 1

)
− 1.But ∑p−2

i=0

( i
k−1

)
=
(p−1

k

), and as, modulo p, we have (p−1
k

)
= (−1)k, we �nally get, using thefat that k is odd, the desired identity. �Now return to the proof of the lemma and suppose that k is even. If k = 2 then the proessends, so we an suppose that k > 3. The idea is to show that we an ompute diretly ak−1and to dedue ak from the �rst rule (we will still need to show the desired property). As k iseven, k− 1 is odd and thus p− k+ 1 is even. Thus by the third rule we have ak−1 = −ap−k+1and by the seond rule we have

ap−k+1 =
1

2
a p−k+1

2

.But there exists j ∈ N suh that p = k + j with 3 6 j < p (beause k 6 p − 3). Hene,applying one again the third rule gives
a p−k+1

2

= −a
p− p−k+1

2

.But
p−

p− k + 1

2
=
p+ k − 1

2
= k +

j − 1

2
.And as j > 3, we have j−1

2 > 1, whih means, applying the indution, that a
p− p−k+1

2

is alreadyknown. We then get the value of ak−1 and by applying the �rst rule to it we dedue the valueof ak. Now to �nish the proof we need to show that, in this ase ak = a1

k modulo p. Notiethat we an also assume by the indution that ai = a1

i modulo p for all i > k. First we showthat in the previous proess, we get ak−1 = a1

k−1 modulo p. Indeed, by the indution we have
a

p− p−k+1

2

=
a1

p− p−k+1
2

.Thus
a p−k+1

2

= −
a1

p− p−k+1
2

.And �nally
ak−1 = −ap−k+1,

=
1

2

(
a1

p− p−k+1
2

)
,

=
a1

k − 1
.



24 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLTo onlude we need to prove a variant of Sub-Lemma 4.18.Sub-Lemma 4.19. Suppose that k is even, ai = a1

i modulo p for all i > k and ak−1 = a1

k−1modulo p. Then ak = a1

k modulo p.Proof of Sub-Lemma 4.19. We have the equality
a1

k − 1
= −

1

2
akk −

1

2

p−1∑

i=k+1

a1

i

(
i

k − 1

)
.Using the same arguments than in the proof of Sub-Lemma 4.18, we get the following identities,

p−1∑

i=k+1

k − 1

i

(
i

k − 1

)
=

p−2∑

i=0

(
i

k − 2

)
−

(
k − 1

k − 2

)
−

(
k − 2

k − 2

)
,

= (−1)k−1 − (k − 1) − 1,

= −1 − k, as k is even.And we �nally have
a1

k − 1
= −

1

2
akk +

(1 + k)a1

2(k − 1)
,from whih we dedue ak = a1

k . �Hene the proof of Lemma 4.17 is omplete. �Bak to the proof of Proposition 4.16. Suppose that P (T ) =
∑p−1

i=0 aiT
i ∈ Fp[T ] veri�es theonditions of the proposition. Then applying the three equations to P gives a0 = 0, and theother oe�ients ai ful�ll the rules desribed in the Lemma 4.17. �Remark 4.20. �Cohomologial haraterization of £1�Kontsevih showed that £1 gives a non-zero 2-oyle in H2(Z/p,Z/p). Sine the latter groupis isomorphi to Z/p, this haraterizes £1 up to a salar.4.4. Spae of solutions for equations assoiated to £2. As J(a, b, c) is the main relationfor b3 , we an expet that it haraterizes £2 . In fat, we an �rst give a family of polynomials(whih form a spae of dimension growing linearly with p) and then haraterize £2 byimposing also the dupliation relation (i.e. the distribution relation for £2 with m = 2). Sinethese two equations are onsequenes of the Kummer-Spene analogue, and the latter in turnis a onsequene of J(a, b, c), we are done.Proposition 4.21. The dimension of the Fp-spae of solutions assoiated to the equation(4.3) T pP

(
1 −

1

T

)
− P (T ) + P (1 − T ) = 0grows with p and is at least of dimension p−1
3 + 1. The family of polynomials

τi,p(T ) = T i(1 − T )i(T p−3i + (−1)i),with i ∈ N suh that the valuation of τi,p is > 0 (for instane if i 6
⌊p

2

⌋), is a solution of(4.3). Moreover, for i = 0, . . . , p−1
3 , this family is free.Proof. The fat that τi,p ful�lls (4.3) is a diret omputation. For i = 1, . . . , p−1

3 , the familyis free for degree reasons, sine deg(τi,p) = p − i. Furthermore τ0,p does not belong to thisfamily for valuation reasons. �



ON POLY(ANA)LOGS I 25Remark 4.22. (1) We already know, by Lemma 3.11, that the inversion formula is aonsequene of the 3-term equation. But a straightforward omputation shows thatthe polynomials τi,p ful�ll the inversion formula for £2.(2) In fat the rank of the family τi,p is greater than p−1
3 , but the proof is a little bit moreinvolved. We an also notie that £2 is never expressible in terms of τi,p if i runs onlythrough 0, . . . , p−1

3 − 1.Thus the 3-term equation is insu�ient for the haraterization of £2. Nevertheless, we havethe following main resultTheorem 4.23. Let P be a polynomial of F[T ] of degree less than or equal to p − 1. Set
h = TP ′. Then if P ful�lls the dupliation relation and the 3-term equation, and if moreover
h ful�lls the 2-term equation then P is equal, up to a multipliative onstant, to £2.Proof. Let P be a polynomial of degree 6 p− 1, and suppose that P ful�lls the following twoequations

T pP

(
1 −

1

T

)
− P (T ) + P (1 − T ) = 0,(4.4)

2(1 + T p)P (T ) + 2(1 − T p)P (−T ) − P (T 2) = 0.(4.5)Then observing that we an dedue the inversion formula as a onsequene of the 3-term,and taking the derivative with respet to these equations shows that h ful�lls the inversionformula and the dupliation formula. As, by hypothesis, h ful�lls also the 2-term equation,we onlude from Proposition 4.16 that h is £1 up to a onstant, whih implies that P is £2up to a onstant. �Remark 4.24. We atually expet a slightly stronger result to be true, inasmuh as alreadythe dupliation and 3-term relation haraterize £2; this laim has been veri�ed for all primes
3 < p < 200.As we an formally dedue the two equations in the proposition from the Kummer-Speneanalogue and the Kummer-Spene analogue in turn from the Cathelineau equation J(a, b, c)(beause in this ase the speialisation mentioned in (3.15) is allowed), we getCorollary 4.25. The spae of solutions of the Kummer-Spene analogue and the spae ofsolutions of the Cathelineau equation are both of dimension 1 generated by £2.Proof. We only need to show that if P ∈ F[T ], assumed to be of degree less than or equalto p − 1, setting h = TP ′, h ful�lls the 2-term equation. In order to do that let KS(a, b)denote the formal Kummer-Spene analogue, then taking the derivative with respet to a, andrewriting the equation with h and �nally speializing to a = 0, we an see that, modulo theinversion formula for h (whih we an get diretly by deriving the inversion formula for P ),we have the identity h(b) = h(1 − b). �5. Deriving funtional equations : onstrution of the derivation mapThe main goal of this setion is to prove that one an pass from funtional equationsfor polylogarithms to funtional equations for the orresponding in�nitesimal polylogarithms.For this purpose we will onstrut a family of maps, parametrized by a given derivation, from
Bn(F ) to βn(F ). The origin of suh maps omes from the ategorial setting whih is behindthe �tangential proessing� involved in the onstrution of the in�nitesimal polylogarithmi



26 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLgroups, whih is to some extent disussed in [3, 6, 9℄, and will be treated in more detail in[15℄.In subsetion 5.1, we present the �derivation map� from polylogarithmi groups to in�n-itesimal polylogarithmi groups. In subsetion 5.2, we prove, as an appliation, that thederivation of a funtional equation for any polylogarithm gives rise to a funtional equationfor the orresponding in�nitesimal polylogarithm, and we will show several examples.5.1. From lassial polylogarithmi groups to in�nitesimal polylogarithmi groups.For the onstrution of the polylogarithmi groups (see setion 2 on page 6), we gave aninitial proedure for n = 2 and an indutive proedure for higher n. The onstrution of the�derivation map� follows this priniple.5.1.1. The ase n = 2.Lemma 5.1. Let F be a �eld and D ∈ DerZ(F ) be an absolute derivation. Consider thewell-de�ned maps fD : Z[F ••] → F [F ••], [a] 7→ D(a)[a] and gD :
∧2(F×) → F× ⊗Z F ,

x ∧ y 7→ −x⊗ D(y)
y + y ⊗ D(x)

x . Then the following diagram
Z[F ••]

fD−−−−→ F [F ••]

δ2

y
y∂̄2

∧2(F×) −−−−→
gD

F× ⊗Z F,is ommutative, where ∂̄2([a]) = 1
a ⊗ 1

1−a + 1
1−a ⊗ 1

a .Proof. First we observe that the map gD is well de�ned. Indeed this is a onsequene of the
d log property of the map y 7→ D(y)

y de�ned on the units and of the fat that gD(x ⊗ x) = 0whih implies that gD(x ∧ x) = 0. Then, the ommutativity of the diagram is a direthek. �As a diret onsequene we get a map from ker(δ2) to ker(∂̄2). Similarly, we an obtaina map ker(δ2) to ker(∂2) by replaing fD by f̃D : [a] 7→ D(a)
a(1−a) [a] whih indues a map

τ2,D : B2(F ) → β2(F ).5.1.2. The ase n > 2. Suppose we have de�ned the �derivation map� τn−1,D : Bn−1(F ) →
βn−1(F ) (with respet to a derivation D) for the level n− 1. Then we an onstrut τn,D byindution as follows.Proposition 5.2. Let D ∈ DerZ(F ) be an absolute derivation for the �eld F . Then we havethe following ommutative diagram:

Z[F ••]
f̃D−−−−→ F [F ••]

δn

y
y∂n

Bn−1(F ) ⊗ F× −−−−→
gn,D

βn−1(F ) ⊗Z F
× ⊕ Bn−1(F ) ⊗Z Fwhere f̃D is de�ned on generators as [a] 7→ D(a)

a(1−a) [a], while gn,D is given by
gn,D : {x}n−1 ⊗ y 7→ τn−1,D

(
{x}n−1

)
⊗ y + {x}n−1 ⊗

D(y)

y



ON POLY(ANA)LOGS I 27and ∂n by
∂n([a]) = 〈a〉n−1 ⊗ a + {a}n−1 ⊗ (1 − a) .Remark 5.3. We want to point out that despite their apparent simpliity, these ruialommutative diagrams do not show up at �rst sight.This indues a map from ker(δn) to ker(∂n) whih in turn indues the desired �derivationmap� τn,D : Bn(F ) → βn(F ).De�nition 5.4. Let F be a �eld and D ∈ DerZ(F ) be an absolute derivation for the �eld F .We will all the map τn,D : Bn(F ) → βn(F ) the derivation map from Bn(F ) to βn(F ), withrespet to D. If x is an element of Bn(F ), the element τn,D(x) ∈ βn(F ) will be alled thederivative of x with respet to D.As usual, if D is lear from the ontext we will omit it.Remark 5.5. We an notie that all the τn,D, and also all the maps involved in the previouspropositions, give rise to an F -linear map τn : DerZ(F ) → HomZ(Bn(F ), βn(F )) for all n > 2.5.2. Expliit derivation of funtional equations. As a onsequene of the previous settingwe getCorollary 5.6. Eah element in ker δn indues (many) elements in ker ∂n.The ruial main onsequene is the following result.Corollary 5.7. Let K be an arbitrary �eld and set F = K(t1, . . . , tr), with (t1, . . . , tr) a tran-sendene basis over K. Let D ∈ DerZ(F ). Then any funtional equation of the n-logarithmover K indues, via the derivation map τn,D, a funtional equation of the in�nitesimal n-logarithm over K.Proof. It is a diret onsequene of the de�nition 3.1 and of the onstrution of τn,D. �Remark 5.8. Notie that, in the above orollary, DerZ(F ) 6= 0 sine DerK(F ) 6= 0, at leastif r > 1. In pratie it ould be interesting to have a di�erential basis, and thus we an assumethat if K is of harateristi p then (t1, . . . , tr) is a p-basis over K.It is a priori not lear that the proedure gives non-trivial equations, but the followingexamples show that it is atually the ase:Example 5.9. The �rst example is taken from [8℄ and it retrieves the 4-term relation fromthe 5-term relation (3.3) by applying the above proedure with

D = a(1 − a)
∂

∂a
+ b(1 − b)

∂

∂b
,assuming that F = K(a, b) with a, b indeterminates over the �eld K, and that ∂

∂a and ∂
∂b arethe usual partial derivatives.The following proposition gives a partial answer to Cathelineau's question onerning therelationship of his 22-term equation for dD3 and Gonharov's equation (3.7) for D3 (withthe same number of terms). It is a onsequene of the previous results but an also be veri�eddiretly.Proposition 5.10. (1) The in�nitesimal funtional equation below, whih is derived fromthe Gonharov funtional equation for the trilogarithm is zero in β3(F ) .



28 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGL(2) If F ⊃ Q, the Gonharov equation is expressible in terms of an F -linear ombinationof J(a, b, c) .We give an example of suh a derived version in the ase F = K(a, b, c) with a, b, c indeter-minates over the �eld K, applying the above proedure with
D = a(1 − a)

∂

∂a
+ b(1 − b)

∂

∂b
+ c(1 − c)

∂

∂cto the equation stated in (3.7). Let us set
ϕ(a, b, c) =[a] −

(b− 1)(a− 1)

ab− 1

([
−
b(a− 1)

b− 1

]
+

[
−
a(b− 1)

a− 1

])

+
(c2b+ cb2 − 3cb+ 1)

cb− 1

[
a− 1

abc− 1

]
−

(abc− a− b− c+ 2)

cb− 1

[
cb(a− 1)

abc− 1

]

−
(a+ b− 2)

ab− 1
[ab] −

(a2bc− 2abc+ b+ c− 1)(a − 1)

(ac− 1)(ab− 1)

[
−
a(c− 1)(b − 1)

(a− 1)(abc − 1)

]
.Then, modulo the inversion formula,

ϕ(a, b, c) + ϕ(b, c, a) + ϕ(c, a, b) −
(a+ b+ c− 3)

abc− 1
[abc]is the di�erential of the Gonharov equation and vanishes in β3(F ) by virtue of Corollary 5.6.Observation 5.11. We should notie that we have not yet proved that the in�nitesimalGonharov equation also holds in harateristi p and to know that this equation is expressiblein terms of an F -linear ombination of J(a, b, c) is not enough to ensure this (unless we knowthat this linear ombination is independant of F ). It will be seen in the next setion that itis the ase, at least if we see £2 as a funtion from Z/p to Z/p.6. Redution of funtional equations mod p via the p-adi realmIn this setion, we want to prove the following statements (whih are made more preisebelow):

➊ Eah funtional equation for the lassial n-logarithm Dn indues a funtional equa-tion for ertain p-adi n-logarithm funtions (those whih satisfy Wojtkowiak's p-adiversion of Zagier's riterion).
➋ Eah funtional equation for the lassial n-logarithm indues a funtional equationfor the in�nitesimal n-logarithm (via the derivation proedure given in the previoussetion). A similar statement holds for the p-adi ase.
➌ Eah funtional equation for the in�nitesimal n-logarithm dDn indues a funtionalequation for the orresponding p-adi in�nitesimal n-logarithm denoted DFn (see Def-inition 6.6).
➍ Eah �good Qp-speialization�, as de�ned in (6.10) below, of a funtional equationfor the p-adi in�nitesimal polylogarithm indues a funtional equation (in the weaksense) for the �nite (n− 1)-logarithm.



ON POLY(ANA)LOGS I 29Combining the four statements, we arrive at the somewhat more surprising statement:Surprise: Eah funtional equation for the lassial n-logarithm indues a funtional equationfor the �nite (n− 1)-logarithm.Throughout this setion, we denote by Lin(z) Coleman's p-adi n-logarithm [10℄. Letus �rst look for the p-adi ombinations whih should play the same role as the modi�edpolylogarithms Dn.Remark 6.1. The inversion relation (in its lean form Pn(z) = (−1)n−1Pn(1/z)
) for a om-bination Pn(z) =

∑n−1
k=0 ak logk(z)Lin−k(z) is equivalent to the following ondition on theoe�ients:(6.1) n−1∑

k=0

ak

(n− k)!
= 0(f. [34℄, Lemma 4.2). Sine the inversion relation is in the kernel of ∂n, we an restrit ourinvestigations to ombinations Pn(z) satisfying those onditions.While one needs to work harder in the �lassial� ase to �nd funtions whih satisfy leanlytheir funtional equations, it turns out that in the p-adi ase the above ondition is alreadygood enough, and we an state the above laim ➊ more preisely asProposition 6.2. (Wojtkowiak, [34℄, Proposition 4.4)Let ξ ∈ ker δn,Qp(t1,...,tr). Then eah admissible Cp-speialization of ξ is mapped to a onstantby the p-adi funtions(6.2) Pn(z) =

n−1∑

k=0

ak logk(z)Lin−k(z) ,if the oe�ients satisfy ondition (6.1).This motivates the following de�nition:De�nition 6.3. A linear ombination of p-adi polylogarithms of the form (6.2) whose oef-�ients satisfy (6.1) is alled a lean p-adi polylogarithm.Remark 6.4. (1) For n = 2, there is, up to a multipliative onstant, only one lean
p-adi 2-logarithm P2 satisfying (6.1).(2) The original statement was atually somewhat stronger: Qp(t1, . . . , tr) was replaedby Cp(t), where Cp denotes a ompletion of an algebrai losure of Qp.The laim in ➋ follows immediately from the �derivation map� in �5.Before we show a more preise version of ➌ by imitating Proposition 7 of [8℄, we state ourintermediate goal: We are looking for a morphism F [F ] → F0, where F = Cp(z) and F0 = Cp.More preisely, we want to have a family of morphisms (DPn)n>2 on βn(Cp) expressed interms of the di�erential operator D = z(1 − z) d

dz and some lean p-adi polylogarithms Pn.There are many andidates:Proposition 6.5. Let (Pn)n>2 be a family of lean p-adi polylogarithms suh that for n > 3(6.3) DPn(z) = λn (1 − z)Pn−1(z) + µn log(z)DPn−1(z) ,



30 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLfor some λn, µn ∈ C×
p .Then, for any n, DPn de�nes a morphism on βn(Cp).Proof. Pn is de�ned on Bn(Cp) by assumption. For n = 2, we have seen that the funtion isessentially unique:

P2(z) = −2Li2(z) + log(z)Li1(z) ,and the resulting in�nitesimal dilogarithm
DP2(z) = (1 − z) log(1 − z) + z log(z)vanishes on r2(Cp) (due to Proposition 2.8, it is enough to hek that it vanishes on the fourterm relation, whih is straightforward).Now suppose the laim is true for n − 1. The maps DPn−1 ⊗ log : βn−1(Cp) ⊗ C×

p → Cp,
x〈y〉n−1 ⊗ z 7→ xDPn−1(y) log(z) resp. Pn−1 ⊗ Id : Bn−1(Cp) ⊗ Cp → Cp, {y}n−1 ⊗ z 7→
zPn−1(y), are well-de�ned by the indutive assumption resp. by assumption (Pn−1 is lean).Furthermore, an element ξ ∈ rn(Cp) lies in the kernel of eah of the �omponents� of ∂n, say
∂′n : Cp[Cp] → βn−1(Cp) ⊗ C×

p and ∂′′n : Cp[Cp] → Bn−1(Cp) ⊗ Cp, and therefore
(
µnDPn−1 ⊗ log + λn Pn−1 ⊗ Id

)(
∂nξ) =

(
µnDPn−1 ⊗ log ◦∂′n + λn Pn−1 ⊗ Id ◦ ∂′′n

)
ξ = 0 ,whih shows that the funtion de�ned by (6.3) an be linearly extended to a well-de�nedfuntion on βn(Cp). �De�nition 6.6. Besser's p-adi n-logarithm is de�ned as(6.4) Fn(z) =

n−1∑

k=0

ak,n logk(z)Lin−k(z)with
ak,n =

(−1)k

k!
(k − n) .We will all DFn the distinguished in�nitesimal p-adi n-logarithm.Proposition 6.7 (Existene). There exist families of lean p-adi polylogarithms satisfying(6.3) for some λn, µn ∈ C×

p .In partiular, Besser's family (6.4) satis�es (6.3) with (λn, µn) = ( 1
n−1 ,−

1
n−1), n > 3.There are many other possibilities.Proof. Again, the ase n = 2 gives the unique hoie for P2 (up to multipliative onstant).Indutively, starting from Pn−1 and DPn−1, one an form an arbitrary linear ombinationof them using λn and µn whih gives a andidate for DPn, with oe�ients bk,n, say; asubsequent �integration� (putting a0,n = −n and suessively ak+1,n = −n(bkn −akn)/(k+1),

k = 0, . . . , n − 2) provides a andidate Pn whose oe�ients akn have to satisfy the furtherondition (6.1)�this gives a linear restrition on the possible (λn, µn) at eah step. We thusobtain indutively an extra degree of freedom at eah level.For example, normalizing Pn(z) suh that a0 − n, we obtain suessively
λ3 − µ3 = 1 , λ4 − µ4 =

1

2 − λ3
, etc.It remains to hek that Besser's hoie (6.4) does satisfy(6.5) (n− 1)DFn(z) = (1 − z)Fn−1(z) − log(z)DFn−1(z)



ON POLY(ANA)LOGS I 31whih is straightforward. Also, the ak,n satisfy ondition (6.1) sine
−

n−1∑

k=0

(−1)k

k!(n − k)!
(n− k) =

1

(n− 1)!
(1 − 1)n−1 = 0 .

�Remark 6.8. (1) Writing Φn(z) = (n − 1)!Fn(z) and notiing that (1 − z) = D log(z),we an reformulate (6.5) more suggestively, using the ad-ho onvention D−(a⊗ b) :=
D(a)b− aD(b), as

DΦn(z) = D−
(
log(z) ⊗ Φn−1(z)

)
.(2) We have just seen that, a priori, there are many hoies for the Pn individually, butthe ondition that the morphisms at level n and n − 1 be linked via the ondition

ρDPn(z) = (1 − z)Pn−1(z) − log(z)DPn−1(z) for some ρ ∈ Cp provides us with aunique funtion, up to a multipliative fator, the ondition (6.1) still being truefor Pn. We have not found a �natural� justi�ation for the ondition (6.5), though.A normalization ondition for the above Pn is then a0,n + a1,n = −1 whih entails
ρ = n − 1. The resulting family oinides with Besser's funtions (6.4)�his hoie ofoe�ients was fored by two rather natural requirements: �rst, a ertain p-adi powerseries expansion beomes independent of the �diretion� in whih to expand; seond,one retrieves the �nite (n− 1)-logarithm by reduing DFn mod pn (or, more preisely,reduing p1−nDFn mod p) on elements in Z×

p ∩ (1 − Zp)
× ⊂ Cp (for an improvedstatement of this and of the following theorem f. [2℄).The Fn an be haraterized by the followingTheorem 6.9. (Besser, [2℄, Theorem 1.1)Let X = {z ∈ Zp , |z| = |1 − z| = 1}. For p > n + 1, one has DFn(Zp) ⊂ pn−1Zp, and for

z ∈ X:
p1−nDFn(z) ≡ £n−1(z) (mod p) .The hoie of oe�ients (in Q) for Fn is unique for a lean p-adi polylogarithm whihsatis�es the above property for all p > n+ 1.In order to formulate the subsequent statements onveniently, we introdue the followingnotion:De�nition 6.10. A good Qp-speialization for ∑ni[xi] ∈ F [F ], F ⊂ Qp(t1, . . . , tr), is afamily of numbers uj ∈ Qp, j = 1, . . . , r, suh that the images of ni = ni(t1, . . . , tr), xi =

xi(t1, . . . , tr) and 1−xi = 1−xi(t1, . . . , tr) under the speialization map tj 7→ uj , j = 1, . . . , r,are in Z×
p .The virtue of a good Qp-speialization lies in the fat that we an redue it modulo pZp.As we an notie, a good Qp-speialization is, in partiular, an admissible Qp-speialization.Now, putting Proposition 6.5 and Theorem 6.9 together, we an make ➍ more preise:Corollary 6.11. Let n > 2, p > n+ 1, and η ∈ ker ∂n,Qp(t1,...,tr). Then we havea) For eah admissible Cp-speialization ηspec for η, DFn(ηspec) = 0.b) For eah good Qp-speialization ηspec for η, the redution mod p gives

£n−1(η
spec) ≡ 0 (mod p) .



32 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLProof. The in�nitesimal polylogarithm DFn vanishes on η by Proposition 6.5, and reduingmod p obviously onserves this vanishing property. Besser's result now says that the redutionof p1−nDFn(ηspec) is equal to £n−1

(
ηspec (mod p)

). �Going even one step further, we an state a more preise version of the above �surprise�:Corollary 6.12. Let n > 2, p > n+ 1, and ξ ∈ ker δn,Q(t1,...,tr). Then we havea) For eah admissible C-speialization resp. Cp-speialization ξspec for ξ, the quantities
Dn(ξspec) resp. Fn(ξspec) are onstants.b) For eah absolute derivation ∆ ∈ DerZ(Q(t1, . . . , tr)), ξ indues ξ∆ ∈ ker ∂n,Q(t1,...,tr),and therefore, for eah admissible C-speialization resp. Cp-speialization,

dDn(ξ∆) = 0, resp. DFn(ξ∆) = 0 .) For eah good Qp-speialization ξspec
∆ for ξ∆, the redution mod p gives

£n−1(ξ
spec
∆ ) ≡ 0 (mod p) .Proof. a) Follows from Zagier [36℄ and Wojtkowiak [34℄, respetively.b) This follows via the �derivation map� (see �5).) 0 = p1−nDFn(ξ∆) ≡ £n−1(ξ

spec
∆ ).

�Alas, although being quite powerful, the above strategy does not give the full answer to ourproblem.Remark 6.13. (1) The virtues of the proedure desribed above lie in its generality: wedo not need to (�nd and) prove funtional equations for (p-adi) in�nitesimal or �nitepolylogs, sine they �drop out� using the mahinery.(2) The drawbaks of the mahinery lie in its lak of ontrol:(a) We do not get the funtional equations as polynomial identities but only �onpoints�, i.e. in the form of (good) speializations.(b) A more mundane reason for proving funtional equations for £n in the strongsense is the fat that all the ones whih have ourred in our investigations arenot only true for Fp but atually hold more generally for any �eld of harateristi
p.() (a minor point, given the range in whih we mostly work) We need to assumethat p > n+ 1.This restrition is not (always) neessary for the polynomial identities to hold:there are examples of equations for £3 whih are still true in harateristi 3.In summary, there are still plenty of reasons whih leave us with the task of �nding proofs offuntional equations for the �nite polylogarithms. The �nal setion will therefore be dediatedto this issue.Part III. The Main Proofs7. Proofs of funtional equations over fields of harateristi p.7.1. Straightforward demonstrations.



ON POLY(ANA)LOGS I 33Proof. (of Proposition 4.7)(1) The inversion relation an be heked via a straightforward algebrai manipulation.(2) In order to prove the distribution relation, let us �x a primitive mth root of unity ζ .Dividing both sides by mn and developing the fration into a (�nite) series leaves usto prove:
p−1∑

k=1

T km

(km)n
=

1

m

∑

ζm=1

(
1 + (ζT )p + (ζT )2p + · · · + (ζT )(m−1)p

) p−1∑

k=1

(ζT )k

kn

=
1

m

p−1∑

k=1

1

kn

∑

ζm=1

(
(ζT )k + (ζT )p+k + (ζT )2p+k + · · · + (ζT )(m−1)p+k

)

=
1

m

p−1∑

k=1

∑

ζm=1

(
(ζT )k

kn
+

(ζT )p+k

(p+ k)n
+

(ζT )2p+k

(2p + k)n
+ · · · +

(ζT )(m−1)p+k

(
(m− 1)p+ k

)n
)

=
1

m

pm−1∑

r=1
p6 |r

( ∑

ζm=1

ζr
)T r

rn
,and this is true due to the harater relations

∑

ζm=1

ζr =

{
m, if m|r

0, otherwise.(3) (Proof of the speial values) £̃n(1) = 0 if (p− 1)6 |n follows from the well-known fatthat∑p−1
k=0 P (k) = 0 for any polynomial P ∈ Z/pZ[x] of degree 6 p−2 (here we applyit to the monomials x, . . . , xp−2), the statement for (p− 1)|n being obvious.The assertion for £̃2n(−1) = 0 is a diret onsequene of the inversion relation.To prove the last formula of Proposition 4.7 we only need to take m = 2n (the oddvalues orrespond to the above identities). For this, one an use the speial ase a = 2,in [27℄(Proposition (5B), p.108), p− 1 6 |2n:(7.1) (1 − 22n)B2n ≡ 2n 22n−1

∑

16j< p

2

1

j1−2n
(mod p)and the fat that £1−2n(−1) is equal to the sum in (7.1): rewriting

£̃p−2n(−1) = £̃1−2n(−1) =

(p−1)/2∑

j=1

(2j)2n−1−

(p−1)/2∑

j=1

(2j−1)2n−1 = 2

(p−1)/2∑

j=1

(2j)2n−1−

p−1∑

j=1

j2n−1 ,one sees that the �rst sum is equal to 22n times the sum in (7.1), while the seond oneequals −£̃1−2n(1) and therefore is zero (for 0 < n < p−1
2 ) by the above speial value.

�



34 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGL7.2. A reipe for proving funtional equations. Let R be a domain of harateristi p.In order to show that a polynomial Q(T ) ∈ R[T ] is zero, we divide it into three parts:
Q(T ) = Q(0) +Q1(T ) +Q2(T

p) ,where Q1(T ) involves only powers of T whih are not divisible by p. Then we verify separatelythat Q2(T
p) and the onstant Q(0) vanish and that d

dTQ1(T ) is zero as well. We an iteratethis proedure in an obvious way.Proof of Proposition 4.9. (1) We will apply the reipe above. We have
d

dT
£1(1 − T ) = −

1

1 − T
£0(1 − T ),

=
1

T
£0(T ) by (4.1),

=
d

dT
£1(T ),and as the degree of either polynomials is less than p− 1 , we onlude that £1(T ) =

£1(1 − T ) + c where c is a onstant.This, in turn, implies that 2c = 0 (speialize T = 0 and T = 1 , respetively), andtherefore we get as a by-produt £1(1) = £1(0) = 0 (in harateristi 6= 2).(2) The following proof is a slight variation of the reipe, in that it uses two iteratedderivatives.Denote by ∂x and ∂y the derivatives to respet to x and y . We an hek, usingthe di�erential equation for £1 and the rational expression (..) for £0 , that
∂y∂xH(x, y, s) =

1 − yp − xp + sp

(1 − y − x+ s)2
,whih is an expression that is symmetri in x and y . Thus

∂y∂x(H(x, y, s) −H(y, x, s)) = 0.But the maximum degree for eah indeterminate in the polynomial H(x, y, s) is nevergreater than p− 1 , and as a onsequene the above identity implies that
H(x, y, s) −H(y, x, s) = R0(s) +R1(s)x+R2(s)y,where R0, R1, R2 ∈ F[s] . But setting x = y implies both R0 = 0 and R1 + R2 = 0,and the onstrution of R1 and R2 shows diretly that they are both zero (theoe�ients of x and y in H(x, y, s) are both equal to ∑p−2

k=0(−s)
k
).

�Proof of Proposition 4.11. (1) Set
E(T ) = £2(1 − T ) − £2(T ) + T p

£2(1 −
1

T
).We want to prove that E is 0 in F[T ] . Computing d

dTE we get
d

dT
E(T ) = −

1

1 − T
£1(1 − T ) −

1

T
£1(T ) +

T p−1

T − 1
£1(1 −

1

T
).



ON POLY(ANA)LOGS I 35But by Proposition 4.9, £1(1 − T ) = £1(T ) and £1(1 − 1
T ) = £1(

1
T ) . Moreover bythe inversion formula (see Proposition 4.7) we have £1(

1
T ) = − 1

T p £1(T ) . Hene,
d

dT
E(T ) = −

1

1 − T
£1(T ) −

1

T
£1(T ) −

1

(T − 1)T
£1(T ),

= 0.As E(0) = 0 and deg(E) 6 p , we know that E(T ) = cT p and therefore T pE( 1
T ) = c,but using the inversion relation one sees that T pE( 1

T ) = E(T ), whih implies c = 0.
�Remark 7.1. A di�erent way to prove that c = 0 : For this we look diretly at E(T ) andtry to ompute this oe�ient whih an only appear in the expression

T p
£2(1 −

1

T
) =

p−1∑

i=1

T p−i(T − 1)i

i2
.But, for eah i , the oe�ient of T p is 1

i2 , and thus c = £2(1) = 0 .Proof of Theorem 4.12. The strategy of proof ould be summarized as follows:(i) Prove that ∂c£̂2(J(a, b, c)) = 0 in F[a, b, c].(ii) Prove that £̂2(J(a, b, 0)) = 0 in F[a, b].(iii) Prove that the oe�ient of cp in £̂2(J(a, b, c)) is 0.For the proof of this funtional equation we will need several preliminary formulas. First wewill use these two relations, in F[x, y], oming from the 4-term equation for £1

(1 − y)p£1

(
x

1 − y

)
= £1(x) + (1 − x)p£1

(
y

1 − x

)
− £1(y),(7.2)

£1(y) − £1(x) = (1 − x)p£1

(
1 − y

1 − x

)
+ xp

£1

(y
x

)
.(7.3)We use impliitly the following formal derivation rules, where t is an indeterminate and λ aonstant independent of t:

d

dt
£2

(
λ(1 − t)

)
= −

1

1 − t
£1(λ(1 − t)),

d

dt
£2

(
λ
(
1 −

1

t

))
= −

1

t(1 − t)
£1

(
λ
(
1 −

1

t

))
.We also point out that the following simple formula will be often used:

1

t
+

1

1 − t
=

1

t(1 − t)
.For the onveniene of the reader we will give detailled omputations in order to make hek-ing almost straightforward.



36 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLLet's �rst split £̂2(J(a, b, c)) into six piees to failitate the identi�ation of the anellationin the forthoming omputations:
A1 = cp£2(a) − cp£2(b) + (a− b+ 1)p£2(c)

+ (1 − c)p£2(1 − a) − (1 − c)p£2(1 − b) + (b− a)p£2(1 − c),

A2 = −ap
£2

( c
a

)
+ bp£2

(c
b

)
+ cpap

£2

(
b

a

)

− (1 − a)p£2

(
1 − c

1 − a

)
+ (1 − b)p£2

(
1 − c

1 − b

)
+ cp(1 − a)p£2

(
1 − b

1 − a

)
,

A3 = cp(1 − a)p£2

(
a(1 − c)

c(1 − a)

)
− cp(1 − b)p£2

(
b(1 − c)

c(1 − b)

)
,

A4 = −bp£2

(ca
b

)
− (1 − b)p£2

(
c(1 − a)

1 − b

)
,

A5 = −(a− b)p£2

(
(1 − c)a

a− b

)
− (b− a)p£2

(
(1 − c)(1 − a)

b− a

)

+ cp(a− b)p£2

(
(1 − c)b

c(a− b)

)
+ cp(b− a)p£2

(
(1 − c)(1 − b)

c(b− a)

)
,

A6 = (1 − c)pap
£2

(
a− b

a

)
+ (1 − c)p(1 − a)p£2

(
b− a

1 − a

)
.Set d = ∂

∂c .First step: prove that ∑ dAi = 0.It is immediate that dA6 = 0. Using the rules desribed above, we get the following equalities:
dA1 =

1

c
£1(c) +

(a− b)p

c(1 − c)
£1(c),

dA2 = −
ap

c
£1

( c
a

)
+
bp

c
£1

(c
b

)

+
(1 − a)p

1 − c
£1

(
1 − c

1 − a

)
−

(1 − b)p

1 − c
£1

(
1 − c

1 − b

)
,

dA3 = −
cp(1 − a)p

c(1 − c)
£1

(
a(1 − c)

c(1 − a)

)
+
cp(1 − b)p

c(1 − c)
£1

(
b(1 − c)

c(1 − b)

)
,

dA4 = −
bp

c
£1

(ca
b

)
−

(1 − b)p

c
£1

(
c(1 − a)

1 − b

)
,

dA5 =
(a− b)p

1 − c
£1

(
(1 − c)a

a− b

)
+

(b− a)p

1 − c
£1

(
(1 − c)(1 − a)

b− a

)

−
cp(a− b)p

c(1 − c)
£1

(
(1 − c)b

c(a− b)

)
−
cp(b− a)p

c(1 − c)
£1

(
(1 − c)(1 − b)

c(b− a)

)
.Then, applying onseutively (7.2) to dA5, with x = 1− c, y = b

a , with x = 1− 1
c , y = b

a , andwith x = 1− 1
c , y = 1−a

1−b , and to dA3 with x = 1− 1
c , y = 1

a , and using (7.3) for simpli�ation



ON POLY(ANA)LOGS I 37as well as the basi relations for £1, we get
dA4 + dA5 + dA3 = −

£1(b)

1 − c
+

£1(a)

1 − c

+
cp

c(1 − c)

(
£1

(
b

c

)
− £1

(a
c

))
− £1(c) +

(b− a)p

c(1 − c)
£1(c),then

dA1 + dA4 + dA5 + dA3 = −
£1(b)

1 − c
+

£1(a)

1 − c
+

cp

c(1 − c)

(
£1

(
b

c

)
− £1

(a
c

))
.It remains to transform dA2, but using (7.3), we have e.g.

(1 − b)p£1

(
1 − c

1 − b

)
= £1(c) − £1(b) − bp£1

(c
b

)
,then

dA2 =
£1(b)

1 − c
−

£1(a)

1 − c
+

bp

c(1 − c)
£1

(c
b

)
−

ap

c(1 − c)
£1

( c
a

)
.Now by invoking the inversion formula we see that

5∑

i=1

dAi = 0.Seond step: Prove that the relation is true for c = 0.Putting c = 0 in ∑6
i=1Ai gives
£2(1 − a) − £2(1 − b) − (1 − a)p£2

(
1

1 − a

)
+ (1 − b)p£2

(
1

1 − b

)

ap
£2

(
a− b

a

)
+ (1 − a)p£2

(
b− a

1 − a

)
− (a− b)p£2

(
a

a− b

)
− (b− a)p£2

(
1 − a

b− a

)and applying the inversion formula for £2 we get 0.Third step: Prove that the oe�ient of cp is 0.Notie �rst that if λ is an expression independent of c, then the oe�ient of cp in the sum∑p−1
i=1

λi

i2
cp−i(1 − c)i is £2(−λ). Using this fat, we an see that the oe�ient of cp in theexpression ∑6

i=1Ai is given by
£2(a) − £2(1 − a) + (1 − a)p£2

(
−a

1 − a

)

− £2(b) + £2(1 − b) − (1 − b)p£2

(
−b

1 − b

)

+ ap
£2

(a
b

)
− ap

£2

(
a− b

a

)
+ (a− b)p£2

(
−b

a− b

)

+ (1 − a)p£2

(
1 − b

1 − a

)
− (1 − a)p£2

(
b− a

1 − a

)
+ (b− a)p£2

(
−

1 − b

b− a

)
.But eah of the previous lines are 0 by using the 3-term funtional equation of £2 (see Propo-sition 4.12 1. ) and this ompletes the proof of the 22-term funtional equation for £2. �



38 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLRemark 7.2. We want to stress some more strutural properties in the rather omputationalparts of the previous proof�thereby also giving an indiation that there should exist a ommonproof for both the �nite and the in�nitesimal ase:(i) we �rst use the (�d log-like�) behaviour (f. the omment after (De�nition 4.4))
d

dc
£̂m

(
cα(1 − c)β

)
=
(α
c
−

β

1 − c

)
£̂m−1

(
cα(1 − c)β

)to group the terms of d
dc£̂2

(
J(a, b, c)

) with a oe�ient 1
c (resp. 1

1−c) together�theseare exatly the terms with a fator c (resp. 1− c). For instane, the terms with 1
c areas follows:

1

c
£̂1

(
(a− b+ 1)[c]

− a
[ c
a

]
+ b
[c
b

]
− b
[ca
b

]
− (1 − b)

[c(1 − a)

1 − b

]

− c(1 − a)
[ 1 − c−1

1 − a−1

]
+ c(1 − b)

[1 − c−1

1 − b−1

]

− c(a− b)
[1 − c−1

1 − a
b

]
− c(b− a)

[ 1 − c−1

1 − 1−a
1−b

])In order to verify that this expression vanishes, we rewrite it in a slightly more onve-nient fashion (in order to be able to apply the four term relation line by line), negletingthe fator 1
c , we get:

£̂1

(
(a− b+ 1)[c]

− a
[ c
a

]
− c(1 − a)

[
1 − c−1

1 − a−1

]

+ b
[c
b

]
+ c(1 − b)

[
1 − c−1

1 − b−1

]

− b

[
c(
b
a

)
]
− c(a− b)

[
1 − c−1

1 −
(

b
a

)−1

]

− (1 − b)

[
c

(
1−a
1−b

)−1

]
− c(b− a)

[
1 − c−1

1 − 1−a
1−b

])

Applying the 4-term equation (3.18) �linewise� to the 2nd, 3rd, 4th and 5th line abovewith x = a, x = b, x = b
a and x = 1−b

1−a , respetively, this latter expression is seen to



ON POLY(ANA)LOGS I 39redue to
£̂1

(
(a− b+ 1)[c]

− a[c] + c[a] + b[c] − c[b]

− a

(
b

a
[c] − c

[
b

a

])
− (1 − a)

(
1 − b

1 − a
[c] − c

[
1 − b

1 − a

]))

= £̂1

(
c

(
[a] − [b] + a

[
b

a

]
+ (1 − a)

[
1 − b

1 − a

]))whih vanishes, again in view of the four term equation (and beause the oe�ientsfor [c] add up to zero). The terms with 1
1−c an be treated in a ompletely analogousway.(ii) The onstant term in c of the polynomial £̂2(J(a, b, c)), i.e. the polynomial £̂2(J(a, b, 0)),is zero�this orresponds in the in�nitesimal ase to the degenerate ase where we alsoput c = 0 but where we need to give sense to expressions like a[ b

a ] for a = 0, theonsistant hoie being that it should be zero.(iii) Instead of onsidering the oe�ient of cp in the polynomial £̂2(J(a, b, c)) we anequivalently hek that the onstant oe�ient in cp£̂2(J(a, b, 1
c )) is zero. In thein�nitesimal ase we an perform the same hek using c£̂2(J(a, b, 1

c )) (so we an usethe analogy again). Referenes[1℄ Azél, J. and J. Dhombres Funtional equations in several variables, Enylopedia of Math. and itsAppliations, Vol 31, Cambridge Univ. Press 1989.[2℄ Besser, A. Finite and p-adi polylogarithms, preprint 2000.[3℄ Bloh, S. On the tangent spae to Quillen K-theory, Pro. Conf., Battelle Memorial Inst., Seattle, Wash.,1972, Springer Let. Notes in Math. no 341, (1973), pp. 205�210.[4℄ Bloh, S. Higher regulators, algebrai K-theory, and zeta-funtions of ellipti urves, Leture Notes,U.C. Irvine, 1977.[5℄ Bloh, S. Appliations of the dilogarithm funtion in algebrai K-theory and algebrai geometry, Pro. ofthe Int. Symp. on Alg. Geom. (Kyoto Univ., Kyoto, 1977), pp. 103�114, Kinokuniya Book Store, Tokyo,1978.[6℄ Cathelineau, J.-L. Sur l'homologie de SL2 à oe�ients dans l'ation adjointe, Math. Sand. 63 (1988),51-86.[7℄ Cathelineau, J.-L. Homologie du groupe linéaire et polylogarithmes (d'après Gonharov et d'autres),Séminaire Bourbaki, 772 (1992-93), Astérisque 216 (1993) 311-341.[8℄ Cathelineau, J.-L. Remarques sur les di�érentielles des polylogarithmes uniformes, Ann. Inst. Fourier,Grenoble, 46, 5(1996), 1327-1347.[9℄ Cathelineau, J.-L. In�nitesimal polylogarithms, multipliative presentations of Kähler di�erentials andGonharov omplexes, talk at the Workshop on Polylogarithms, Essen, May 1-4. (see http://www.exp-math.uni-essen.de/∼herbert/polyloquy.html)[10℄ Coleman, R. Dilogarithms, regulators and p-adi L-funtions, Invent. Math. 69 (1982), no. 2, 171�208.[11℄ Dupont, J. L.; Sah, C.-H. Sissors ongruenes. II., J. Pure Appl. Algebra 25, (1982) 159-195.[12℄ Elbaz-Vinent, Ph. The indeomposable K3 of rings and homology of SL2, Jo. Pure. Appl. Alg.132,(1998) 27-71.
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ON POLY(ANA)LOGS I 41The 1
1
2-logarithm(appendix to �on poly(ana)logs i� by ph. elbaz-vinent and h. gangl)maxim kontsevihThis appendix to the paper of Elbaz-Vinent and Gangl is inluded for historial purpose.It reprodues the text of [22℄, initially written for the private booklet �Friedrih HirzebruhsEmeritierung�.Let p > 2 be a prime. De�ne a map from Z/pZ to itself by the formula

Hp(x) =

p−1∑

k=1

xk

k
= x+

x2

2
+ · · · +

xp−1

p− 1
(mod p) .This funtion appears in expliit formulas for abelian extensions of ylotomi �elds. It lookslike a trunated version of log( 1

1−x). Of ourse, it ould not be a logarithm beause there is nononzero homomorphism from (Z/pZ)× ≃ Z/(p− 1)Z to Z/pZ. I laim that Hp is analogousto another well-known funtion of a real variable. I will derive the analogy by writing severalfuntional equations for Hp. These equations will be independent of p and I will suppress theindex p from the notations.(A): H(1 − x) = H(x) .Proof. we an ompute expliitly the oe�ients of the polynomial H(1 − x). First of all, itszeroth oe�ient is H(1) = 1 + 1
2 + . . . 1

p−1 = 1 + 2 + · · ·+ (p− 1) = p(p−1)
2 = 0 (mod p). For

l between 1 and p− 1 the l-th oe�ient of H(1 − x) is equal to
p−1∑

k=1

1

k
(−1)l

k(k − 1) . . . (k − l + 1)

l!
=

(−1)l

l!

p−1∑

k=1

(k − 1) . . . (k − l + 1) =

= −
(−1)l

l!
(0 − 1)(0 − 2) . . . (0 − l + 1) =

(l − 1)!

l!
=

1

l
.We use here the standard fat that

p−1∑

k=0

P (k) = 0for any polynomial P ∈ Z/pZ[x] of degree at most p− 2. �A simple generalization of the previous argument shows that(B): H(x+ y) = H(y) + (1 − y)H( x
1−y ) + y H(−x

y ) for y 6= 0, 1 .Also there is a very elementary identity(C): xH( 1
x) = −H(x) for x 6= 0.



42 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGLClaim: there is only one (up to a salar fator) nonzero ontinuous solution of equations(A), (B), (C) in maps from R to itself. It is
H∞(x) = − (x log |x| + (1 − x) log |1 − x|) .Also the funtion Hp is the unique (up to salar fator) solution in maps from Z/pZ to itself.Cohomologial interpretation of funtional equations. Let F be a �eld and supposethat H : F → F satis�es (A) and (B). The equation (C) will be irrelevant. We assoiate with

H a homogeneous funtion φ : F × F → F of degree 1:
φ(x, y) :=

{
(x+ y)H

(
x

x+y

) if x+ y 6= 0 ,

0 if x+ y = 0 .Equation (A) implies that φ(x, y) = φ(y, x). Equation (B) is equivalent to the identity
φ(x, y) − φ(x, y + z) + φ(x+ y, z) − φ(y, z) = 0 .Thus, φ is a 2-oyle of the abelian group F (the additive group of the �eld) with oe�ientsin itself as a trivial module. Beause this oyle is invariant under the usual ation of themultipliative group F× (ating both on the group and on the oe�ients), we get a 2-oyleof the group of a�ne transformations of the line over FA�(1, F ) = {t 7→ at+ b|a ∈ K×, b ∈ K}with oe�ients in the non-trivial 1-dimensional representation given by the �rst oe�ient.This 2-oyle de�nes an extension of A�(1, F ) by F . The resulting group G an be identi�edas a set with F × F × F×.Now we onsider the ase of F = R and assume that H is a measurable map. There areno non-trivial measurable ohomology lasses in H2(R,R), hene φ should be a oboundary.This means that there exists a funtion ψ : R → R suh that

φ(x, y) = ψ(x) + ψ(y) − ψ(x+ y) .The homogeneity of φ implies that for any λ 6= 0 the funtion ψλ(x) := ψ(λx) − λψ(x) isadditive in x. If we deal with measurable maps only then ψλ is a linear funtion. From thisone an easily dedue that
ψ(x)/x = a log |x| + bfor some a, b ∈ R. Thus we get the solution of funtional equations for F = R.Now we turn to the ase F = Z/pZ. If the ohomology lass in H2(F,F ) ≃ Z/pZ orre-sponding to H is zero then by arguments parallel to the previous one obtains a homomorphismfrom (Z/pZ)× to Z/pZ. This homomorphism (a �logarithm�) vanishes inevitably, thus givingthe uniqueness of H up to a salar fator.The group G in the ase of F = R is a 3-dimensional solvable Lie group. The Lie algebraof G is de�ned over Z and it has a base x, y, z in whih the ommutation relations are

[x, y] = y, [x, z] = y + z, [y, z] = 0 .This Lie algebra annot be the Lie algebra of any algebrai group over Z or over Q. Never-theless, we have de�ned groups of points over R and over Z/pZ for all odd primes p.



ON POLY(ANA)LOGS I 43Entropy. The funtion H is the entropy of a random variable taking two values. Moregenerally, if ξ takes a �nite number of values with probabilities p1, . . . , pk, ∑ pi = 1 then theentropy of ξ is de�ned as
H(ξ) := −

k∑

i=1

pi log(pi) .We will onsider the entropy also as a funtion of the olletion of probabilities of elementaryevents, H(ξ) = H(p∗). The main property of entropy is that if one random variable (say, ξ) is afuntion of another random variable (say, η) then the entropy of η an be omputed as follows.Let us denote probabilities of all possible values of η by p1,1, p1,2, . . . , p1,l1; p2,1, · · · : . . . pk,lk insuh a way that p1,1 + p1,2 + · · · + p1,l1 = p1 et. Then we have k onditional distributions ofprobabilities pi,∗/pi for eah i ≤ k. The main identity of entropies is
H(p∗,∗) = H(p∗) +

k∑

i=1

piH(
pi,∗

pi
) , H(η) = H(ξ) +Hξ(η) .The last term in the formula above is the average value of the entropies of η with given valuesof ξ and it is alled the relative entropy.Using the main identity one an redue by indution the alulation of the entropy of anyrandom variable to the ase of a two-valued variable, i.e. our funtion H(x). One an hekeasily that the entropy of random variables omputed using H(x) is well-de�ned i� funtionalequations (A) and (B) are satis�ed.Conlusion: If we have a random variable ξ whih takes �nitely many values with allprobabilities in Q then we an de�ne not only the transendental number H(ξ) but also its�residues modulo p" for almost all primes p !I propose alling the funtions Hp �11

2 -logarithms," beause their funtional equation on-tains 4 terms, whih is between 3 (the logarithm) and 5 (the dilogarithm giving an element in
H3(Sl(2,C),R)).The natural question is to �nd funtional equations for the map x 7→

∑p−1
k=1 x

k/k2 from
Z/pZ to itself. I don't know how to do it.Maxim KontsevihInstitut des Hautes Études Sientifiques, 35, Route de Chartres, 91440, Bures-sur-Yvette,Frane.E-mail address : maxim�ihes.fr


